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Shape Matching

Given a pair of shapes, find corresponding points.
Problem:



Why Shape Matching

Given a correspondence, we can transfer: 

texture and 
parametrization

segmentation and labels 

deformation

Other applications: shape interpolation, reconstruction ... 
Sumner et al. ‘04.



What is a Shape?

• Discrete: a triangle mesh.

5k – 200k triangles

• Continuous: a surface embedded in 3D.

Shapes from the SCAPE, TOSCA and FAUST datasets



Functional Approach to Mappings

Given two shapes and a pointwise bijection

The map induces a functional correspondence:
TF (f) = g, where g = f � T

T : N ! M

M
NT

T

5Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, 
Solomon, Butscher, Guibas, SIGGRAPH 2012



Functional Approach to Mappings

Given two shapes and a pointwise bijection

f : M ! R
TF

TF (f) = g : N ! R

The map induces a functional correspondence:T

T : N ! M

6

TF (f) = g, where g = f � T
Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, 
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Functional Approach to Mappings

Given two shapes and a pointwise bijection

The induced functional correspondence is linear:

f : M ! R
TF

TF (f) = g : N ! R

TF (↵1f1 + ↵2f2) = ↵1TF (f1) + ↵2TF (f2)

T : N ! M
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Functional Map Representation

Given two shapes and a pointwise bijection

The induced functional correspondence is complete.

f : M ! R
TF

TF (f) = g : N ! R
T : N ! M

Can recover      from       .     TFT : N ! M



Observation

Express both     and in terms of basis functions:f TF (f)

Since is linear, there is a linear transformation from          to        . TF {ai} {bj}

M

f : M ! R
g : N ! R

TF

N

f =
X

i

ai�
M
i

Assume that both: 

g = TF (f) =
X

j

bj�
N
j

f 2 H1
0(M), g 2 H1

0(N )



Functional Map Representation

Eigenfunctions of the Laplace-Beltrami operator:

Minimize Dirichlet energy:

Ordered by eigenvalues and provide a natural 
notion of scale.  

�0 = 0 �1 = 2.6 �2 = 3.4 �3 = 5.1 �4 = 7.6

��i = �i�i

Choice of Basis:

R
M kr�i(x)k2dµ

10

�(f) = �divr(f)



Functional Map Representation

Since the functional Mapping TF is linear:

TF can be represented as a matrix C, given a choice of basis for 
function spaces.

TF (↵1f1 + ↵2f2) = ↵1TF (f1) + ↵2TF (f2)

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon, Butscher, Guibas, SIGGRAPH 2012

TF



Functional Map Definition

Functional map: 
matrix C that translates coefficients from to          . �M �N



Reconstructing from LB basis

Map reconstruction error using a fixed size matrix.

13

0.5

1

1.5

2

2.5

3

3.5

4

4.5

re
co

ns
tr

uc
tio

n 
er

ro
r

Number	of	basis	(eigen)-functions

27.9k vertices



In practice we do not know C. Given two objects our goal 
is to find the correspondence. 

How can the functional representation help to compute the 
map in practice?

Shape Matching

?



Matching via Function Preservation

where

Given enough    pairs, we can recover C through a 
linear least squares system.   

f =
P

i ai�
M
i , g =

P
i bi�

N
i .

{a,b}

Suppose we do not know C. However, we expect a pair of 
functions and to correspond. Then, 
C must be s.t.

Ca ⇡ b

f : M ! R g : N ! R

15

g =
P

j bj�
N
j



Basic Pipeline

Given a pair of shapes :

1. Compute the multi-scale bases for functions on the two 
shapes. Store them in matrices:

2. Compute descriptor functions (e.g., Gauss curvature) on                
. Express them in                 , as columns of : 

3. Solve

4. Convert the functional map
to a point to point map T. 

C
opt

= argmin
C

kCF �Gk2F + kC�M ��Nk2F

Laplacian operators.

M,N

�M,�N

�M,�N

�M,�N :

C
opt

= argmin
C

kCA�Bk2 + kC�M ��NCk2
A,B

M,N

Functional maps: a flexible representation of maps between shapes, O., Ben-
Chen, Solomon, Butscher, Guibas, SIGGRAPH 2012



Structural Questions for Today

Can we promote functional maps to be:

1. Closer to point-to-point maps?

2. Closer to being bijective?

3. Encode extrinsic (embedding-dependent) information?

While retaining the computational advantages.



Making Functional Maps Point-to-Point

Question 1:

When does a linear functional mapping correspond 
to a pull-back by a point-to-point map?



Making Functional Maps Point-to-Point

Question 1a:

When does a linear functional mapping correspond 
to a pull-back by a point-to-point map?

Question 1b:
Given a single perfect descriptor that identifies each point 
uniquely, why does our system not recover the map?

C
opt

= argmin
C

kCa� bk

We’re not using the full information from the descriptors! 

19



Making Functional Maps Point-to-Point

(Known) Theoretical result:
A functional map is point-to-point iff it preserves 
pointwise products of functions:

C(fh) = C(f)C(h) 8 f, h (fh)(x) = f(x)h(x)

(Main) Question:

When does a linear functional mapping correspond 
to a pull-back by a point-to-point map?

J.	von	Neumann,	Zur operatoren methode in	der	klassichen Mechanik,	Ann.	of	Math.(2)	33	(1932)



Making Functional Maps Point-to-Point

(Known) Theoretical result:
A functional map is point-to-point iff it preserves 
pointwise products of functions:

Challenges:
1) Leads to non-convex energy.
2) Large number of constraints 

(mixing primal and spectral domains)

C(fh) = C(f)C(h) 8 f, h (fh)(x) = f(x)h(x)

Would like to exploit this fact without losing convexity.

Can we use this in the algorithm?



Making Functional Maps Point-to-Point

(Known) Theoretical result:
A functional map is point-to-point iff it preserves 
pointwise products of functions:

Approach:
Consider the linear operator:

C(fh) = C(f)C(h) 8 f, h (fh)(x) = f(x)h(x)

Sf (·) : Sf (h) = fh
Sf (h)(x) = f(x)h(x)



Making Functional Maps Point-to-Point

(Known) Theoretical result:
A functional map is point-to-point iff it preserves 
pointwise products of functions:

Approach:
Consider the linear operator:

given a pair of functions             for which we expect:                      
, the above implies:   

C(fh) = C(f)C(h) 8 f, h (fh)(x) = f(x)h(x)

Sf (·) : Sf (h) = fh
Sf (h)(x) = f(x)h(x)

fk, gk
C(fk) = gk

C � Sfk(h) = Sgk � C(h) 8 h
23



Making Functional Maps Point-to-Point

(Known) Theoretical result:
A functional map is point-to-point iff it preserves 
pointwise products of functions.

Approach
Represent descriptor functions via their action on
functions through multiplication.

C

Sfk
Sgk

CSfk = SgkC() C(fkh) = gkC(h) () C(fkh) = gkC(h)



Making Functional Maps Point-to-Point

Approach
Represent descriptor functions via their action on
functions through multiplication.

Theorem 1 (even in the reduced basis):

CF = GC, and C1 = 1 () Cf = g

Theorem 2:
If f, g have the same values, then in the full basis for any 

doubly stochastic matrix      : 
⇧f = g () ⇧F = G⇧

⇧

=) Cf = g

where are the multiplicative operators of f, g.F,G

where are the multiplicative operators of f, g.F,G



Extended Basic Pipeline

Given a pair of shapes :

1. Compute the multi-scale bases for functions on the two 
shapes. Store them in matrices:

2. Compute descriptor functions (e.g., Gauss curvature) on                
. Express them in                 , as columns of : 

3. Solve

4. Convert the functional map
to a point to point map T. 

C
opt

= argmin
C

kCF �Gk2F + kC�M ��Nk2F

M,N

�M,�N

�M,�N

C
opt

= argmin
C

kCA�Bk2 + kC�M ��NCk2
A,B

M,N

Informative Descriptor Preservation via Commutativity for 
Shape Matching, Nogneng, O., Eurographics 2017

+
X

k

kCSfk � SgkCk2



Results with extended pipeline

Incorporating multiplicative operators improves results significantly.

Informative Descriptor Preservation via Commutativity for Shape Matching, Nogneng, O., 
Eurographics 2017

before

after



Results with extended pipeline

Incorporating multiplicative operators improves results significantly.

Informative Descriptor Preservation via Commutativity for Shape Matching, Nogneng, O., 
Eurographics 2017

before

after



Improving Map Bi-directionality

Question 2a:
Can we remove the direction bias?

C
opt

= argmin
C

kCA�Bk2 + kC�M ��NCk2

Source/target shapes are not interchangeable.

Question 2b:

What does the functional map adjoint/transpose encode?



Functional Map Adjoint

Given a functional map  and choice of inner products on 
the source/target, the adjoint is defined implicitly:

M

f : M ! R
g : N ! R

N

C

C
Cadj

Cadj

< C(f), g) >N=< f,Cadj(g) >M 8f, g



Improving Map Bi-directionality

We define the adjoints based on two inner products: 

< f, g >L2 =

Z
fgdµ

< f, g >H1 =

Z
< rf,rg > dµ

CL2

adj = CT

CH1

adj = �+
MCT�N

Theorem:
If a functional map      comes from a pointwise 

bijection      between surfaces  then:
C

T

T

T

C�1 = CL2

adjis locally area-preserving if and only if   

C�1 = CH1

adjis conformal if and only if 
Adjoint Map Representation for Shape Analysis and Matching, Huang, O., SGP 2017



Improving Map Bi-directionality

Removing direction bias:

Leads to a non-linear, non-convex energy.

Source Shape Regular Fmap [ERGB]

argmin
CMN ,CNM

E1(CMN ) + E2(CNM )+

Coupled functional maps, Eynard et al., 3DV 2016

kCMNCNM � Idk



Improving Map Bi-directionality

Removing direction bias:

Overall energy remains quadratic in .

Tends to promote invertibility and near-isometry. 

CMN , CNM

Source Shape Regular Fmap [ERGB] Adjoint Regularization

kCMN � CT
NMk+ k�NCMN � CT

NM�Mk
argmin

CMN ,CNM

E1(CMN ) + E2(CNM )+

Adjoint Map Representation for Shape Analysis and Matching, Huang, O., SGP 2017



Improving Map Bi-directionality

Regular Fmap Adjoint Regularization

Adjoint Map Representation for Shape Analysis and Matching, Huang, O., SGP 2017

Removing direction bias:

Overall energy remains quadratic in .

Tends to promote invertibility and near-isometry. 

CMN , CNM

kCMN � CT
NMk+ k�NCMN � CT

NM�Mk
argmin

CMN ,CNM

E1(CMN ) + E2(CNM )+



Encoding Extrinsic Information

Question 3a:
Can we encode extrinsic (embedding-dependent) 

information? 

• First fundamental form (intuitively: geodesics).
Surfaces are encoded via:

• Second fundamental form (intuitively: principal 
curvatures).

Can we translate this into functional representation?

Question 3b:



Encoding More Complex Data

Recall our earlier result:

The first fundamental form (geodesics) is fully encoded 
by the Laplacian.

Lemma 1:

The mapping is isometric, if and only if the functional 
map matrix commutes with the Laplacian:

C�M = �NC



Encoding Extrinsic Information

Curvature is encoded by the 
change of the local lengths 
along the normal direction.

A bit more formally:
Given a family of shapes

s.t.

then:

Functional Characterization of Intrinsic and Extrinsic Geometry, Corman et al. ACM TOG 2017

Intuitively:



Encoding the Second Fundamental Form

The second fundamental form (principal curvatures) is 
fully encoded by the Laplacian in the normal direction.

Lemma 2:

A map preserves the second fundamental form, if and 
only if the functional map commutes with the 
derivative of the Laplacian along the normal: 

C
@�M+tn

@t

����
t=0

=
@�N+tn

@t

����
t=0

C

Functional Characterization of Deformation Fields (major revision, arxiv 1709.09701)



Encoding the Second Fundamental Form

Define a functional operator         implicitly such that: 

Functional Characterization of Deformation Fields (major revision, arxiv 1709.09701)

En

Where      is the infinitesimal strain tensor:
Lng(x, y) = hx,r

y

ni+ hr
x

n, yi

Z

M
hrg,rEn(f)i dµ =

Z

M
Lng(rg,rf)dµ

Lng(x, y) = hx,r
y

ni+ hr
x

n, yi

We can now require the functional map to commute:

kCMNEn
M � En

NCMNk

8f, g



Encoding the Second Fundamental Form

Theorem
Two surfaces are related by a rigid motion if and only if: 

kCMN�M ��NCMNk+ kCMNEn
M � En

NCMNk = 0

Functional Characterization of Deformation Fields (major revision, arxiv 1709.09701)

• The Laplacian encodes the first fundamental form.
• Metric change along the normal encodes the second.



Encoding the Second Fundamental Form

Theorem
Two surfaces are related by a rigid motion if and only if: 
kCMN�M ��NCMNk+ kCMNEn

M � En
NCMNk = 0

Objective remains quadratic in C.
Promotes preservation of mean/principal curvatures.

Functional Characterization of Deformation Fields (major revision, arxiv 1709.09701)



Metric-Prescribed Shape Deformation

Same machinery allows intrinsic symmetrization without 
pointwise correspondences.

Functional Characterization of Deformation Fields (major revision, arxiv 1709.09701)



Functional Deformation Fields

… and deformation transfer without pointwise 
correspondences. 

Functional Characterization of Deformation Fields (major revision, arxiv 1709.09701)



Follow-ups and References

Contains detailed course notes and 
sample code

SIGGRAPH Course Website:

Some references and follow-up works:
Functional maps: a flexible representation of maps between shapes, ACM SIGGRAPH 2012

Informative Descriptor Preservation via Commutativity for Shape Matching, Eurographics 2017

Functional Characterization of Deformation Fields, arxiv 1709.09701, 2017

http://www.lix.polytechnique.fr/~maks/fmaps_SIG17_course/

or http://bit.do/fmaps2017

http://bit.do/fmaps2017_notes

Adjoint Map Representation for Shape Analysis and Matching, SGP 2017



Thank you!

Questions?
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