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Figure 1: Perfect point to point maps between non-isometric shapes are difficult to obtain or even define. In this situation, stable region correspondences
are a meaningful alternative for a set of matches. The three shape pairs above each illustrate a pair of stable matching regions obtained when we compute a
map between cat and dog, human and dog, and pig and chair, respectively. Note that in all cases the obtained correspondences capture regions with similar
semantics.

Abstract
We consider the problem of finding meaningful correspondences between 3D models that are related but not necessarily very
similar. When the shapes are quite different, a point-to-point map is not always appropriate, so our focus in this paper is a
method to build a set of correspondences between shape regions or parts. The proposed approach exploits a variety of feature
functions on the shapes and makes use of the key observation that points in matching parts have similar ranks in the sorting
of the corresponding feature values. Our algorithm proceeds in two steps. We first build an affinity matrix between points on
the two shapes, based on feature rank similarity over many feature functions. We then define a notion of stability of a pair of
regions, with respect to this affinity matrix, obtained as a fixed point of a nonlinear operator. Our method yields a family of
corresponding maximally stable regions between the two shapes that can be used to define shape parts. We observe that this is
an instance of the biclustering problem and that it is related to solving a constrained maximal eigenvalue problem. We provide
an algorithm to solve this problem that mimics the power method. We show the robustness of its output to noisy input features
as well its convergence properties. The obtained part correspondences are shown to be almost perfect matches in the isometric
case, and also semantically appropriate even in non-isometric cases. We provide numerous examples and applications of this
technique, for example to sharpening correspondences in traditional shape matching algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—3D Shape Matching, Geometric Modeling, Shape Matching and Retrieval

1. Introduction

Understanding shapes and the connections/relations between them
is a classical problem in geometry processing. When shapes are
very similar, it is appropriate to match them using point-to-point
correspondences. However, when they are related but are signifi-
cantly different, a point-to-point map might not be meaningful, as
illustrated in Figure 1. In this paper, we consider the problem of
extracting part or region correspondences between related but pos-
sibly dissimilar shapes.

A common approach for establishing correspondences between

points on geometric shapes consists of associating a set of values
(called signatures or feature descriptors) with every point on the
shape, values that characterize the geometric properties of the point
or of its neighborhood, often in a multi-scale way. Common exam-
ples of such features include various notions of curvature (Gaus-
sian, mean), diffusion-based descriptors, such as the Heat or Wave
Kernel Signatures [SOG09, ASC11], or more classical descriptors
such as spin images or shape contexts [JH99,BMP02]. In most sce-
narios, after computing the features, correspondences are obtained
by considering pairs of points or shape parts that have similar fea-
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ture values, for example by doing nearest-neighbor search in the
descriptor space.

A crucial observation which drives our work is that for many
geometric features or descriptors, such as for example curvature,
geometrically similar parts between different shapes obey a simi-
lar ranking with respect to the sorting of their feature values, even
if the exact values of the features might differ. In other words, if
each feature is considered as a function on the shape, and its val-
ues are sorted, then the rank of the value on corresponding points
on two different shapes will be close, even if the descriptor value
itself differs significantly. This is illustrated in Figure 2, where one
can observe that the highest mean curvature values correspond to
the tail of both the cat and the dog and that the lowest values cor-
respond to the face. We also observe on this figure that different
feature functions still be consistent in spite of being ranked differ-
ently on the same shape. The idea of our approach is to aggragate
information obtained from many such features.

In this paper, we provide a method that, given a set of feature
functions computed on a pair shapes, outputs a set of correspond-
ing regions that partition each of the two shapes. Our approach con-
sists of two steps: we first create an affinity matrix that captures the
similarity between pairs of points on the two shapes. The affinity is
high for a pair of points whose ranks in the sorted feature functions
is similar across many features. Then, in a second step, we extract
a set of pairwise corresponding regions that maximize their mutual
affinity. For this we develop a novel iterative algorithm that is able
to efficiently extract pairs of corresponding regions from the affin-
ity matrix, by solving an optimization problem, which is closely
related to biclustering and constrained eigenvalue maximization.

To summarize, our contributions are the following:
• We define a novel affinity matrix between two shapes that en-
codes the “similarity” of every pair of points, using the ranks of
corresponding feature functions.
• We define the notion of stable pair of regions with respect to an
affinity matrix, as the solution of an optimization problem, which
is related to constrained eigenvalue maximization problem.
•We provide a practical iterative algorithm that converges to a sta-
ble pair of matching regions.
•We provide theoretical stability guarantees for the construction of
the affinity matrix, and of the output of our algorithm, in the pres-
ence of noisy feature functions, as well as a proof of convergence
of our iterative algorithm for extracting stable parts.
•We show that these stable parts provide new features that are both
semantically meaningful for dissimilar shapes and can aid existing
correspondence methods for nearly isometric shapes.

For every step of our algorithm, we put special emphasis on ro-
bustness of the approach in the presence of possibly extreme geo-
metric variability. This is in contrast to most existing shape match-
ing methods which are geared towards finding accurate point or part
correspondences, but can easily fail even under moderate geometric
variability. As a result, our approach can return plausible part cor-
respondences even for very different shape pairs. We validate the
output of our algorithm via quantitative accuracy measures for suf-
ficiently similar shape pairs with known correspondences. We also
observe on various examples that stable regions often correspond
to geometrically meaningful parts between non-isometric shapes.

2. Related Work

Shape matching or correspondence finding is one of the oldest and
best-studied problems in digital geometry processing involving a
diverse set of approaches. Below we only mention the methods di-
rectly related to ours, putting emphasis on the non-rigid and es-
pecially non-isometric shape correspondence algorithms. We also
invite the interested reader to consider existing surveys, includ-
ing [VKZHCO11, TCL∗13] and a tutorial [CLM∗11].

The problem of finding correspondences between a pair of
shapes undergoing a non-rigid deformation has received a lot of
attention in the past decade. The most common theoretical frame-
work for studying this problem is that of intrinsic isometries, which
assumes that the underlying transformation approximately pre-
serves geodesic distances on shape surfaces. Introduced by Bron-
stein et al. [BBK06] and Mémoli [Mém07] , this model has in-
spired a large number of efficient techniques for finding corre-
spondences, including [TBW∗09,SY11,OMMG10] to name a few,
which are especially useful in the case of articulated shapes. Note
that in [RPSS10], the features are sorted to find a one-to-one map
between sample points that sends the feature values on the first
shape as close as possible to the feature values on the second shape,
and not to find a confidence value between pairs of points as in our
approach.

Although appealing from the theoretical and practical points of
view, the isometric shape deformation model is rather restrictive. A
more general model of conformal deformations (i.e. ones that only
preserve angles) has also led to a number of efficient shape match-
ing methods, including [LF09,KLF11,APL14,APL15,ZSCO∗08].
These methods are able to handle larger shape variability, but also
fail in the presence of extreme geometric deformations. Moreover,
even for shapes with moderate deformations, in part due to the pres-
ence of multiple solutions these methods can also strongly benefit
from fixed feature correspondences.

A number recent techniques have also considered a more gen-
eral problem of finding soft (or functional) correspondences be-
tween shapes, rather than point-to-point ones [SNB∗12,OBCS∗12,
SRGB14]. These methods are based on the idea that in many cases,
it is both more efficient and less error-prone to establish correspon-
dences between probability distributions, or more generally real-
valued functions on the shapes, rather than between pairs of points.
This is especially true when the shapes undergo large deformations,
so that even defining a point-to-point map outside of a small set of
feature points might not be meaningful. Nevertheless, most of the
existing techniques are still limited, and often incorporate the iso-
metric deformation assumption as a regularizer in the optimization.

Non-rigid shape matching has also been tackled with machine
learning-techniques, where one typically assumes some training
data and learns a deformation model that can be applied on new
shape pairs, which is possible both in the context of pointwise
[ZB15, WHC∗15] and functional [COC14] correspondences.

Finally, other methods have formulated the matching problem
via classical quadratic assignment matching, for which several ef-
ficient relaxations recently been devised, e.g. [KKBL15, CK15].
These methods typically still rely on variants of isometric shape
deformation model and aim to obtain pointwise correspondences.
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Shape region decomposition has also been handled using topo-
logical tools such as topological persistence to provide a multi-
scale isometry invariant mesh segmentation [SOCG10], or to
complete a shape or find correspondences between isometric
shapes [DLL∗10].

In this context, our main goal is to lift the restrictive assumptions
on shape deformations and to provide a robust and efficient method
for establishing part-based correspondences between a given pair
of shapes, without any prior. As mentioned above, we target signif-
icant shape variability and emphasize robustness at every stage of
the pipeline. However, we also show that our part-based correspon-
dence algorithm can be used to improve point-to-point maps when
these are required and appropriate.

Our method is also somewhat related to the 3D shape co-
segmentation techniques, such as [SvKK∗11, HKG11, HFL12,
AXZ∗15]. However, unlike these approaches, we specifically tar-
get the part-level correspondence of a pair shapes that undergo a
potentially significant deformation. This way, our method for ex-
tracting stable parts from an affinity between pairs of points can
potentially be used to enhance co-segmentation of a shape collec-
tion, as a future application.

Our approach bears similarity with spectral clustering, where
shapes or points are embedded in a domain associated to the eigen-
vectors of some Laplacian matrix. Then a clustering or a map is
calculated in the spectral domain and pushed back onto the shapes,
as in [JZvK07]. The normalized graph cut problem is in particular
close to our problem: it is formulated as a discrete minimization
problem, which is in practice relaxed into a continuous problem
that amounts to computing the Fiedler vector. The continuous solu-
tion is then discretized by sorting and truncating. In our method, we
do not relax the problem and directly solve a discrete optimization
problem by computing two binary vectors.

Our problem can also be considered as an instance of the biclus-
tering problem similar to the minimization of normalized cut in a
bipartite graph [ZHD∗01]. There, the goal is also to find a simul-
taneous partition on two sets and the relaxed continuous problem
is solved by calculating an eigenvector associated to the second
largest left and right singular vectors of the affinity matrix, and a
truncation is applied to get a partition. In our setting, the objective
function is different, we directly solve the problem without relax-
ing the non-convex constraint and get a local maximum. Since we
directly solve the discrete problem, we apply truncations at each
iteration of a power method, while in the normalized cut problem,
the eigenvector is calculated with the power method and the trun-
cation is only done at the end.

3. Method Overview

In this paper we assume that we are given a pair of shapes and
a set of corresponding feature functions computed on each shape.
Our underlying assumption is that even if the values of the fea-
ture functions might be different at points we want to correspond,
the ranks of the values of the sorted feature functions might still
agree. For example, the regions corresponding to the maxima or
minima of the feature functions are likely to correspond, even if
the exact function values might be different. We also assume that

Figure 2: Feature functions and characteristic functions on two
different shapes. The first row shows a multiscale mean cur-
vature [MDSB03] and the second row shows a WKS signa-
ture [ASC11]. The two shapes are the TOSCA cat0 and dog0. We
visualize the feature values (Left two columns) as well as the parti-
tions of the shapes into 4 characteristic feature value bands 1C j and
1C′

j
for j = 1, · · · ,4 (Right two columns). The characteristic func-

tions are consistent and provide independent information. In this
paper we consistently combine information obtained from many
such features.

the feature functions are sufficiently smooth and discriminative, so
that different characteristic regions (pre-images of a fixed feature
value range) correspond to contiguous regions on the shapes. One
can consider diffusion-based descriptors such as the HKS or WKS
that fulfill both of these assumptions [ASC11, SOG09]. This is il-
lustrated in Figure 2, where one visualizes the sorting values of
two corresponding features in two different shapes. Our algorithm
proceeds in two stages: first we construct an affinity matrix that cap-
tures the correspondence likelihood of every pair of points on the
shapes. This affinity matrix is constructed by using the correlations
between the ranks of the pairs of points across different feature
functions. We stress that the affinity matrix can be interpreted as a
discrete rank transport plan and is stable in the presence of noisy
features.

Given the affinity matrix, we then develop an algorithm that ex-
tracts corresponding parts of the two shapes in a robust, efficient
and stable way. We provide a theoretical analysis of convergence
and demonstrate its efficiency and accuracy in practice.

The final output of our method is a set of part/region correspon-
dences on the pair of shapes. As our emphasis is on robustness in
the presence of large geometric variability, our approach does not
provide point-to-point correspondences, and in some cases, the cor-
responding regions might be relatively large. However, as we show
below, such correspondences can still be useful in a variety of tasks
even when more fine matchings are desired.

Remark. In our approach we do not directly enforce topological or
geometric constraints. However, since our stable correspondences
depend on input feature functions, and since the features we use
contain geometric information, we observe geometric similarities
on our output correspondences, even on pairs of topologically dif-
ferent shapes. Thus, our output correspondences are as robust to
various perturbations as our input features. However, our method
can break down when we have inconsistent features, such as extrin-
sic features on non-aligned shapes. Finally, although our method is
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robust to random noise, our affinity matrix is not robust to noisy
features that would provide bad matches on the shapes consistently.

The rest of the paper is organized as follows. Section 4 defines
the notion of affinity matrix and describes its construction from in-
put shape feature correspondences. Section 5 defines the notion of
stability for regions on the pairs of shapes related by the affinity ma-
trix. We present two algorithms to compute these stable regions in
Section 6. Section 7.1 discusses the evolution of the stable regions
on a pair of shapes. Section 7.2 provides examples of matching of
non-isometric shapes and evaluation techniques using ground truth
correspondences, and Section 7.3 provides an evaluation of how
stable region correspondences could be used as features on shape
pairs to improve existing maps between shapes.

Notations. Throughout the paper we let S1 = {p1, · · · , pd1} and
S2 = {q1, · · · ,qd2} denote the set of vertices of two shapes repre-
sented by triangle meshes. We denote by 1C the indicator function
of any subset C⊂ Si or of any interval C⊂R. Remark that each fea-
ture function on Si can be seen as a vector of Rdi and is represented
by a column matrix of size di× 1. We denote by 1k,l the matrix of
dimension k× l whose all entries are 1. For any matrix A, we de-
note by ‖A‖1 and ‖A‖2 respectively the induced matrix 1-norm and
2-norm, by ‖A‖1,1 the sum of the absolute values of the entries of
A, by ‖A‖F its Frobenius norm and by ρ(A) the highest eigenvalue
in absolute value. For any vector x, we denote by ‖x‖2 its Euclidean
norm, by ‖x‖1 its 1-norm and by xi or (x)i its ith-coordinate.

4. Affinity Matrix as Transport Plan

In this section we an affinity matrix between two shapes that mea-
sures the likelihood that two points on the shapes in question corre-
spond. We define this affinity matrix in Section 4.1 and note that it
can be seen as a discrete transport plan between two uniform prob-
ability measures. We show in Section 4.2 that, up to a scale factor
and a translation factor, this affinity matrix is robust to random,
independent and numerous noisy features.

4.1. Definition

From here on, we assume that we are given a pair of shapes and a
set of N corresponding feature functions on each shape. The exact
choice of the feature functions that we use in practice is detailed in
Section 7.1. For simplicity we assume that vertex set cardinalities
d1 and d2 are multiples of some integer K > 0.

Given a feature function fk on S1 and the corresponding fea-
ture function dk on S2 we partition the sets S1 and S2 into K sub-
sets each, which we denote by Ck, j and C′k, j (where j = 1, · · · ,K)
respectively, by sorting the values fk and dk taking consecutive
equally-sized blocks. This means that if j ≤ j′ and p ∈ Ck, j then
for every p′ ∈Ck, j′ , one has f (p)≤ f (p′). Given the construction
above, we define the affinity matrix of size d2×d1 as:

W (N) =
N

∑
k=1

K

∑
j=1

1C′
k, j
·1T

Ck, j ,

where · denotes the matrix product. We remark that the value W (N)
i, j

represents the number of features that classify vertex p j of S1 and

vertex qi of S2 in the same characteristic class. Note also that the
sum of every row of W (N) equals to Nd1/K, and the sum of every
column equals to Nd2/K. The normalized affinity matrix is

WN = K/(Nd1d2)W
(N). (1)

Again, we observe that WN can be interpreted as a discrete transport
plan between the uniform probability measures µ= (1/d1)1d1,1 and
ν = (1/d2)1d2,1 [Vil03], i.e. the matrix WN is positive and satisfies

WN ·1d1,1 = ν and W T
N ·1d2,1 = µ. (Transport Plan)

Each entry (WN)i, j can be seen as a probability for vertices p j and
qi to be matched. This implies in particular that 1d1,1 is an eigenvec-
tor of W T

N WN associated to the eigenvalue 1/(d1d2). Furthermore,
the induced 1-norm ‖W T

N WN‖1 is equal to 1/(d1d2) implying, us-
ing ρ(A)≤ ‖A‖1 that 1/(d1d2) is the largest eigenvalue of W T

N WN .

4.2. Robustness to noisy features

We show in this subsection that the affinity matrix is robust to the
addition of noisy feature functions, as long as these feature func-
tions are numerous and are the realization of independent, identi-
cally distributed (i.i.d) random variables. More precisely, let W init

n
be an affinity matrix of size d2× d1 built by a set of n “reliable”
pair of feature functions ( fk,dk), W noise

N−n built using the N−n pairs
of real noisy feature functions (φk,ψk) and W all

N built over all the
N pairs. Then, one has

W all
N = κ W init

n +(1−κ)W noise
N−n ,

where κ = n/N is the fraction of reliable features.

The following proposition states that one can recover with high
probability (up to a scale factor and a translation factor) an approx-
imation of the non-noisy affinity matrix. Roughly speaking, the in-
tuition is that a large number of noisy features will compensate for
each other and simply modify all affinities in a uniform way.

Proposition 1 Suppose that φk : S1 → Rd1 are (N− n) i.i.d multi-
variate random variables and ψk : S2→Rd2 are (N−n) i.i.d multi-
variate random variables. Suppose in addition that for every k, l, φk
and ψl are independent. Then for every δ > 0

P(‖W all
N −κ W init

n −C1d2,d1‖F < δ)≥ 1− (1−κ)σ2

Nδ2 ,

where ‖ · ‖F is the Frobenius norm, C = (1−κ)/(d1d2K) and σ is
a constant independent on N, κ and δ.

Remark 1 We can define alternate affinity matrices. In our exper-
iments we tried, for example, to weight the features using confi-
dence values (by putting a high confidence value for features with
a low entropy correspondence) but the results did not improve. Al-
though this can, in part, be explained by the robustness of the affin-
ity matrix, we leave the exploration of other possible constructions
of the affinity matrix for future work.

5. Stable pairs of regions

Here we introduce the notion of stable pair of regions associated to
an affinity matrix. As mentioned in the previous section, we inter-
pret the normalized affinity matrix WN as a discrete transport plan
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between the two uniform probability measures supported on the
two shapes S1 and S2. The matrix WN sends the uniform measure
on S1 to the one on S2 and the matrix W T

N sends the uniform mea-
sure on S2 back to the one on S1. Intuitively, we would like to find
a pair of subsets (Ω1,Ω2) such that W sends Ω1 close to Ω2 and
W T

N sends back Ω2 close to Ω1 — these will be our stable regions.

In Section 5.1 we express this problem as a constrained opti-
mization problem and explain how it is related to eigenvalue maxi-
mization problems. We also show its equivalence to a maximization
problem over a set of submatrices and define in Section 5.2 the sta-
ble regions as local maximizers, which can be expressed as fixed
points of a nonlinear function ( Section 5.3). We also show the sta-
bility of this notion with respect to the affinity matrix. Note that our
approach works for any positive rectangular matrix.

5.1. Optimization problem

Let W be a positive matrix of size d2×d1, and let q< d1 and p< d2
be two integers. Our problem amounts to finding regions of S1 and
S2 of respective sizes q and p that correspond to the highest values
of the matrix W . This can be stated as follows:

argmaxx,yyTWx (Opt_Pb)

over the set of points x ∈ {0,1}d1 and y ∈ {0,1}d2 that satisfy
‖x‖1 = q and ‖y‖1 = p.

We remark that the set of constraints is non-convex, finite and
its size makes the optimization not tractable in practice. We show
below that this problem can be reformulated as selecting a subma-
trix of W that maximizes the ‖ · ‖1,1 norm. This characterization is
a key point that will be used in Section 5.2 to introduce the notion
of stable pairs of regions.

We say that a matrix A of size q× p is a submatrix of W if it is
obtained by removing (d1−q) columns and (d2− p) rows from W .
Given two regions Ω1 ⊂ S1 and Ω2 ⊂ S2, we denote by WΩ1,Ω2 the
matrix of size q× p obtained by removing the columns of W whose
index correspond to points in S1 \Ω1 and removing the rows of W
whose index correspond to points in S2 \Ω2. Remark that WΩ1,Ω2

is a submatrix of size q× p of W .

Let x and y be two vectors that realize the maximum in Problem
(Opt_Pb). Note that x is the indicator function of a set C1 of S1 and y
is the indicator function of a set C2 of S1. Since the matrix W is pos-
itive, one has: yTWx = 1T

C2
W1C1 = 1T

p,1WC1,C2 1q,1 = ‖WC1,C2‖1,1.
Conversely, it is easy to see that for every submatrix of W of size
q× p there correspond indicator functions x and y. Hence Problem
(Opt_Pb) is equivalent to

argmaxA‖A‖1,1, (Opt_Pb′)

where the maximum is over all the submatrices A of W of size q× p.

Remark 2 If we do not enforce x and y to be indicator functions,
and replace the assumption on their L1 with a bound on the L2
norm, then Problem (Opt_Pb) is equivalent to maximizing the high-
est eigenvalue of the positive semi-definite matrix W TW . This is
just a consequence of the classical equality

max
‖x‖2≤1,‖y‖2≤1

yTWx = max
‖x‖2≤1

‖Wx‖2 =
√

ρ(W TW ).

Figure 3: Structure of affinity matrix between a cat and dog. Only
values wi, j greater than 30% of the maximum value are shown in
blue. Algorithm 2 returns 6 stable pair of parts. The rows and the
columns of W are reordered, so that each pair j correspond to one
of the (diagonal) red rectangles. We observe in particular that the
coefficients of W are higher close to the diagonal.

Note, however, that under generic conditions, the eigenvectors
of matrix W TW do not provide, even approximately, regions of
Shape S1. This is a consequence of Perron-Frobenius Theorem. By
generic condition, we mean the matrix W TW is irreducible (e.g. the
associated graph is connected), which is the case in practice in our
experiments. The Perron-Frobenius Theorem then implies that the
eigenvector associated to the highest eigenvalue has strictly pos-
itive components (it is in fact x = 1d1,1 when WN is the discrete
transport plan between two uniform probability measures defined,
as in Section 4), and that all other eigenvectors have at least one
negative component.

Remark 3 Our optimization problem is related to sparse eigenval-
ues and eigenvectors problems, and in particular to sparse principal
component analysis (see [JNRS10, YZ13] for example). Our ap-
proach here is in particular close to the one considered in [YZ13],
where the following problem is considered

max
‖x‖2≤1, ‖x‖0≤q

xTWx,

where ‖x‖0 is the number of non-zero elements. Note however that
in their problem, the matrix W is supposed to be positive semi-
definite, while it is only supposed to be positive in our framework.
One may also remark that even though their approach could be ap-
plied to our matrix W TW (instead of W ), the maximum is realized
by a vector x which is not binary, and no vector y is provided.

5.2. Stable pairs as local maxima

The problem we want to solve amounts to finding global maximiz-
ers of the norm ‖ · ‖1,1 over the set of submatrices of size q× p of
W . The size of the search space makes the problem not tractable in
practice. Thus, we define a stable pair of regions as being associ-
ated to a submatrix of W that locally maximizes the norm ‖ · ‖1,1.
To give a sense of locality, we first need to define a notion of neigh-
borhood in the set of submatrices.
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Up to a reordering of the rows and columns of W , we can write

W =

(
WΩ1,Ω2 WS1\Ω1,Ω2

WΩ1,S2\Ω2
WS1\Ω1,S2\Ω2

)
, (2)

Remark that to any submatrix A of W of size q× p correspond
a pair of regions Ω1 and Ω2 such that A = WΩ1,Ω2 . We say that
two submatrices A = WΩ1,Ω2 and A′ = WΩ′

1,Ω
′
2

of size q× p are
neighbors if there exists i∈ {1,2}, a point p∈ Si and a point p′ ∈ S′i
such that Ωi∪{p′}\{p}= Ω

′
i . Note that the set of all submatrices

of W of size q× p is connected with this notion of neighborhood.

Definition. We say that the pair of regions Ω1 ⊂ S1 and Ω2 ⊂ S2
is W-stable if the submatrix WΩ1,Ω2 is a local maximizer of ‖ ·‖1,1,
namely if for every matrix neighbor WΩ′

1,Ω
′
2
, one has

‖WΩ′
1,Ω

′
2
‖1,1 ≤ ‖WΩ1,Ω2‖1,1.

We note that since the global maximum in Problem (Opt_Pb′)
is always attained, there must always exist a stable pair of regions
(Ω1,Ω2) of any size q and p.

5.3. Stable pairs as fixed points of a nonlinear function

In this section we show that stable pairs of regions can be expressed
as fixed points of nonlinear functions. This observation is crucial
and will be used in the algorithms presented in Section 6. We say
thatP : Rd→{0,1}d is a thresholding function if for every x∈Rd ,
if xi ≤ x j, then (P(x))i ≤ (P(x)) j. Remark that for almost every
x ∈ Rd there exists a cutoff τ(x), such that for every i, (P(x))i = 0
if xi < τ(x) and (P(x))i = 1 otherwise.

Proposition 2 Let W be a discrete transport plan between the uni-
form probability measures on S1 and S2, and let (Ω1,Ω2) be a W-
stable pair of regions. Then there exist two thresholding functions
P : Rd1 →{0,1}d1 andQ : Rd2 →{0,1}d2 such that

P(W1Ω1) = 1Ω2 and Q(W T
1Ω2) = 1Ω1

In particular, 1Ω1 is a fixed point of Q◦W T ◦P ◦W and 1Ω2 is a
fixed point of P ◦W ◦Q◦W T .

5.4. Robustness to noisy features

We show here the robustness of the stable pairs with respect to the
affinity matrix. More precisely, if the noisy features used to build
the affinity matrix are numerous and the realization of i.i.d random
variables, then with a high probability, it does not change stable
regions. Our result relies on the notion of δ-independency defined
in the Appendix. Although this notion is quite restrictive, we can
see from the proof that it is only used in rare cases.

Proposition 3 Suppose that W noise
N is δ-independent and that con-

ditions of Proposition 1 are satisfied. Then there is a probability at
least 1− 8(1− k)σ2d2

∞/(Nδ
2) that for every Ω1 ⊂ S1 and every

Ω2 ⊂ S2

(Ω1,Ω2) W all
N − stable ⇔ (Ω1,Ω2) W init

N − stable.

where d∞ = max(d1,d2).

Algorithm 1: stable_pair (given P,Q)
input : W matrix of size d2×d1

f0 ∈ {0,1}d1

output: Stable subspaces Ω1,Ω2
f (0) = f0
f (1) =Q(W T (P(W ( f (0)))))
j = 1
while f ( j) 6= f ( j−1) do

g( j) = P(W f (i))
f (i+1) =Q(W T g( j))
j = j+1

end
Return Ω1 := {pi| fi = 1} and Ω2 = {pi|gi = 1}

6. Algorithms to compute stable pair of regions

In this section, we provide algorithms to compute a set of stable
pairs of regions between two shapes. As mentioned in the previous
section, a stable pair is a nonlinear counterpart to an eigenvector
associated to the highest eigenvalue in the linear setting. Our al-
gorithms use the fixed point characterization mentioned before and
are mimicking the power method in a nonlinear manner.

We propose in Section 6.1 a fixed point algorithm that outputs
a pair of stable regions. We show in Proposition 4 that its output
is robust to random noisy features, as long as these noisy features
are independent and numerous. We also show in Proposition 5 that
this algorithm terminates in a finite number of steps when the num-
ber of points in the stable regions remain fixed along the process.
We propose in Section 6.2 Algorithm 2 that builds iteratively a
set of stable pair of regions, given two thresholding functions. We
also propose an alternate algorithm, Algorithm 3, that automati-
cally chooses thresholding functions with a criterion that tends to
create stable pairs of regions with similar and small areas.

6.1. A stable pair of regions

Algorithm 1 is a fixed point algorithm, that can be seen as a trun-
cated power-method. It calculates a W -stable pair of regions, start-
ing from an initial vector f0 and a matrix W . Note here that the
thresholding functions P andQ can be chosen arbitrarily.

In this algorithm, we transport a feature function from S1 to S2
and back to S1, and iterate until convergence. This transport is done
nonlinearly. Given a function f on S1, we send it to S2 by applying
W f . Now, we perform the non-linear step by applying the thresh-
olding function. The intuition is that, since W is a confidence ma-
trix, W f is a confidence vector that gives us an idea of which ver-
tices on W f have been received well in the transportation using
W . The thresholding retains the selected vertices which have been
transported with high confidence by setting them to 1, and sets the
remaining vertices to 0. This sort of thresholding on both shapes
ensures that the vertices that stay as 1 have been transported with
high confidence according to W . The algorithm converges to a fixed
point, which is known to be W -stable, for P and Q. Note that our
algorithm bears some similarity with the truncating power-method
developed for positive semi-definite matrices in [YZ13].

To avoid infinite loops, when several points have the same fea-
ture value which is exactly the cutoff value, we select appropriately
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the points. In practice, we use the following thresholding functions
(defined almost everywhere):

• The thresholding function Pp : Rd2 →{0,1}d2 that associates to
a vector x a vector Pp(x) with exactly p non-zero values. We
defineQq : Rd1 →{0,1}d1 similarly.
• We can associate to each vertex pi of S1 a weight ωi which is

an area measure. Given a cutoff value α ∈ (0,1), we define the
thresholding functionPα byPα(x) :=P[τ(x)](x), where the cut-
off is given by τ(x) = inf{t,∑i ωi1[t,+∞)(xi)≥ α∑i ωi}. We de-
fineQα : Rd1 →{0,1}d1 similarly.

The following proposition states that with a high probability the
output of Algorithm 1 is robust to noisy features, as long as they
are numerous and the realization of i.i.d random variables, under
the assumption of δ-independency.

Proposition 4 (Stability of Algorithm 1) Suppose that W all
N is δ-

independent, for a given δ > 0 and that assumptions of Proposi-
tion 1 are satisfied. Then there is a probability at least 1− 8(1−
k)σ2d2

∞/(Nδ
2) that for any f0 ∈ Rd1\{1d1,1}, the output of Algo-

rithm 1 with f0 and W all
N is the same than with f0 and W init

n .

We prove in the following proposition that our algorithm termi-
nates in the case where the number of points in each shape remain
fixed along the process. The key idea is that at each iteration, either
we have a fixed point, or the norm ‖WΩ1,Ω2‖1,1 is increasing by at
least a strictly positive constant.

Proposition 5 (Termination of Algorithm 1) Let q < d1 and p <
d2 be two positive integers. Algorithm 1 with (P = Pp and Q =
Qq) converges in a finite number of steps to a stable pair (Ω1,Ω2)
of sizes respectively q and p.

Remark 4 We prove the convergence when the sizes are fixed along
the process. However if the number of rows or columns only in-
creases, then the norm ‖WΩ1,Ω2‖1,1 increases and the algorithm
terminates in a finite number of steps. In practice, the algorithm
converges in our experiments in less than 10 steps, see Fig. 5.

6.2. Iterative construction of several stable pairs of regions

We propose in this subsection two iterative algorithms to compute
a set of stable pairs of regions. The idea is to first compute a stable
pair of regions (Ω1,Ω2) of S1 and S2, and to apply again the algo-
rithm on the remaining regions S1 \Ω1 and S2 \Ω2. The process
is then iterated. Alg. 2 correspond to the case where the threshold-
ing functions are fixed. In Alg. 3, the thresholding functions are
automatically calculated.

We first introduce notations. Let si ⊂ Si for i = 1,2. Given a ma-
trix W , W [s2,s1] denotes the matrix of the same size of W , where
W [s2,s1]i j =wi j , if i is the index of a point of s1 and if j is the index
of a point of s2, and W [s2,s1]i j = 0 otherwise. Similarly, for a vec-
tor f of Rdk , f [sk] denotes the vector of Rdk that satisfies f [sk]i = fi
if i is the index of a point of sk and f (sk)i = 0 otherwise.

In this algorithm, at every step of the iteration, we discard the
previously obtained stable regions from the affinity matrix, and pro-
ceed to find stable parts on the remaining shape as in Algorithm 1.
This way, we enforce that obtained stable regions are disjoint. In

Algorithm 2: Several stable pairs of regions
input : S1 and S2: sets of (weighted) points of size d1 and d2

W : matrix of size d2×d1
P andQ: thresholding functions
K: integer

output: K stable pairs of parts (Ω1, j,Ω2, j) for j = 1, · · · ,K
W (0) =W,
s1 = S1,s2 = S2.
for i = 1:K-1 do

fin[s1] = random({0,1}|s1|)

(Ω1,i,Ω2,i) = stable_pair(W (i−1), fin) (Algorithm 1)
s1 = s1\Ω1,i,s2 = s2\Ω2,i

W (i)[s2,s1] =W [s2,s1]
end
Ω1,K = S1 \ s1 and Ω2,i = S2 \ s2

Figure 3, we observe a sparsified version of the output of Algorithm
2. Here we observe that the obtained (rearranged) affinity matrix is
not symmetric, and also the fraction of vertices of each shape that
contribute to the stable correspondence are also very different.

In practice, one wants to compute stable pair of regions of small
sizes as these are more informative. Furthermore, one may want
to enforce for every i the sizes of Ω1,i and Ω2,i to be comparable.
In order to get a notion of “size”, we take an area measure ω1, j
associated to each vertex p j of S1 and an area measure ω2, j associ-
ated to each vertex q j of S2. We also introduce the cutoff function
τt(x) := µx + tσx, where t ∈R, µx and σ

2
x are respectively the mean

value and the variance of the vector x (x is a vector of Rd1 or Rd2 ).

At each iteration, Alg. 3 first computes the highest cutoff val-
ues τt (when t is only allowed to be a multiple of a given δt > 0),
such that the output of Alg. 1 (with the thresholding functions
P(x) :=P[τt(x)](x) andQ(x) :=Q[τt(x)](x)) is a pair of nonempty
sets, denoted by (Ωt

1,Ω
t
2). Then, Algorithm 1 is applied using this

cutoff and while enforcing the same measure. More precisely, we
apply Alg. 1 using the thresholding functions Pα and Qα, where
α = max(α1,α2) and αi = ∑p j∈Ωt

i
ωi, j/∑p j∈Ωi

ωi, j (for i = 1,2).
In practice, if Si is the set of vertices of a triangulation, ωi, j is the
sum of the area of all the triangles adjacent to the vertex of index j,
divided by 3.

7. Experiments and Results

7.1. Algorithm Evolution

In this section, we experimentally investigate the stable regions ob-
tained by the algorithms specified in Section 6. For all the exper-
iments in this section, we use shapes from the TOSCA [BBK08]
and SHREC watertight [GBP07] datasets, apart from certain hand-
crafted shapes from the Non-Rigid shape datasets. In all experi-
ments we used a fixed set of 100 WKS, 100 HKS and 100 multi-
scale mean curvature features [ASC11, SOG09, MDSB03] unless
specified otherwise. For the SHREC watertight dataset alone, we
used shape features, as described in the Appendix A of [KHS10].
We used K = 20 characteristic bands on each feature function for
all our experiments, unless specified otherwise.
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α = 0.10 α = 0.20 α = 0.30 α = 0.40 (a) α = 0.50 α = 0.60 α = 0.70 α = 0.80 α = 0.90 α = 1.00

α = 0.10 α = 0.20 α = 0.30 α = 0.40 α = 0.50 α = 0.60 α = 0.70 α = 0.80 α = 0.90 α = 1.00

Figure 4: Evolution of stable pair of parts correspondences on TOSCA shapes cat0 and dog0, with respect to the area proportion. Here α is
the ratio of the surface area occupied by the stable parts divided by the surface area of the entire shape.

Algorithm 3: Stable pairs of regions with automatic threshold
input : S1 and S2: sets of (weighted) points of size d1 and d2

W : matrix of size d2×d1
δt : threshold step-size
K: integer

output: K stable pairs of regions (Ω1, j,Ω2, j) for j = 1, · · · ,K
W (0) =W,
s1 = S1,s2 = S2.
for i = 1 : K−1 do

fin[s1] = random({0,1}|s1|)
// Computation of the largest parameter t
t = 0; Ω

t
1 = s1

while Ω
t
1 6= 0 do

(Ωt
1,Ω

t
2) = stable_pair(W (i−1), fin)

(with P(x) := P[τt(x)](x) andQ(x) :=Q[τt(x)](x))
told = t
t = t +δt

end
t = told
// Computation of a stable pair of regions
α = max(α1,α2)

(Ω1,i,Ω2,i) = stable_pair(W (i−1),1Ω1,t )(with Pα,Qα)
s1 = s1\Ω1,i and s2 = s2\Ω2,i

W (i)[s2,s1] =W [s2,s1]
end
Ω1,K = S1 \ s1 and Ω2,i = S2 \ s2

Evolution of stable pair of regions We demonstrate the perfor-
mance of Alg.1, with change in the threshold area value, for a fixed
pair of cat and dog shapes. The results can be seen in Fig.4 where
the two rows depict the evolution of the stable parts obtained on the
two shapes for various choices of the area threshold. Observe that
whenever a new part appears on one shape, it simultaneously ap-
pears on the other shape as well. To validate this, in Fig.(5-left) we
plot relative change of the part area, Area(Ωα+δα

∩Ωα)/Area(Ωα),
with respect to the evolution of the threshold α. If the new stable
part is just an extension of the old stable part, then the value is 1,
while if the new stable part has a new area, with a reduction in the
old stable part, then the value drops below 1.

Algorithm termination Next, we illustrate the termination of the
algorithm, by plotting the change in the error at each iteration, given
by || f (i)− f (i−1)||2 for a choice of thresholds (see Fig. (5-right)).

Algorithm Timing
Shape dimensions Algorithm 2(s) Algorithm 3(s)

5400, 5619 6.12 54.13
6448, 8679 10.99 95.69

25290, 27894 116.96 1128. 74
25290, 45659 191.50 2001.29
45659, 52565 645.10 3720.43

Table 1: Algorithm Timing: The time taken to compute stable re-
gions on both algorithms, for various dimensions of affinity matrix
is provided. The second column provides time in seconds to run
Algorithm 2, with a 10% cutoff for all stable regions, and the third
column provides time in seconds to run Algorithm 3.
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Figure 5: Left: Evolution of the stable parts. We plot Area(Ωα+δα
∩

Ωα)/Area(Ωα) for each ratio area parameter α. The green curve is
the for the TOSCA dog0 shape and the blue curve is for the TOSCA
cat0 shape. Right: Fixed point error. We plot the error ‖ f (i+1)−
f (i)‖2 at each iteration step i of Algorithm 1. Each curve corre-
sponds to a different threshold value: τ0(x),τ0.2(x),τ1.4(x),τ1.8(x)
and τ1.9(x). The shapes used here are the TOSCA cat0 and dog0.

In particular, we observe that for almost all threshold values, the
algorithm terminates very quickly, almost always within 10 itera-
tions. With increasing threshold, the number of iterations often is
reduced since the degrees of freedom of the W f vector decreases.

7.2. Non-isometric shape correspondences

Next, we provide examples of stable region correspondences be-
tween non-rigid shapes, which is the main focus of the approach
presented in this paper. As mentioned earlier, our method does not
provide a point-to-point correspondences between two shapes, but
rather correspondence between automatically-extracted shape re-
gions. Since most of the existing shape matching techniques pro-
duce a point-to-point map, we use a heuristic to evaluate our ap-
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Correspondence ratios on Rigid Shapes Dataset

Shape pairs
Algorithm 2 Algorithm 3

Ours/BIMmax/BIMµ Ours/BIMmax/BIMµ

Elephant, Horse 62.37 / 26.46 / 22.16 73.88 / 43.82 / 36.44
Homer, Alien 48.09 / 30.86 / 23.59 59.56 / 36.96 / 26.23
Alien, Robot 40.76 / 50 / 42.35 54.32 / 54.81 / 50.03
Baby, Boy 24.26 / 58.10 / 42.50 47.46 / 66.37 / 47.52
Elephants 96.54 / 93.82 / 92.3 95.04 / 95.19 / 94.15

Average of correspondence ratios on Watertight Dataset
Airplane 41.93 / 41.36 / 35.59 63.64 / 60 / 48.77

Ant 40.29 / 50.9 / 42.06 63.75 / 69.96 / 56.69
Armadillo 27.32 / 19.90 /17.27 40.85 / 41.98 / 34.30
Bearing 21.53 / 20.83 / 10.42 42.26 / 35.94 / 25.75

Bird 28.30 / 40.93 / 29.42 44.17 / 54.20 / 39.33
Bust 20.57 / 22.77 / 18.80 29.48 / 36.73 / 28.13
Chair 51.10 / 38.96 / 31.79 61.53 / 47.99 / 24.69
Cup 48.30 / 43.64 / 32.91 46.52 / 36.82 / 25.93
Fish 34.95 / 21.56 / 21.42 59.99 / 43.31/ 38.72

Fourleg 26.80 / 25.82 / 17.80 36.19 / 36.52 / 31.51
Glasses 39.35 / 34.88 / 25.96 60.09 / 55.71 / 35.26
Hand 16.76 / 33.12 / 26.56 24.26 / 32.77 / 31.745

Human 33.75 / 39.39 / 35.38 60.04 / 57.59 / 47.25
Mech 12.63 / 17.21 / 15.87 14.23 / 18.26 / 17.46

Octopus 39.28 / 38.84 / 30.04 70.37 / 59.26 / 51.20
Plier 79.36 / 90.47 / 71.67 94.44 / 98.45 / 82.14
Table 50 / 25.4 / 20.66 85.18 / 46.30 / 42.84
Teddy 51.64 / 59.88 / 48.21 61.77 / 62.4 / 53.64

Table 2: Comparison with BIM on the Rigid Shapes Dataset and
the Watertight Dataset. The correspondence ratio is given in per-
centage. On the left column, the evaluation is done on a set of stable
regions given by Algorithm 2. On the right, the evaluation is done
on a set of stable regions given by Algorithm 3.

proach and compare it with existing methods against a ground
truth correspondence. More precisely, given an existing ground-
truth point-to-point map L : C1 ⊂ S1 → S2 between a a subset
C1 of a shape S1 and shape S2, and a set of stable pairs of parts
S = {(Ω1,i,Ω2,i)}i=1,··· ,K , we define the correspondence ratio as
the ratio of correspondences (p,L(p)) for which L(p) ∈ Ω2,i, if
p ∈Ω1,i, namely:

CorL(S) =
|{p ∈C1| ∃i, s.t p ∈Ω1,i and L(p) ∈Ω2,i}|

|C1|
.

Comparison with BIM. We compare our method to the Blended
Intrinsic Maps (BIM - [KLF11]) technique on both the SHREC
watertight and on a non-rigid shape correspondences datasets.

We provide in Table 2 the results for the Rigid Shape dataset
correspondences. Given two shapes shape S1 and S2, BIM out-
puts a map T : S1 → S2. We also consider a set of stable parts
{Ω1,i,Ω2,i}i=1,··· ,K given by one of our algorithms. We calculate
the correspondence ratio CorL(S1,S2) of the sets of stable parts
defined by {Ω1,i,T (Ω1,i)}i=1,··· ,K , where T (Ω1,i) := {T (x)| x ∈
Ω1,i}. We also calculate the correspondence ratio CorL(S2,S1)

of the sets of stable parts defined by {T−1(Ω2,i),Ω2,i)}i=1,··· ,K ,
where T−1(Ω2,i) := {x| T (x) ∈ Ω2,i}. The average of these two
numbers is recorded in BIMµ, and the greatest value is recorded in

Figure 6: Comparison with BIM: The first and second rows show
the corresponding stable regions on chair 1 and chair 2, while the
third row shows the BIM pre-image of the second row. Though
BIM works very well for keypoint correspondences, we can often
show an improvement over BIM on region correspondences.

BIMmax. The set {Ω1,i,Ω2,i}i=1,··· ,K is either obtained by Algo-
rithm 2 with an area-cutoff of 10 % or by Algorithm 3.

We use Algorithm 2 with an area thresholding function, so that
the stable parts are all equal in size, and the accumulation of the
number of correspondence vertices across stable parts is straight-
forward. In the case where Algorithm 3 is used, the results are bet-
ter, since the stable parts are free from any area constraint. Thus,
the advantage of using Algorithm 2 over Algorithm 3 is that the
stable regions are more uniformly sized, while the negative is that
the evolution of the final stable regions is not natural, as the area
thresholding is forced.

We also compare our technique to the BIM on the Watertight
benchmark. We consider 18 object categories of the Watertight
dataset with 360 shapes overall. (20 shapes per category), and the
Surface Correspondence Benchmark provides ground-truth corre-
spondences within these object categories. We observe for how
many of these well-defined correspondences do the corresponding
points belong to the same stable region pair. Note that in spite of av-
eraging over many pairs of shapes, the values in this table are erratic
since the number of ground truth correspondences for each of the
shape pairs is not very high/dense as in the Rigid Shapes Dataset.
If x ∈ S1 and y ∈ S2 correspond to each other, it is expected that if
x ∈Ωi,1 and y ∈Ω j,2, then i = j. The evaluation is identical to that
in the previous table. Figure 6 shows an example of how the stable
region correspondences compare with BIM correspondences.

Remark. The features we use are predominantly geometric fea-
tures, and do not capture topological information. This is shown
in the first two rows of Figure 9, where cups with and without a
handle are used. Here, we observe that in spite of significantly dif-
ferent topological differences between the shapes, it is possible to
draw meaningful correspondences between them.

7.3. Region correspondences as new feature functions

Our set of pairs of stable regions can be viewed as pair of feature
functions that can be themselves used in different applications, ex-
tending the original feature set that was used to obtain them. In
this section, we illustrate the use of these new features in sharpen-
ing existing point-to-point shape mapping algorithms. To construct
these maps, feature correspondences are used in a least squares for-
mulation. Since on isometric shapes our technique provides stable
pair of parts that correspond almost perfectly (see Figure 7), we can
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Figure 7: Stable pairs of parts between near-isometric shapes. Ev-
ery column corresponds to a stable pair of parts, obtained using
Algorithm 2 with an area-cutoff of 10%.

Figure 8: Stable regions generated by extending Algorithm 2 to
three shapes using an area threshold.

use them to define new pairs of corresponding feature functions for
functional maps. Given a stable pair of parts Ω1 and Ω2 on S1 and
S2, we construct, as in [OBCS∗12], a set of functional constraints
using the Wave Kernel Map [OMMG10] based on segment cor-
respondences. These new feature functions can be used alongside
existing feature correspondences to further sharpen the map.

We sharpen the functional maps obtained in [OBCS∗12] (100
base correspondences using WKS features). The sharpening is done
using 4 stable parts, each of them contributing to 50 Wave Kernel
Map based features. In these experiments, we observe the reduc-
tion in geodesic error when we use the stable correspondence based
feature functions, as compared to just using the WKS feature func-
tions. Here, we compute the functional maps (using our features
obtained from the stable correspondences, alongside the existing
WKS features), and compute point to point maps from them, us-
ing the technique employed in [OBCS∗12]. We also use the same
evaluation of average geodesic error with respect to a ground truth
correspondence, as was used in the original functional maps paper.
The results of these experiments on various near-isometric shapes
in the TOSCA dataset is shown in Table 3. Clearly, on average,
the stable parts extracted using our approach provide additional in-
formation compared to using the WKS feature functions directly.
Thus, when we use the stable part correspondences together with
WKS feature functions, the results improve significantly.

We can also extend Algorithms 2 and 3 to obtain stable regions
on more than two shapes, so as to obtain a cleaner and more stable
set of shape regions. As shown in Proposition 2, our algorithms
compute a fixed point of Q◦W T ◦ P ◦W . For the case of three

TOSCA Dataset

Shapes
Error: WKS Error: stable parts Error: Both

Mean/Median Mean / Median Mean / Median
cat 15.61 / 17.54 13.18 / 10.77 12.79 / 9.42
dog 6.50 / 6.89 6.68 / 6.75 6.16 / 6.43

david 12.13 / 13.21 8.14 / 7.28 6.44 / 5.48
victoria 24.44 / 21.31 19.56 / 15.63 14.70 / 17.36
horse 9.34 / 8.55 10.42 / 11.39 9.50 / 11.29
wolf 3.16 / 4.29 7.48 / 3.32 4.92 / 4.81

michael 24.11 / 17.78 17.74 / 14.71 12.21 / 11.76

Table 3: Comparing Functional Maps approach on just WKS fea-
ture function correspondences and the approach on Stable part cor-
respondences, that have been converted to feature function corre-
spondences by Wave Kernel Maps, for shapes TOSCA categories.

shapes, this is just done by finding the fixed point of a functionP1 ◦
W13 ◦P3 ◦W32 ◦P2 ◦W21, where the functions Pi are thresholding
functions on shape Si and Wi j is the affinity matrix between shapes
S j and Si. We have illustrated this in Figure 8. This idea can be
extended to more than three shapes as well.

8. Conclusion and Future Work

We have presented in this paper a tool to extract a set of stable pairs
of corresponding regions between two shapes, using as input a set
of corresponding feature functions on each of the two shapes. We
use the observation that points in matching parts often have simi-
lar ranks in the sorting of the feature functions values and observe
that on many examples that stable pairs of regions correspond to
geometrically meaningful parts.

Since all our knowledge of a shape comes from its feature func-
tions, our method does not distinguish symmetric regions from each
other. We plan to investigate local methods of our technique, where
stable regions are required to contain a given seed point and be
connected. We can then exploit various quadratic assignment as-
signment techniques, such as the one in [LH05] or flips in a coarse
to fine approach such as in [SY13] to handle symmetry ambiguities.

One interesting future direction is to better relate these stable re-
gions to semantic meaningful parts. In order to do that, one idea
is to enforce that one of the two parts is a semantically meaning-
ful segment. A potential application would be the fast annotation
of shape parts in a network of shapes, if we have annotated infor-
mation on a small number of shapes. Since our iterative algorithm
converges to a fixed point quite quickly, we could propagate the an-
notation information to other shapes, in the same spirit as in Fig. 8.

The central algorithm relies on two thresholding parameters,
whose selection is automated. However, determining the optimal
threshold is still an open question and is application-dependent. In
this article, we enforce the area ratios of the regions to be similar
in the two shapes. It would be interesting to consider other con-
straints that handle correspondences between shapes under general
non-linear deformations, such as partial scalings of shape parts.
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9. Appendix: proofs

PROOF OF PROPOSITION 1. One has W noise
N−n = 1/(N−n)∑

N−n
k=1 Yk,

where Yk is a sum over the characteristic functions derived from the
two feature functions φk and ψk. We can thus write Yk = G(φk,ψk),
where G is a measurable function. By assumption, we thus have that
the functions Y j for j = 1, · · · ,N−n are i.i.d. By the Central Limit
Theorem, W noise

N−n thus converges to the expected value E(Yk). By a
symmetry argument, the expected value for each entry are the same.
A small calculation shows that E(Yk) = (1−κ)/(d1d2K)×1d2,d1 .

We now consider the error term E := W noise
N−n − (1 −

κ)/(d1d2K)× 1d2,d1 . Every entry of this matrix Eh,l is identically
distributed with mean 0. By a symmetry argument, the variance σ

of each entry is the same, thus does not depend on h and l. Tcheby-
shev’s inequality then implies that for every δ > 0, one has

P

(
|Eh,l |2 ≥

δ
2

d1d2

)
≤ (1−κ)σ2

d1d2Nδ2 .

From the fact that if for every h, l |Eh,l |2 < δ
2/(d1d2), then ‖E‖F <

δ, one has that P(‖E‖F < δ) is bounded from below by

P

(
E,∀h, l|Eh,l |2 <

δ
2

d1d2

)
≥ 1−∑

h,l
P

(
|Eh,l |2 ≥

δ
2

d1d2

)
,

which implies the result since the sum is over d1d2 terms.

PROOF OF PROPOSITION 2. We reorder the rows and columns
of W such that it is of the form (2). We denote by Ri the sum of
the coefficients of the row i of the matrix WΩ1,Ω2 if i ∈ {1, · · · p}
or row i− p of the matrix WΩ1,S2\Ω2

if i ∈ {p+ 1, · · ·d2}. Then
for every i ≤ p < i′, one has Ri ≥ Ri′ . Otherwise, there exists
i ≤ p < i′, such that the exchange the row i of WΩ1,Ω2 and the
row i′− p of WΩ1,S2\Ω2

would strictly increase ‖WΩ1,Ω2‖1,1. The
contradiction comes from the fact that this exchange amounts to
replace WΩ1,Ω2 with a neighbor matrix whose norm cannot be
larger (by assumption). Now, we define P is being the threshold-
ing function that outputs exactly p non-zero values and which

respect the canonical order (if some coordinates are equal).
We clearly have P ·W1Ω1 = 1Ω2 . The second equality comes
from the same analysis with the columns of WΩ1,Ω2 and WS1\Ω1,Ω2

.

We now need to introduce the following definition. A ma-
trix W : Rd1 → Rd2 is said to be δ-independent, if for any
x ∈ {0,1}d1 \ {1d1,1} and i 6= j, one has |(Wx)i − (Wx) j| > δ,
and if for any y ∈ {0,1}d2 \ {1d2,1} and i 6= j one has
|(W T y)i− (W T y) j|> δ.

PROOF OF PROPOSITION 3. Let p = 4(1− k)2
σ

2d2
∞/[(N−n)δ2].

By applying Proposition 1 with δ/(2d∞), we know there a prob-
ability greater than 1− p that all the coefficient of E = W all

N −
κW init

n −C1d2,d1 are bounded from above by δ/(2d∞). Let now
x ∈ {0,1}d1 and denote by ‖x‖1 its number of non-zero coordi-
nates. The iith-row of Ex is given by

(Ex)i = (W all
N x)i− k(W init

n x)i−C‖x‖1

and satisfies |(Ex)i| ≤ δ/2. Using the previous equation, one has

(W all
N x) j− (W all

N x)i = (Ex) j− (Ex)i +κ[(W init
n x) j− (W init

n x)i].

Since |(Ex) j − (Ex)i| < δ and |(W all
N x) j − (W all

N x)i| ≥ δ

by δ-minimal assumption, then (W init
n x) j − (W init

n x)i and
(W all

N x) j−(W all
N x)i are the same sign. Hence the sorting of the vec-

tors W all
N x and W all

N x is the same for every x ∈ {0,1}d1 \1d1,1. Ap-
plied to x = 1Ω1 , one gets P(W all

N 1Ω1) = P(W
init
n 1Ω1). The same

arguments applied to W T allows to show that there is a probability
greater than 1− p that for Q((W all

N )T1Ω2) = Q((W
init
n )T1Ω2).

Hence there is a probability greater than 1−2p, that the conclusion
of the proposition hold.

PROOF OF PROPOSITION 4. From the proof of Proposition 3, for
every x ∈ {0,1}d1 \ {1d1,1} and every y ∈ {0,1}d2 \ {1d2,1}, one
has Pp(W all

N x) = Pp(W init
n x) and Qq((W all

N )T y) =Qq((W init
n )T y),

which implies the conclusion.

PROOF OF PROPOSITION 5. We reorder the rows and columns of
W such that it is of the form (2). Starting from f (i) (with i≥ 1), we
compute g(i) := P(W f (i)). If g(i) = g(i−1), the algorithm is done.
Otherwise, there exists at least a row Ai of WΩ1,Ω2 and a row Ci′ of
WΩ1,S2\Ω2

, such that the sum of the coefficients of Ai is strictly less
than the sum of the coefficients of Ci′ . We reorder the lines of W
so that P(W f (i)) is a decreasing vector. This operation exchanges
l ≥ 1 lines of A with l lines of WΩ1,S2\Ω2

(and in particular Ai and
Ci′ ), which implies that ‖A‖1,1 increases by a strictly positive value.
The same happens when we compute f (i+1) from g(i).

We denote by ηL the minimum of |l1 ·11,p− l2 ·11,p| over all sub-
matrices L = (l1, l2) of W of size 2× p such that l1 ·11,p 6= l2 ·11,p.
Similarly, let ηC be the minimum of |c1 · 1q,1 − c2 · 1q,1| over
all sub-matrices L = (c1,c2)

T of W of size q × 2 such that
c1 · 1q,1 6= c2 · 1q,1. Since the two sets under which we take the
minimum is finite, the number η = min(ηL,ηC) is strictly positive.
At each iteration, ‖A‖1,1 increases by at least this value η. Since
‖A‖1,1 is bounded by ‖W‖1,1, the algorithm terminates.
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Figure 9: Every column refers to a certain stable region, while every row showcases the various stable regions of a certain shape. The stable regions have
been constructed using the affinities of pairs of shapes on consecutive rows. The first two rows compute the correspondence between a pair of non-isometric
cups in the Watertight dataset and the third and fourth rows compute the correspondence between a pair of non-isometric airplanes in the same dataset. The
last three rows denote correspondences across different classes. The fifth and sixth rows denote the correspondences between the TOSCA shapes dog and
michael. The seventh and eighth rows denote the correspondences between an airplane and a bird in the Watertight dataset and the ninth and tenth rows denote
the correspondences between an ant and an octopus in the same dataset. The features used for the computation of the affinity matrix for all Watertight shapes
are the features provided in the PSB dataset as described in [KHS10]. The features used for the computation of the affinity matrix for all TOSCA shapes are
100 HKS, 100 WKS and 100 mean curvature vectors.
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