Supplementary Material for Submission ID: paper1104 Improved Functional Mappings via Product Preservation

Proof of Theorem 1:

We consider the following problem:
(APPROX):
INPUT: $N \in \mathbb{N}, K$ "basis" functions $\varphi_{1}, \ldots, \varphi_{K}:\{1, \ldots, N\} \rightarrow \mathbb{R}$, "target" function $f:\{1, \ldots, N\} \rightarrow$ $\mathbb{R}, \epsilon>0$, a cost $c \in \mathbb{N}$
OUTPUT: $g_{1,1}, \ldots, g_{1, r_{1}}, \ldots, g_{P, 1}, \ldots, g_{P, r_{P}} \in\{1, \ldots, k\}, \alpha_{1}, \ldots, \alpha_{P} \in \mathbb{R}$ such that:

- $\left\|f-\sum_{i=1}^{P} \alpha_{i} \cdot G_{i}\right\|_{\infty}<\epsilon$, where $G_{i}=\prod_{j=1}^{r_{i}} \varphi_{g_{i, j}}$
- $\sum_{i=1}^{P}\left(r_{i}-1\right) \leq c$
and the boolean TRUE, if such a construction exists.
The boolean answer FALSE if no such construction exists.

We want to show this problem $N P$ - hard. For this, we will make a polynomial reduction from $3-S A T$:
(3-SAT):
INPUT: X_{1}, \ldots, X_{Q} boolean variables, $\left(T_{1,1} \vee T_{1,2} \vee T_{1,3}\right) \wedge \ldots \wedge\left(T_{M, 1} \vee T_{M, 2} \vee T_{M, 3}\right)$ a boolean formula, where each $T_{m, v}$ is some X_{i} or some \bar{X}_{i} (negation of X_{i}).
OUTPUT: The boolean TRUE, a function $g:\{1, \ldots, Q\} \rightarrow\{F A L S E, T R U E\}$ such that assigning each variable X_{q} to $g(q)$ satisfies the above boolean formula described by the $T_{m, j}$ s.
The boolean FALSE if no assignment of X_{q} to boolean values can satisfy the above boolean formula.
Reduction from (3-SAT) to (APPROX):
We assume that we are given an initial instance of (3-SAT) given with the above notations. We will construct an instance of (APPROX) whose solution will be proven convertible into a solution of the initial problem.

Summary of the proof:

STEP 1:

We will define clusters of variables $n \in\{1, \ldots, N\}$ over which f and a cluster of basis functions f_{k} for some $k \in\{1, \ldots, K\}$ will take a non-zero value.
STEP 2:
We will prove that each of the $Q+M$ pairs of clusters (variables - functions) defined incurs a cost ≥ 1, therefore the total cost is $\geq Q+M$. In the reduction that we propose, the initial instance of (3-SAT) will have a solution if and only if the total cost of the corresponding (APPROX) that we built is equal to $Q+M$.
Therefore, we can deduce :
Lemma: any solution (APPROX) that we consider can be supposed to involve only 1 product for each pair of clusters.

STEP 3:

We show the first direction: if the initial instance of (3-SAT) has a solution then we have a solution to our constructed instance of (APPROX).
The reader should then be able to guess from the structure of this solution how we can prove the other direction.
$\left.1 \leq n \leq N=7 Q+6 M+M^{2} \longrightarrow \begin{array}{llllll}(1,1,1) & \ldots & (1,1,7) & \ldots & (1, Q, 1) & \ldots \\ (1, Q, 7)\end{array}\right)$

Figure 1: Representation of the variable $1 \leq n \leq N$
$1 \leq k \leq K=3 Q+M^{2}+3 M$

$$
(6,1,1) \quad(6,1,2) \quad(6,1,3)
$$

$$
(6, M, 1)(4, Q, 2)(6, M, 3)
$$

$$
\begin{array}{rcccc}
(4,1,1) & (4,1,2) & (4,1,3) & \ldots & (4, Q, 1)(4, Q, 2)(4, Q, 3) \\
(5,1,1) & \ldots & (5,1, M) & \ldots & (5, M, 1) \ldots \\
(5, M, M)
\end{array}
$$

Figure 2: Representation of the variable $1 \leq k \leq K$

	$(1, \mathrm{q}, 1)$	$(1, \mathrm{q}, 2)$	$(1, \mathrm{q}, 3)$	$(1, \mathrm{q}, 4)$	$(1, \mathrm{q}, 5)$	$(1, \mathrm{q}, 6)$	$(1, \mathrm{q}, 7)$
\mathbf{f}	1	0	0	0	0	0	0
$\varphi_{(4, q, 1)}$	1	1	0	1	0	1	0
$\varphi_{(4, q, 2)}$	1	0	1	-1	1	0	0
$\varphi_{(4, q, 3)}$	1	0	1	0	0	-1	1

Figure 3: functions defined over $(1, q, j)$

STEP 4:

Using the Lemma, we prove the other direction.

STEP 1:

We fix ϵ very small, for example $\epsilon=\frac{1}{3 M+6}$ will work. For our reduction, we will independently define some basis functions over some $n \in\{1, \ldots, N\}$, specifically designed for encoding the initial instance of (3-SAT). Because we want to design these functions over 3 independent set of values taken by n, we will change the notation: we fix $N=7 Q+6 M+M^{2}$ but for convenience of notation, instead of using an index $1 \leq n \leq N$, we will use indices $(1, q, j)$ with $1 \leq q \leq Q$ and $1 \leq j \leq 7$, indices $(2, m, j)$ with $1 \leq m \leq M$ and $1 \leq j \leq 6$ and ($3, m, m^{\prime}$) with $1 \leq m, m^{\prime} \leq M$, as in Figure 1. Likewise, we fix $K=3 Q+M^{2}+3 M$ but we will use indices $(4, q, j)$ for $1 \leq j \leq 3,\left(5, m, m^{\prime}\right)$ and $(6, m, j)$ for $1 \leq j \leq 3$, as in Figure 2.
Now we want to define the values taken by the functions f and φ. over $n \in\{1, \ldots, N\}$ in such a way that:

- $f, \varphi_{(4, q, .)}$ are essentially the only functions that may take a non-zero value at $(1, q,$.$) , as shown on$ figure 3
- $f, \varphi_{(5, m, .)}, \varphi_{(6, m, .)}$ are (exactly) the only functions that may take a non-zero value at $(2, m,$.$) , as$ shown on figure 4

In each of the previous cases, we will define the values taken in such a way that, in order to approximate f, the only option will be to make a product of some kind.
Before explaining the behavior that our definitions will induce over a potential solution, let's define the

	$(2, \mathrm{~m}, 1)$	$(2, \mathrm{~m}, 2)$	$(2, \mathrm{~m}, 3)$	$(2, \mathrm{~m}, 4)$	$(2, \mathrm{~m}, 5)$	$(2, \mathrm{~m}, 6)$	$\left(3, \mathrm{~m}, \mathrm{~m}^{\prime}\right)$
f	1	0	0	0	0	0	0
$\varphi_{\left(5, m, m^{\prime}\right)}$	1	1	0	0	0	0	M
$\varphi_{(6, m, 1)}$	1	0	1	1	0	0	0
$\varphi_{(6, m, 2)}$	1	0	1	0	1	0	0
$\varphi_{(6, m, 3)}$	1	0	1	0	0	1	0

Figure 4: functions defined over $(2, m, j)$
values taken by each function so that the reader can refer to it (or refer to Figures 3, 4) to follow the analysis:

- Target function: $f((1, q, j))=1$ if $j=1, f((2, m, j))=1$ if $j=1, f()=$.0 in all other cases.
- Basis functions $\varphi_{(4, q, .)}: \varphi_{(4, q, 1)}((1, q, j))=1$ if $j \in\{1,2,4,6\}, \varphi_{(4, q, 1)}()=$.0 everywhere else.
$\varphi_{(4, q, 2)}((1, q, j))=1$ if $j \in\{1,3,5\},-1$ if $j=4,0$ for other cases.
$\varphi_{(4, q, 3)}((1, q, j))=1$ if $j \in\{1,3,7\},-1$ if $j=6,0$ for other cases.
- Basis functions $\varphi_{\left(5, m, m^{\prime}\right)}$:
$\varphi_{\left(5, m, m^{\prime}\right)}((2, m, j))=1$ if $j \in\{1,2\}, \varphi_{\left(5, m, m^{\prime}\right)}\left(\left(3, m, m^{\prime}\right)\right)=M, \varphi_{\left(5, m, m^{\prime}\right)}((1, q, j))=\frac{1}{m^{\prime}}$ if $\exists v$: $\left(T_{m, v}=X_{q} \& j=4\right)$ or $\left(T_{m, v}=\bar{X}_{q} \& j=6\right), \varphi_{\left(5, m, m^{\prime}\right)}()=$.0 for other cases.
- Basis functions $\varphi_{(6, m, .)}$:
$\varphi_{(6, m, j)}\left(\left(2, m, j^{\prime}\right)\right)=1$ if $j^{\prime} \in\{1,3,3+j\}, \varphi_{(6, m, j)}\left(\left(1, q, j^{\prime}\right)\right)=1$ if $\left(T_{m, j}=X_{q} \& j^{\prime}=4\right)$ or ($T_{m, j}=\bar{X}_{q} \& j^{\prime}=6$), 0 for other cases.

STEP 2:

On figure 3 we can see the values taken by $f, \varphi_{(4, q, 1)}, \varphi_{(4, q, 2)}$ and $\varphi_{(4, q, 3)}$ over $(1, q, 1),(1, q, 2), \ldots,(1, q, 7)$.
Key step: Because no other function will take a non-zero value at $(1, q, j)$ for $j \neq 4,6$, we will be able to deduce that in order to approximate f there will be no other option than making at least 1 product. Intuitively we can see it because if we try to approximate the value $f((1, q, 1))=1$, using $\varphi_{(4, q, 1)}$ (resp. $\left.\varphi_{(4, q, 2)}, \varphi_{(4, q, 3)}\right)$ would poorly approximate f at $(1, q, 2)$ (resp. $\left.(1, q, 5),(1, q, 7)\right)$

On figure 4 we can see the values taken by $f, \varphi_{\left(5, m, m^{\prime}\right)}$ and $\varphi_{\left(6, m, j^{\prime}\right)}$ over $(2, m,$.$) . Key step: As$ before, because no other function will take a non-zero value at $(2, m,$.$) , we can deduce that in order to$ approximate f there will be no other option than making at least 1 product.
We formally prove these two key steps below by evaluating some functions at values $1 \leq n \leq N$.
For convenience of notation, we will write $\alpha\left(G_{p}\right)$ instead of α_{p}, and we may also use this notation for functions G_{p} not built by the solution. In our notation, this will be equivalent to $\alpha\left(G_{p}\right)=0$.

Let $H(n)$ denote the property: $\left|f(n)-\sum_{i=1}^{P} \alpha_{i} \cdot G_{i}(n)\right|<\epsilon$ obtained from the evaluation of $\| f-$ $\sum_{i=1}^{P} \alpha_{i} \cdot G_{i} \|_{\infty}<\epsilon$ at n.

Evaluation at $(1, q,$.$) :$

- $H((1, q, 2)) \Rightarrow\left|\alpha\left(\varphi_{(4, q, 1)}\right)\right|<\epsilon$
- $H((1, q, 5)) \Rightarrow\left|\alpha\left(\varphi_{(4, q, 2)}\right)\right|<\epsilon$
- $H((1, q, 7)) \Rightarrow\left|\alpha\left(\varphi_{(4, q, 3)}\right)\right|<\epsilon$
- $H((1, q, 1)) \Rightarrow$ Since $\epsilon \leq \frac{1}{5}$, at least one product is made among the functions $\varphi_{(4, q, 1)}, \varphi_{(4, q, 2)}$, $\varphi_{(4, q, 3)}$

Evaluation at $(2, m,$.$) and \left(3, m, m^{\prime}\right)$:

- $H\left(\left(3, m, m^{\prime}\right)\right) \Rightarrow\left|\alpha\left(\varphi_{\left(5, m, m^{\prime}\right)}\right)\right|<\frac{\epsilon}{M}$
- $H((2, m, 3+j)) \Rightarrow\left|\alpha\left(\varphi_{(6, m, j)}\right)\right|<\epsilon$
- $H((2, m, 1)) \Rightarrow$ Since $\epsilon \leq \frac{1}{6}$, at least one product is made among the functions $\varphi_{(5, m, .)}, \varphi_{(6, m, .)}$

We can deduce: Lemma: any solution (APPROX) that we consider can be supposed to involve only 1 product for each pair of clusters.

STEP 3:

We claim that if solving this created (APPROX) problem leads to a cost $c=Q+M$ then the corresponding (3-SAT) problem has a solution which can be reconstructed from the $g_{\text {.,. }}$ s. Otherwise c will be $>Q+M$ and there will be no solution to the corresponding (3-SAT). This will prove that (APPROX) is NP-hard.

At this step, we only prove the first direction:
First direction:
We notice that if there is a solution to the given (3-SAT) problem, then there is a solution to our constructed (APPROX) problem. For this, define for each q some G_{p} as $\varphi_{(4, q, 1)} \times \varphi_{(4, q, 2)}$ or $\varphi_{(4, q, 1)} \times \varphi_{(4, q, 3)}$ depending on whether X_{q} is true or false. Define also, for each m, some G_{p} as $\varphi_{\left(5, m, m^{\prime}\right)} \times \varphi_{(6, m, j)}$ where j is any (let's say the first) value for which $T_{m, j}$ is true, and m^{\prime} is the number of times when we use $\varphi_{(6, m, j)}$ in such products. To approximate f, we add all the G_{p} constructed ; that is we take $\alpha_{p}=1 \forall p$.

This construction also gives a hint to the reader for guessing the way to recover the solution of (3SAT) from the solution of (APPROX), by looking at which products were computed to construct the $G_{p} \mathrm{~s}$.

STEP 4:

Other direction:

Intuitively we can see that the product made on figure 3 should be $\varphi_{(4, q, 1)} \times \varphi_{(4, q, 2)}$ or $\varphi_{(4, q, 1)} \times \varphi_{(4, q, 3)}$ because if we try to approximate the value $f((1, q, 1))=1$, using $\varphi_{(4, q, 2)} \varphi_{(4, q, 3)}$ would poorly approximate f at $(1, q, 3)$.
We will use this option to encode whether the boolean variable X_{q} is set to true $\left(\varphi_{(4, q, 1)} \varphi_{(4, q, 2)}\right.$ is computed) or to false $\left(\varphi_{(4, q, 1)} \varphi_{(4, q, 3)}\right.$ is computed).

Evaluations at $(1, q,$.$) :$

- $\left.H((1, q, 3)) \Rightarrow \mid \alpha_{(4, q, 2)} \times \varphi_{(4, q, 3)}\right) \mid<\epsilon$
- $H((1, q, 1)) \Rightarrow$ Since $\epsilon \leq \frac{1}{5}$, thanks to the Lemma: $\alpha\left(\varphi_{(4, q, 1)} \times \varphi_{(4, q, 2)}\right) \neq 0$ xor $\alpha\left(\varphi_{(4, q, 1)} \times \varphi_{(4, q, 3)}\right) \neq$ 0

Evaluation at $(2, m,$.$) and \left(3, m, m^{\prime}\right)$:

- $H((2, m, 2)) \Rightarrow\left|\alpha\left(\varphi_{\left(5, m, m^{\prime}\right)} \times \varphi_{\left(5, m, m^{\prime \prime}\right)}\right)\right|<\epsilon$
- $H((2, m, 1)) \Rightarrow$ Since $\epsilon \leq \frac{1}{6}$, thanks to the Lemma: $\exists!m^{\prime}, j: \alpha\left(\varphi_{\left(5, m, m^{\prime}\right)} \times \varphi_{(6, m, j)}\right) \neq 0$.
- $H((1, q, 4))$ (respectively $(1, q, 6))$ for X_{q} (resp. \bar{X}_{q}) matching $T_{m, j}$ of the above constraints \Rightarrow the product chosen in the previous analysis should match. That is, $\alpha\left(\varphi_{(4, q, 1)} \times \varphi_{(4, q, 2)}\right) \neq 0$, for this case where $T_{m, j}=X_{q}\left(\right.$ resp. $\alpha\left(\varphi_{(4, q, 1)} \times \varphi_{(4, q, 3)}\right) \neq 0$, case where $\left.T_{m, j}=\bar{X}_{q}\right)$.

Therefore, fixing each X_{q} to true or false depending on whether $\alpha\left(\varphi_{(4, q, 1)} \times \varphi_{(4, q, 2)}\right) \neq 0$ or $\alpha\left(\varphi_{(4, q, 1)} \times\right.$ $\left.\varphi_{(4, q, 3)}\right) \neq 0$ gives a solution to the initial (3-SAT) problem.

