Supplementary Material for Submission ID: paper1104 Improved Functional Mappings via Product Preservation

Proof of Theorem 1:

We consider the following problem: (APPROX): INPUT: $N \in \mathbb{N}$, K "basis" functions $\varphi_1, \ldots, \varphi_K : \{1, \ldots, N\} \to \mathbb{R}$, "target" function $f : \{1, \ldots, N\} \to \mathbb{R}$, $\epsilon > 0$, a cost $c \in \mathbb{N}$ OUTPUT: $g_{1,1}, \ldots, g_{1,r_1}, \ldots, g_{P,1}, \ldots, g_{P,r_P} \in \{1, \ldots, k\}, \alpha_1, \ldots, \alpha_P \in \mathbb{R}$ such that:

•
$$||f - \sum_{i=1}^{P} \alpha_i \cdot G_i||_{\infty} < \epsilon$$
, where $G_i = \prod_{j=1}^{r_i} \varphi_{g_{i,j}}$
• $\sum_{i=1}^{P} (r_i - 1) \le c$

and the boolean **TRUE**, if such a construction exists. The boolean answer **FALSE** if no such construction exists.

We want to show this problem NP - hard. For this, we will make a polynomial reduction from 3 - SAT:

(**3-SAT**):

INPUT: X_1, \ldots, X_Q boolean variables, $(T_{1,1} \lor T_{1,2} \lor T_{1,3}) \land \ldots \land (T_{M,1} \lor T_{M,2} \lor T_{M,3})$ a boolean formula, where each $T_{m,v}$ is some X_i or some \bar{X}_i (negation of X_i).

OUTPUT: The boolean **TRUE**, a function $g : \{1, \ldots, Q\} \rightarrow \{FALSE, TRUE\}$ such that assigning each variable X_q to g(q) satisfies the above boolean formula described by the $T_{m,j}$ s.

The boolean FALSE if no assignment of X_q to boolean values can satisfy the above boolean formula.

Reduction from (3-SAT) to (APPROX):

We assume that we are given an initial instance of (3-SAT) given with the above notations. We will construct an instance of (APPROX) whose solution will be proven convertible into a solution of the initial problem.

Summary of the proof:

STEP 1:

We will define clusters of variables $n \in \{1, ..., N\}$ over which f and a cluster of basis functions f_k for some $k \in \{1, ..., K\}$ will take a non-zero value.

STEP 2:

We will prove that each of the Q + M pairs of clusters (variables - functions) defined incurs a cost ≥ 1 , therefore the total cost is $\geq Q + M$. In the reduction that we propose, the initial instance of (3-SAT) will have a solution if and only if the total cost of the corresponding (APPROX) that we built is equal to Q + M.

Therefore, we can deduce :

<u>Lemma</u>: any solution (APPROX) that we consider can be supposed to involve only 1 product for each pair of clusters.

STEP 3:

We show the first direction: if the initial instance of (3-SAT) has a solution then we have a solution to our constructed instance of (APPROX).

The reader should then be able to guess from the structure of this solution how we can prove the other direction.

		(1, 1, 1)	(1, 1, 7)	•••	(1,Q,1)	(1, Q, 7)
$1 \leq n \leq N = 7Q + 6M + M^2$	←→	(2, 1, 1)	(2, 1, 6)		$(2, M, 1) \ldots$	(2, M, 6)
		(3, 1, 1)	(3, 1, M)		$(3, M, 1) \ldots$	(3, M, M)

Figure 1: Representation of the variable $1 \le n \le N$

		(4,1,1) $(4,1,2)$ $(4,1,3)$	 (4, Q, 1) $(4, Q, 2)$ $(4, Q, 3)$
$1 \leq k \leq K = 3Q + M^2 + 3M$	←→	(5,1,1) $(5,1,M)$	 $(5, M, 1) \dots (5, M, M)$
		(6,1,1) $(6,1,2)$ $(6,1,3)$	 (6, M, 1) $(4, Q, 2)$ $(6, M, 3)$

Figure 2: Representation of the variable $1 \le k \le K$

(1,q,1) (1,q,2) (1,q,3) (1,q,4) (1,q,5) (1,q,6) (1,q,7)

f	1	0	0	0	0	0	0
$\varphi_{(4,q,1)}$	1	1	0	1	0	1	0
$\varphi_{(4,q,2)}$	1	0	1	-1	1	0	0
$\varphi_{(4,q,3)}$	1	0	1	0	0	-1	1

Figure 3: functions defined over (1, q, j)

STEP 4:

Using the Lemma, we prove the other direction.

STEP 1:

We fix ϵ very small, for example $\epsilon = \frac{1}{3M+6}$ will work. For our reduction, we will independently define some basis functions over some $n \in \{1, \ldots, N\}$, specifically designed for encoding the initial instance of **(3-SAT)**. Because we want to design these functions over 3 independent set of values taken by n, we will change the notation: we fix $N = 7Q + 6M + M^2$ but for convenience of notation, instead of using an index $1 \le n \le N$, we will use indices (1, q, j) with $1 \le q \le Q$ and $1 \le j \le 7$, indices (2, m, j)with $1 \le m \le M$ and $1 \le j \le 6$ and (3, m, m') with $1 \le m, m' \le M$, as in Figure 1. Likewise, we fix $K = 3Q + M^2 + 3M$ but we will use indices (4, q, j) for $1 \le j \le 3$, (5, m, m') and (6, m, j) for $1 \le j \le 3$, as in Figure 2.

Now we want to define the values taken by the functions f and φ_{\cdot} over $n \in \{1, \ldots, N\}$ in such a way that:

- $f, \varphi_{(4,q,.)}$ are essentially the only functions that may take a non-zero value at (1, q, .), as shown on figure 3
- $f, \varphi_{(5,m,.)}, \varphi_{(6,m,.)}$ are (exactly) the only functions that may take a non-zero value at (2, m, .), as shown on figure 4

In each of the previous cases, we will define the values taken in such a way that, in order to approximate f, the only option will be to make a product of some kind.

Before explaining the behavior that our definitions will induce over a potential solution, let's define the

	(2,m,1)	(2,m,2)	(2,m,3)	(2,m,4)	(2,m,5)	(2,m,6)	(3,m,m')
f	1	0	0	0	0	0	0
$\varphi_{(5,m,n)}$	_{1')} 1	1	0	0	0	0	M
$\varphi_{(6,m,1)}$	$_{)}$ 1	0	1	1	0	0	0
$\varphi_{(6,m,2)}$) 1	0	1	0	1	0	0
$\varphi_{(6,m,3)}$) 1	0	1	0	0	1	0

Figure 4: functions defined over (2, m, j)

values taken by each function so that the reader can refer to it (or refer to Figures 3, 4) to follow the analysis:

- Target function: f((1,q,j)) = 1 if j = 1, f((2,m,j)) = 1 if j = 1, f(.) = 0 in all other cases.
- Basis functions $\varphi_{(4,q,.)}$: $\varphi_{(4,q,1)}((1,q,j)) = 1$ if $j \in \{1,2,4,6\}$, $\varphi_{(4,q,1)}(.) = 0$ everywhere else. $\varphi_{(4,q,2)}((1,q,j)) = 1$ if $j \in \{1,3,5\}$, -1 if j = 4, 0 for other cases. $\varphi_{(4,q,3)}((1,q,j)) = 1$ if $j \in \{1,3,7\}$, -1 if j = 6, 0 for other cases.
- Basis functions $\varphi_{(5,m,m')}$: $\varphi_{(5,m,m')}((2,m,j)) = 1$ if $j \in \{1,2\}, \varphi_{(5,m,m')}((3,m,m')) = M, \varphi_{(5,m,m')}((1,q,j)) = \frac{1}{m'}$ if $\exists v : (T_{m,v} = X_q \& j = 4)$ or $(T_{m,v} = \bar{X}_q \& j = 6), \varphi_{(5,m,m')}(.) = 0$ for other cases.
- Basis functions $\varphi_{(6,m,.)}$: $\varphi_{(6,m,j)}((2,m,j')) = 1$ if $j' \in \{1,3,3+j\}, \varphi_{(6,m,j)}((1,q,j')) = 1$ if $(T_{m,j} = X_q \& j' = 4)$ or $(T_{m,j} = \overline{X_q} \& j' = 6), 0$ for other cases.

STEP 2:

On figure 3 we can see the values taken by f, $\varphi_{(4,q,1)}$, $\varphi_{(4,q,2)}$ and $\varphi_{(4,q,3)}$ over $(1,q,1), (1,q,2), \ldots, (1,q,7)$. **Key step:** Because no other function will take a non-zero value at (1,q,j) for $j \neq 4,6$, we will be able to deduce that in order to approximate f there will be no other option than making at least 1 product. Intuitively we can see it because if we try to approximate the value f((1,q,1)) = 1, using $\varphi_{(4,q,1)}$ (resp. $\varphi_{(4,q,2)}, \varphi_{(4,q,3)}$) would poorly approximate f at (1,q,2) (resp. (1,q,5), (1,q,7))

On figure 4 we can see the values taken by f, $\varphi_{(5,m,m')}$ and $\varphi_{(6,m,j')}$ over (2, m, .). **Key step:** As before, because no other function will take a non-zero value at (2, m, .), we can deduce that in order to approximate f there will be no other option than making at least 1 product.

We formally prove these two key steps below by evaluating some functions at values $1 \le n \le N$. For convenience of notation, we will write $\alpha(G_p)$ instead of α_p , and we may also use this notation for functions G_p not built by the solution. In our notation, this will be equivalent to $\alpha(G_p) = 0$.

functions G_p not built by the solution. In our notation, this will be equivalent to $\alpha(G_p) = 0$. Let H(n) denote the property: $|f(n) - \sum_{i=1}^{P} \alpha_i \cdot G_i(n)| < \epsilon$ obtained from the evaluation of $||f - \sum_{i=1}^{P} \alpha_i \cdot G_i||_{\infty} < \epsilon$ at n.

Evaluation at (1, q, .):

• $H((1,q,2)) \Rightarrow |\alpha(\varphi_{(4,q,1)})| < \epsilon$

- $H((1,q,5)) \Rightarrow |\alpha(\varphi_{(4,q,2)})| < \epsilon$
- $H((1,q,7)) \Rightarrow |\alpha(\varphi_{(4,q,3)})| < \epsilon$
- $H((1,q,1)) \Rightarrow$ Since $\epsilon \leq \frac{1}{5}$, at least one product is made among the functions $\varphi_{(4,q,1)}, \varphi_{(4,q,2)}, \varphi_{(4,q,3)}$

Evaluation at (2, m, .) and (3, m, m'):

- $H((3,m,m')) \Rightarrow |\alpha(\varphi_{(5,m,m')})| < \frac{\epsilon}{M}$
- $H((2,m,3+j)) \Rightarrow |\alpha(\varphi_{(6,m,j)})| < \epsilon$
- $H((2,m,1)) \Rightarrow$ Since $\epsilon \leq \frac{1}{6}$, at least one product is made among the functions $\varphi_{(5,m,.)}, \varphi_{(6,m,.)}$

We can deduce: **Lemma**: any solution **(APPROX)** that we consider can be supposed to involve only 1 product for each pair of clusters.

STEP 3:

We claim that if solving this created (APPROX) problem leads to a cost c = Q + M then the corresponding (3-SAT) problem has a solution which can be reconstructed from the $g_{.,.}$ s. Otherwise c will be > Q + M and there will be no solution to the corresponding (3-SAT). This will prove that (APPROX) is NP-hard.

At this step, we only prove the first direction:

First direction:

We notice that if there is a solution to the given (3-SAT) problem, then there is a solution to our constructed (APPROX) problem. For this, define for each q some G_p as $\varphi_{(4,q,1)} \times \varphi_{(4,q,2)}$ or $\varphi_{(4,q,1)} \times \varphi_{(4,q,3)}$ depending on whether X_q is *true* or *false*. Define also, for each m, some G_p as $\varphi_{(5,m,m')} \times \varphi_{(6,m,j)}$ where j is any (let's say the first) value for which $T_{m,j}$ is *true*, and m' is the number of times when we use $\varphi_{(6,m,j)}$ in such products. To approximate f, we add all the G_p constructed ; that is we take $\alpha_p = 1 \forall p$.

This construction also gives a hint to the reader for guessing the way to recover the solution of (3-SAT) from the solution of (APPROX), by looking at which products were computed to construct the G_p s.

STEP 4:

Other direction:

Intuitively we can see that the product made on figure 3 should be $\varphi_{(4,q,1)} \times \varphi_{(4,q,2)}$ or $\varphi_{(4,q,1)} \times \varphi_{(4,q,3)}$ because if we try to approximate the value f((1,q,1)) = 1, using $\varphi_{(4,q,2)}\varphi_{(4,q,3)}$ would poorly approximate f at (1,q,3).

We will use this option to encode whether the boolean variable X_q is set to true $(\varphi_{(4,q,1)}\varphi_{(4,q,2)})$ is computed) or to false $(\varphi_{(4,q,1)}\varphi_{(4,q,3)})$ is computed).

Evaluations at (1, q, .):

- $H((1,q,3)) \Rightarrow |\alpha(\varphi_{(4,q,2)} \times \varphi_{(4,q,3)})| < \epsilon$
- $H((1,q,1)) \Rightarrow \text{Since } \epsilon \leq \frac{1}{5}$, thanks to the Lemma: $\alpha(\varphi_{(4,q,1)} \times \varphi_{(4,q,2)}) \neq 0 \text{ xor } \alpha(\varphi_{(4,q,1)} \times \varphi_{(4,q,3)}) \neq 0$

Evaluation at (2, m, .) and (3, m, m'):

- $H((2,m,2)) \Rightarrow |\alpha(\varphi_{(5,m,m')} \times \varphi_{(5,m,m'')})| < \epsilon$
- $H((2,m,1)) \Rightarrow$ Since $\epsilon \leq \frac{1}{6}$, thanks to the Lemma: $\exists !m', j : \alpha(\varphi_{(5,m,m')} \times \varphi_{(6,m,j)}) \neq 0$.
- H((1,q,4)) (respectively (1,q,6)) for X_q (resp. \bar{X}_q) matching $T_{m,j}$ of the above constraints \Rightarrow the product chosen in the previous analysis should match. That is, $\alpha(\varphi_{(4,q,1)} \times \varphi_{(4,q,2)}) \neq 0$, for this case where $T_{m,j} = X_q$ (resp. $\alpha(\varphi_{(4,q,1)} \times \varphi_{(4,q,3)}) \neq 0$, case where $T_{m,j} = \bar{X}_q$).

Therefore, fixing each X_q to *true* or *false* depending on whether $\alpha(\varphi_{(4,q,1)} \times \varphi_{(4,q,2)}) \neq 0$ or $\alpha(\varphi_{(4,q,1)} \times \varphi_{(4,q,3)}) \neq 0$ gives a solution to the initial **(3-SAT)** problem.