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Abstract
Although considerable attention in recent years has been given to the problem of symmetry detection in general
shapes, few methods have been developed that aim to detect and quantify the intrinsic symmetry of a shape rather
than its extrinsic, or pose-dependent symmetry. In this paper, we present a novel approach for efficiently computing
symmetries of a shape which are invariant up to isometry preserving transformations. We show that the intrinsic
symmetries of a shape are transformed into the Euclidean symmetries in the signature space defined by the eigen-
functions of the Laplace-Beltrami operator. Based on this observation, we devise an algorithm which detects and
computes the isometric mappings from the shape onto itself. We show that our approach is both computationally
efficient and robust with respect to small non-isometric deformations, even if they include topological changes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Since most natural objects and phenomena manifest symme-
try in some form, detecting and characterizing symmetry is a
natural way to understand the structure of shapes. Symmetry
provides global information about the structure of the ob-
ject that is otherwise difficult to capture. Likewise, deviation
from perfect symmetry is often an indication of the object’s
abnormality [RTR∗99]. In geometry processing symmetry
information has been used for efficient remeshing [PGR07],
scan completion [TW05], segmentation [SKS06] as well as
shape matching [KFR04].

Despite the importance of symmetry detection in the
above tasks, previous work aimed specifically at symmetry
detection and classification (e.g. [Rus07a,MGP06]) has con-
centrated on detecting extrinsic, or embedding-dependent
symmetry, with the notable exception of [RBBK07]. Extrin-
sic symmetry of a shape can be defined as invariance un-
der rigid transformations and possibly scaling. However, be-
cause many natural objects are not completely rigid and of-
ten undergo non-rigid transformations, this notion of sym-
metry is very fragile. At the same time, a wide class of de-
formations, such as articulated motion in humans, preserve
the object’s internal structure, characterized by the geodesic
distances on the object’s surface. These deformations leave
intact intrinsic symmetries of an object, as is defined below.

In this paper we present an algorithm for robustly detect-
ing and categorizing global intrinsic symmetries of shapes.
Our main observation is that the Global Point Signatures

Figure 1: Pose-invariant correspondences (intrinsic symmetry)
computed with our algorithm

(GPS) defined in [Rus07b] transform intrinsic symmetries
on the shape into extrinsic symmetries in a high dimensional
signature space. By restricting our attention to a subspace
of this signature space we further refine this broad class of
extrinsic symmetries to reflectional symmetries around the
principal axes. We devise a method for detecting reflectional
symmetries in the signature space which allows us to find
correspondences on the shape as well as to categorize dif-
ferent symmetries that an object may possess into distinct
classes. We also show that our method is robust with re-
spect to small non-isometric deformations and demonstrate
the stability of the GPS embedding under topological noise.

2. Related Work

As discussed above, most of the existing work on symmetry
detection has concentrated on Euclidean symmetry in two
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or three dimensions. Because the search space in this set-
ting is limited to rigid transformations and possibly scaling,
methods that optimize over all possible transformations re-
main efficient. Thus, Podolak and colleagues [PSG∗06] de-
velop a transform that measures the reflective symmetries
of a shape with respect to all possible planes in a bound-
ing volume, extending the work of Kazhdan and cowork-
ers [KFR04]. Rustamov [Rus07a] augments this transform
to include the spatial distribution of the object’s asymmetry.
Martinet et al. [MSHS06] propose a method for global sym-
metry detection by analyzing the extrema and spherical har-
monic coefficients of generalized moments. Mitra and col-
leagues [MSHS06] use a voting scheme in the transforma-
tion space to detect partial and approximate symmetries of
three-dimensional shapes.

In the setting of intrinsic symmetry detection, however,
the space of all possible solutions is the set of all endomor-
phisms on the shape. For this reason it is difficult to devise
an efficient transform encoding all possible symmetries or a
voting scheme based on point-to-point matches. The prob-
lem of intrinsic symmetry detection is thus more closely re-
lated to the problem of comparing non-rigid shapes as con-
sidered in e.g. [MS05, BBK06]. This latter work proposes
a Generalized Multidimensional Scaling (GMDS) approach,
which finds a map from points on one shape to points on
another minimizing the change in geodesic distances.

In the discrete setting, the problem of intrinsic symme-
try detection is analogous to determining if a given graph
has a non-trivial automorphism. This problem has unknown
complexity between P and NP. Restricted versions, such as
fixed-point-free automorphism have been proven to be NP-
complete [Lub81].

Also related to our setting is the work by Mitra et al.
[MGP07], in which approximate local extrinsic symmetries
are used to deform the object to make it more globally ex-
trinsically symmetric, while preserving its structure. How-
ever, because the problem is formulated as energy minimiza-
tion, the resulting deformed object does not necessarily cor-
respond to any intrinsic symmetry present in the original
model. For example, a bent object is not intrinsically sym-
metric, as bending changes the geodesic distances on the
surface. To the best of our knowledge, the only work that di-
rectly addresses the problem of intrinsic symmetry detection
on shapes is [RBBK07], where the authors adapt the GMDS
framework to embed the shape onto itself while preserving
the geodesic distances as well as possible. Because GMDS is
an optimization technique that requires an initial guess, their
algorithm proceeds in two stages: first, a coarse initialization
is found using local descriptors and geodesic distance his-
tograms. During the second stage, this initialization is used
to find a self-mapping on the shape that is as isometric as
possible. Our work is different in that we use global descrip-
tors that take the shape’s structure into account. As a result,
our method is purely algebraic and circumvents the need to

solve a non-convex non-linear optimization problem. More-
over, the descriptors we use also allow us to classify symme-
tries into discrete classes, which would be difficult to do with
the preceding method. Furthermore, as confirmed by our re-
sults, correspondences obtained using our algorithm are less
sensitive to topological noise.

3. Theoretical Preliminaries

In this section we define the notion of intrinsic symmetry
and prove the main results that are required for our method.

3.1. Intrinsic Symmetry

Suppose we are given a compact manifold O without bound-
ary. Following [RBBK07] we call O intrinsically symmet-
ric if there exists a homeomorphism T : O → O on the man-
ifold that preserves all geodesic distances. That is:

g(p,q) = g(T (p),T (q)) ∀ p,q ∈ O

where g(p,q) is the geodesic distance between two points on
the manifold. In this case, we call the mapping T an intrinsic
symmetry.

3.2. Laplace-Beltrami Operator

The main tool that we will use in intrinsic symmetry detec-
tion is the Laplace-Beltrami operator ∆ (see e.g. [Ros97]
for a good introduction), which can be defined entirely in
terms of the metric tensor on the manifold independently of
the parametrization. The Laplace-Beltrami operator over a
compact manifold is bounded and symmetric negative semi-
definite. Hence it has an eigen-decomposition, which is a
countable set of eigenfunctions φi : O → R and eigenvalues
λi ∈ R, such that

∆φi = λiφi

This decomposition has the following useful properties (see
Chapter 1 of [Ros97] for the proofs):

1. The eigenfunctions φi are invariant under isometric de-
formations of the manifold and are thus intrinsic prop-
erties. We address the question of changes under small
non-isometric perturbations in Section 4.

2. The set of eigenfunctions forms a complete orthonormal
basis for the space of L2 functions on the manifold. That
is, for any square integrable function f :

f (p) = ∑
i

aiφi(p), where ai = 〈 f ,φi〉 ∀ p ∈ O〈
φi,φ j

〉
= δi j = 1 if i = j, and 0 otherwise.

3. The Laplacian operator uniquely determines the met-
ric of the manifold and thereby geodesic distances be-
tween points. Since the eigendecomposition determines
the Laplacian operator, together with property 1. this im-
plies that two manifolds are isometrically deformable
into each other if and only if their Laplacian operators
have the same eigenvalues and eigenfunctions.
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To put the last point more concretely, let O1 and O2 be two
compact manifolds with Laplace-Beltrami operators ∆1 and
∆2. A homeomorphism T : O1 → O2 preserves all geodesic
distances if and only if for every eigenfunction φi of ∆2 asso-
ciated with λi, φi ◦T is an eigenfunction of ∆1. In particular
if T is a self-mapping, we can conclude that T is an intrinsic
symmetry if and only if φi ◦T is an eigenfunction associated
with eigenvalue λi for all φi.

This immediately leads to an algorithm for detecting in-
trinsic symmetries:

1. For every bijective mapping T , determine if φi ◦T is an
eigenfunction associated with λi for all i.

2. If so, T represents an intrinsic symmetry, otherwise such
a symmetry does not exist.

This approach unfortunately suffers from the combinatorial
complexity of enumerating all bijective mappings on a sur-
face. For this reason, we will look for potential symmetries
in the Global Point Signature (GPS) embedding of a mani-
fold introduced by Rustamov in [Rus07b]. Specifically, for
each point p on the manifold O define its signature:

s(p) =

(
φ1(p)√

λ1
,

φ2(p)√
λ2

, ...,
φi(p)√

λi
, ...

)
. (1)

3.3. Main Theorem

Let s(O) denote the embedding of O into the signature space.
The main observation of this work is the following Theorem.
Theorem 3.1 Suppose O has an intrinsic symmetry with an
associated isometric self-mapping T . Then s ◦T ◦ s−1 is an
extrinsic symmetry of s(O). In other words, if p1,p2 ∈ O:

||s(p1)− s(p2)||2 = ||s(T (p1))− s(T (p2))||2
Proof : By assumption if T is an isometric mapping, and
since eigendecomposition is preserved under isometries, φi ◦
T must be an eigenfunction associated with eigenvalue λi. In
other words, φi ◦T must lie in the subspace of the function
space spanned by the eigenfunctions φ j associated with λi
(the number of such φ j is the multiplicity ni of λi). Thus:
φi ◦T = ∑ j ai jφ j. Moreover,

〈φi ◦T,φk ◦T 〉 =
Z

O
φi(T (p))φk(T (p))vol(p) = 〈φi,φk〉 ,

which equals δik by Property 2. The second equality holds
because T is required to be a homeomorphism and thus, the
integration for both inner products is done over the same set
of values, and the volume forms vol(p) = vol(T (p)) since T
preserves the metric. Therefore:

∑
j

a2
i j = 1 and ∑

j
ai jak j = 0 if k 6= i.

Because the multiplicity ni of λi is finite [Ros97] p. 32, we
can define an orthonormal matrix A ∈ Rni×ni such that Ai j =
ai j as above. Since A is orthonormal, so must be AT :

∑
i

a2
i j = 1 and ∑

j
a jia jk = 0 if k 6= i

(a) Positive (b) Negative (c) Repeating

Figure 2: Three cases of eigenfunctions. Blue regions have nega-
tive, red have positive, and green have close to zero values. The
same eigenfunction φ corresponding to a non-repeating eigenvalue,
is either (a) positive (φ ◦ T = φ) or (b) negative (φ ◦ T = −φ) de-
pending on the chosen intrinsic symmetry T . (c) An eigenfunction
corresponding to a repeating eigenvalue.

Note in case ni = 1, i.e., λi is non-repeating, aii ∈ {+1,−1}.
Now consider:

||s(T (p1))− s(T (p2))||22 =
∞
∑
i=1

(
φi(T (p1))−φi(T (p2))√

λi

)2

=
∞
∑
k=1

nk

∑
i=1

(
φik(T (p1))−φik(T (p2))√

λk

)2

,

where the first sum is over all distinct eigenvalues, nk is the
multiplicity of λk and φik is the ith eigenfunction associated
with eigenvalue k. Since φik ◦T = ∑

nk
j=1 ai jφ jk we have:

∞
∑
k=1

nk

∑
i=1

(
∑

nk
j=1 ai j(φ jk(p1)−φ jk(p2))√

λk

)2

=
∞
∑
k=1

nk

∑
j,l=1

nk

∑
i=1

ai jail
(φ jk(p1)−φ jk(p2))(φlk(p1)−φlk(p2))

λk

=
∞
∑
k=1

nk

∑
j=1

(
φ jk(p1)−φ jk(p2)√

λk

)2

= ||s(p1)− s(p2)||22 ,

since ∑i ailai j = 1 if j = l and 0 otherwise.

Theorem 2.1 shows that an intrinsic symmetry of an object O
induces an extrinsic symmetry (either rotation or reflection)
of its GPS embedding. This suggests that we can detect the
intrinsic symmetries of an object O by looking for the ex-
trinsic symmetries of s(O) in the signature space.

3.4. Restricted Signature Space

As shown in the proof of Theorem 2.1, the eigenfunctions
associated with the repeated eigenvalues can introduce rota-
tional symmetries in the GPS embedding s(O). Since rota-
tional symmetries are notoriously hard to detect in high di-
mensional spaces, we restrict our attention to the eigenfunc-
tions associated with non-repeated eigenvalues. Note that for
the eigenfunctions associated with non-repeating eigenval-
ues λi only one of the following holds:

• φi ◦T = φi we call such φi positive
• φi ◦T = −φi we call such φi negative

In other words, every intrinsic symmetry induces only re-
flection symmetry around the principal axes in this restricted
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signature space. This restriction simplifies our search. An-
other reason to drop the repeated eigenvalues is that the
eigenfunctions associated with them are not stable under
small non-isometric perturbations as we show in Section 4.
Figure 2 shows that the classification of eigenfunctions as-
sociated with non-repeating eigenfunctions is dependent on
the intrinsic symmetry T . Ignoring the repeated eigenvalues
does not make our method miss any intrinsic symmetries, but
may mix different isometric self-mappings, i.e., some sym-
metries become un-distinguishable by only considering the
non-repeated eigenvalues. In general, a further refinement
step may be needed as discussed in Section 3.

Note that in general the presence of repeated eigenvalues
is neither necessary, nor sufficient for intrinsic symmetries.
It is possible to construct graphs with no automorphisms,
whose Laplacians have repeated eigenvalues, and conversely
automorphic graphs whose Laplacians do not have repeated
eigenvalues. We conjecture that the same holds for smooth
manifolds. It is possible, however, to prove that the Laplace-
Beltrami operator on a manifold with an intrinsic symmetry
T such that T ◦T 6= Id, or with two intrinsic symmetries S,T
such that S◦T 6= T ◦S, must have repeated eigenvalues. We
omit these proofs for the lack of space.

We also consider the projection of the signature space
onto its first d components corresponding to the first d non-
repeating eigenvalues. Increasing d results in higher discrim-
inative power (points will have more unique signatures) at
the cost of increased complexity and exposure to numerical
errors. Moreover, the eigenvectors associated with the small-
est eigenvalues are more stable under non-isometric defor-
mations, and approximately preserve the positive/negative
properties discussed above. Therefore, using fewer eigen-
functions results in a more robust method at the cost of ac-
curacy of differentiating between points.

In summary, for each point p on the manifold O, we define
its restricted GPS signature s(p) to be:

s(p) =

(
φ1(p)√

λ1
,

φ2(p)√
λ2

, ...,
φd(p)√

λd

)
, (2)

where λi is non-repeated for any 1 ≤ i ≤ d.

4. Symmetry Detection and Classification

As discussed above, given an intrinsic symmetry T , in the
restricted signature space each eigenfunction is either pos-
itive or negative. Thus every intrinsic symmetry T can be
identified with a sequence of signs (+ or −). That is, given
a manifold O with an intrinsic symmetry T , in the restricted
signature space T induces a sequence of signs determined by
whether φi ◦T = φi or −φi.

Our approach to detecting an intrinsic symmetry T will
be to recover the sequence of signs induced by T and use it
to find point-to-point correspondences. Note that the restric-
tion of the signature space to non-repeating eigenvalues will

(a) Star (b) Torus

Figure 3: T is a cyclic intrinsic symmetry with order 5, and thus
none of the eigenfunctions can be negative with respect to it. A neg-
ative eigenfunction would imply f (p) = − f (T 5(p)) = − f (p) ∀ p

not make us miss any intrinsic symmetries. This is because
every intrinsic symmetry is associated with a sequence of
signs in the restricted signature space regardless of d. This
can also be seen in the proof of Theorem 2.1, as the result
holds even if s(p) is defined over a finite number of distinct
non-repeating eigenvalues. Nevertheless, it is possible that
different intrinsic symmetries induce the same sequence of
signs. For example in Figure 3, since the symmetry T does
not admit any negative eigenfunctions, it induces a sequence
of all pluses. So do T 2, T 3 T 4 and T 5 = Identity. Imagine
in the extreme case of torus, there is an infinite number of
symmetries along the longitude, which all induce the same
sequence of signs.

In general, recovering the correct sequence of signs in-
duced by T reduces the search space for T but may not actu-
ally determine T . For example, in the case of the Star model
in Figure 3, the sequence of all pluses reduces the set of po-
tential correspondences down to 4. That is, given a query
point q, there are 4 other points having the same signature in
the restricted signature space. In this work, we assume that
the recovered sequence of signs has enough precision to de-
tect its inducing intrinsic symmetry. For most of the models
used in our experiments, this assumption was fulfilled. We
present a simple way to relax this assumption in Section 3.3
and leave the problem of disambiguating all intrinsic sym-
metries as an interesting problem for future work. Neverthe-
less, even when two intrinsic symmetries induce the same
sign sequence, our method can be used to reduce the set of
candidate correspondences for each point down to two.

Given a closed manifold O, suppose it has an intrinsic
symmetry T : O → O. Let si(q) be the ith component of
the restricted GPS signature of q ∈ O as in (2) and S =
(S1, · · · ,Sd) be the sign sequence corresponding to T . That
is, Si = 1 if T ◦φi = φi and −1 if T ◦φi =−φi. Since the sig-
natures are only defined on the non-repeating eigenvalues,
we must have, for any point q ∈ O:

s(T (q)) = (S1s1(q),S2s2(q), ...,Sdsd(q)) (3)

Note, in particular, |s(T (q))i| = |s(q)i| ∀ i. Conversely,
given a sign sequence S, we can test whether this sequence
is associated with any intrinsic symmetry on the manifold
by modifying the signature s of each point q to s′(q) =

c© 2008 The Author(s)
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(S1s1(q),S2s2(q), ...Sdsd(q)) and considering:

E(S) = ∑
q∈O

min
p∈O

∣∣∣∣s′(q)− s(p)
∣∣∣∣2

2

For a sign sequence S corresponding to an intrinsic sym-
metry, E(S) = 0 because for every point there must exist
a corresponding symmetric point. In the case of approxi-
mate symmetry, E(S) must be small because non-repeating
eigenfunctions are continuous and, at least in the discrete
setting, change continuously under non-isometric deforma-
tions (Section 4). Note that E(S) = 0 is necessary but may
not be sufficient for the sign sequence to correspond to an in-
trinsic symmetry. In practice, we observe that this does not
happen for moderately large d (15 in our experiments),

Since the signature s(q) is defined on d eigenfunctions
corresponding to non-repeating eigenvalues, a simple algo-
rithm to retrieve the candidate sign sequences would be to
test all 2d possibilities and rank them by the error E(S). This
method works well. For instance, for the Female model in
Figure 4, the three combinations of lowest error correspond
to the bilateral symmetry, the front/back symmetry and their
composition respectively. However, the complexity of this
method is exponential in d, the number of components cho-
sen for the GPS embedding. In order to overcome this limi-
tation, we propose the following procedure to detect poten-
tially negative eigenfunctions.

4.1. Detecting Negative Eigenfunctions

As is shown on Figure 2 the classification of eigenfunctions
into negative and positive ones depends on a particular in-
trinsic symmetry T . On the other hand, there can be eigen-
functions that are positive with respect to all intrinsic sym-
metries, and detecting those will allow us reduce the search
space for the correct sign sequences. In practice, roughly half
of the eigenfunctions are always positive, so it is beneficial to
identify them. We propose the following simple procedure.

1. Given an eigenfunction φi, for each point p, let

s+
i (p) = (|s1(p)|, |s2(p)|, · · · ,si(p), · · · , |sd(p)|) and

s−i (p) = (|s1(p)|, |s2(p)|, · · · ,−si(p), · · · , |sd(p)|) .

That is, each component of s+
i (p) and s−i (p) is the same,

and equals the absolute value of the corresponding com-
ponent of s(p), except their ith component. which is equal
and negative of the ith component of s(p) respectively.

2. Assume there exists an intrinsic symmetry T for which φi
is a negative eigenfunction. Then for every point p there
must exist a corresponding point q such that s+

i (q) =
s−i (p). Thus, we compute:

Ei = ∑
p∈O

min
q∈O

∣∣∣∣∣∣s−i (p)− s+
i (q)

∣∣∣∣∣∣2
2
,

which should be 0. In practice, we consider the ith eigen-
functions potentially negative if Ei is small.

4.2. Coupling

Given a list of potentially negative eigenfunctions we would
like to partition them into groups such that all of the func-
tions within a group are negated by the same symmetry. For
this, we follow a similar procedure as above. Specifically to
check if the ith eigenfunction φi and the jth eigenfunction
φ j (both potentially negative) are coupled, we consider the
following signature for each point p ∈ O

s+
i j(p) =

(
|s1(p)|, · · · ,si(p), · · · ,s j(p), ..., |sd(p)|

)
and

s−i j (p) =
(
|s1(p)|, · · · ,si(p), · · · ,−s j(p), ..., |sd(p)|

)
. (4)

That is, each component of s+
i j(p) and s−i j (p) is the same, and

equals the absolute value of the corresponding component
of s(p), except for their ith and jth components. Then we
compute:

Ei j = ∑
p∈O

min
q∈O

∣∣∣∣∣∣s−i j (p)− s+
i j(q)

∣∣∣∣∣∣2
2
.

If φi and φ j are negative eigenfunction for different symme-
tries then φi ◦T = φi and φ j ◦T = −φ j, resulting in Ei j = 0
or E ji = 0. Otherwise, Ei j and E ji must both be large, and in
particular, larger than Ei or E j. In this case, we call φi and φ j
are coupled.

Once the pairwise coupling information is computed, we
group the potentially negative eigenfunctions as follows.
Starting with a list of pairs of coupled negative eigenfunc-
tions, we join two pairs if they have a non-empty intersec-
tion (if at least one eigenfunction is in both pairs). We then
iterate this procedure until we have disjoint sets of negative
eigenfunctions. Finally, we treat each such set as a sign se-
quence S, by setting Si = −1 if φi is in the set, and 1 if it is
not. This results in the list of sign sequences, that we use to
compute point-to-point correspondences within the shape.

4.3. Point-To-Point Correspondences

Using the sign sequences obtained by the procedure above,
we look for correspondences in a straightforward fash-
ion. Given a query point q, we go through each se-
quence of signs. Note under our assumptions, distinct se-
quences of signs correspond to a distinct intrinsic symme-
try. For a sequence of sign S = (S1, · · · ,Sd), define s′(p) =
(S1s1(q),S2s2(q), ...,Sdsd(q)) as in Eqn (3). We then look
for the closest point

min
p∈O

||s′(q)− s(p)||,

and declare p, the corresponding point to q. Since an object
can have multiple intrinsic symmetries, by going through
each sign sequence, we can determine different correspond-
ing points.

It is also possible, albeit rare, that two intrinsic symme-
tries correspond to the same sign sequence in the restricted
signature space. Then, for a given query point q and sign
sequence, there are two corresponding points p1 and p2. A
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Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



M. Ovsjanikov et al. / Global Intrinsic Symmetries of Shapes

simple way to solve this problem would be to look for a non-
repeating eigenfunction φi such that φi(p1) 6= φi(p2). Includ-
ing φi in the definition of the resitricted signature, will ensure
that the two intrinsic symmetries T (q) = p1 and S(q) = p2
will correspond to different sign sequences. If all eigenval-
ues are distinct, such φ is guaranteed to exist.

5. Implementation

To implement the method described above, we use triangular
meshes to approximate smooth manifolds. Several discrete
schemes have been proposed to approximate the Laplace-
Beltrami operator on triangular meshes. One widely used
discrete Laplace operator is the cotangent (COT) scheme,
originally proposed by Pinkall and Polthier [PP93]. Re-
cently, Belkin et al [BSW08] proposed a scheme based on
the heat equation, which is proven to converge point-wise
on arbitrary meshes. Although it is well known that no dis-
crete Laplace operator can share all of the properties of
its continuous counterpart [WMKG07], in our experiments
these schemes produce eigenfunctions that approximately
preserve the positive/negative properties discussed above.
We base our computation on [BSW08] since we observe
it gives more stable eigenfunction computation. As stated in
[Rus07b], the Laplacian matrix L can be rewritten as S−1M
where S is a diagonal and M is symmetric. We present a sta-
bility argument on solving the eigen-problem Lφ = λφ be-
fore we describe the implementation and its complexity.

Stability Argument. For our approach to practically work,
we need to show the eigenvectors are stable under small
non-isometric perturbations. Denote Õ to be a small non-
isometric perturbation of object O. Let D̃ be a mesh that dis-
cretizes object Õ. We move each vertex of D̃ onto its closest
point on O and obtain a new mesh that discretizes object
O. We denote this new mesh as D. Since Õ is just a small
perturbation of O, we assume D well approximates O. Fur-
thermore, if we let L = S−1M and L̃ = S̃−1M̃ denote the
Laplacian matrices of D and D̃ respectively, we have that∣∣δM = M− M̃

∣∣ and
∣∣δS = S− S̃

∣∣ are both small. We assume
that both D and D̃ are dense enough and well approximate
O and Õ respectively. Let λi and φi denote the ith eigenvalue
and eigenvector of matrix L, and λ̃i and φ̃i are the ith eigen-
value and eigenvector of matrix L̃.

Based on matrix perturbation theory, up to the first order
of δM and δS, we have

λ̃i = λi +φ
t
i([δM]−λi[δS])φi and

φ̃i = φi(1−
1
2

φ
T
i [δS]φi)+ ∑

j 6=i

φ
t
j ([δM]−λi[δS])φi

λi −λ j
φ j.

From these two expressions, we conclude that the eigen-
vectors with spread out eigenvalues are more stable against
small perturbations. Note that in general, eigenvectors cor-
responding to repeating eigenvalues are unstable.

Since we choose stable eigenvectors, our algorithm can be

applied to approximately symmetric objects. An object is
approximately symmetric if it is close to some intrinsically
symmetric object. Here we consider two objects close if the
points of one can be perturbed onto the points of the other,
as discussed above.

Complexity. Our algorithm consists of two main steps:
computing the eigenvectors of Laplacian matrix to build the
restricted GPS embedding, and finding nearest neighbors in
the restricted signature space. In the experiments below we
use the sparse eigen solver implemented in the ARPACK
package to compute the restricted GPS embedding. This al-
lows us to compute the eigenvectors of meshes with up to
40,000 points. Note that [VL08] presents an out-of-core al-
gorithm that finds an eigendecomposition of the Laplace-
Beltrami operator on meshes with up to a million points.

For nearest neighbor search, we use the kd-tree data struc-
ture implemented in the ANN library. Note that the com-
plexity of a nearest neighbor query in the kd-tree has been
observed to depend on the underlying dimensionality of the
data more than on the dimension d of the embedding space
[Moo91], and equals O(logn) for a data-set of fixed under-
lying dimension. Since the GPS embedding is a homeomor-
phism, the underlying dimensionality is fixed (equals 2 for
surfaces in 3D), regardless of d. The complexity of deter-
mining whether an eigenfunction is negative and the overall
complexity of our method are approximately O(dn logn) and
O(d3n logn), respectively. In our experiments, we use the
first 15 non-repeated eigenvectors, i.e., d = 15 unless men-
tioned otherwise. Repeated eigenvalues were not present in
any model, except for the Female model, where one pair was
removed using conservative scheme based on the relative
difference between eigenvalues. Table 1 shows the timing
of our algorithm on the models shown in the result section.

Model #vertices #components GPS Cor
FEMALE 8968 15 22 67

30 24 361
MAN 14603 15 74 143

30 78 786
HIP 19979 15 131 366

30 138 2980
KNOTS 38400 15 464 573

30 498 4346

Table 1: Timing in seconds for the different stages on a PC with
Quad-Core Intel Xeon 5300 and 3GBytes main memory.

6. Results

Figure 4 shows the point-to-point correspondences obtained
with our algorithm. In colored models, we show a posi-
tive eigenfunction, in which the same colors roughly rep-
resent corresponding regions under the intrinsic symmetry.
Note that although we only show correspondences for a few
points, our algorithm generates a correspondence for every
point. Our method captures Euclidean symmetry when it is
present such as the reflection of the Hip model and the rota-
tion of the Twirl model. The Moebius strip with the follow-
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Hip Moebius (d = 30)

Twirl Female

Knots (d = 30)

Figure 4: Correspondences obtained with our algorithm on differ-
ent models.

ing parametrization:

p(u,v) =

 cos(u)+ vcos(u/2)cos(u)
sin(u)+ vcos(u/2)sin(u)

vsin(u/2)


has an intrinsic symmetry, which can be found analytically:
T ((x,y,z)) = (x,−y,−z). On a discrete model, our algorithm
generates exactly this map. The knots model also possesses
one intrinsic symmetry, which is not easy to observe. Our
algorithm computes the symmetry map as shown in Figure 4
from two different viewing angles. For the Female model,
our algorithm detects two separate approximate symmetries:
bilateral and front/back.

Deformation. We also tested our algorithm on two sets
of deformed models. The three human poses shown on the
first row of Figure 5 were taken from the SCAPE dataset,
which is based on scans of a real person. For these poses, our
method correctly captures the intrinsic bilateral symmetry of
the human. The poses shown on the second row of Figure 5,
were obtained by the method in [AOW∗08] which produces
as-rigid-as possible volume preserving deformations. Start-
ing with an extrinsically symmetric model, we deformed it,
and computed the maximum change in the geodesic dis-
tances between any pair of points on the model using the
fast-marching method. The numbers under the models show
this geodesic distortion of the deformation. As can be seen,
although these deformations are not isometric, we are able to
detect approximate intrinsic symmetries and compute con-
sistent correspondences as long as the distortion is not very

(a) (b) (c)

(d) 0.031 (e) 0.074 (f) 0.292

Figure 5: (a-c) Correspondences on models taken from the SCAPE
dataset. (d-f) Correspondences on a model undergoing as-rigid-as
possible deformations. The numbers represent the geodesic distor-
tion of the deformation. Our method produces consistent correspon-
dences until a large distortion (f). In this case the first non-repeated
eigenfunction (shown) fails to be either positive or negative.

large. When the model undergoes a large non isometric de-
formation Figure 5 (f), our method fails as the first non-
repeated eigenfunction is neither positive nor negative.

Topological Change. Rustamov [Rus07b] pointed out
that GPS embedding is stable against topological noise but
did not give an explanation. Certainly, the GPS embed-
ding of an object changes as its topology changes as the
eigenfunctions and the eigenvalues characterize objects up to
isometry, which is a topological invariant. However we ob-
serve that the introduction of small topological “short-cuts”
only induce changes in the high frequency eigenfunctions
corresponding to large eigenvalues as shown in Figure 6.
This observation explains why the restricted GPS embed-

Figure 6: Boy , (a) a small handle added between two fingers. (b)
a larger handle added between the right arm and the torso. The
plots show the changes of first two 200 eigenfunctions (excluding
the repeated ones).

ding is stable against topological noise since the eigenfunc-
tions of high frequency are scaled down proportional to their
eigenvalues and truncated early. This enables us to detect in-
trinsic symmetries even with small topological noise, when

c© 2008 The Author(s)
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Original finger handle Body-arm handle

Figure 7: Correspondences before and after the topological
changes shown in Figure 6.

geodesic-based methods experience problems [RBBK07].
Figure 7 shows the result of our algorithm applied on the
models with small topological changes.

7. Conclusion and Future Work

We have described an algorithm to detect intrinsic symme-
tries and extract point correspondences on the shape. Our
main observation is that Global Point Signatures defined
in [Rus07b] map intrinsic symmetries into extrinsic symme-
tries in the signature space. We then observe that considering
only non-repeating eigenvalues reduces this space of extrin-
sic symmetries in high dimension to reflectional symmetries,
which can be detected efficiently. We demonstrated the ap-
plicability of our method by computing correspondences on
a set of objects with approximate symmetries and showed
that they are robust with respect to small non-isometric de-
formations and topological noise.

As noted in Section 3, it is possible that multiple intrin-
sic symmetries induce the same sign sequence. In the future,
we are planning to add a refinement step to our framework,
that would allow to distinguish different symmetries if they
induce the same sign sequence. In addition to the method in
Section 3.3, one possibility is to use spectral clustering tech-
niques described in [LH05] to find the clusters of geodesi-
cally consistent correspondences. We are also considering
ways to extend our method to incorporate the repeated eigen-
functions to achieve more robustness. Furthermore, although
our method can be used to classify different classes of in-
trinsic symmetries, we would like to find a compact repre-
sentation of all intrinsic symmetries, including continuous
symmetries. Finally, we are working to extend our method
to manifolds with boundaries and local and partial intrinsic
symmetries.
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