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Abstract

We propose an algorithm that performs registration of large sets of unstructured point clouds of moving and
deforming objects without computing correspondences. Given as input a set of frames with dense spatial and tem-
poral sampling, such as the raw output of a fast scanner, our algorithm exploits the underlying temporal coherence
in the data to directly compute the motion of the scanned object and bring all frames into a common coordinate
system. In contrast with existing methods which usually perform pairwise alignments between consecutive frames,
our algorithm computes a globally consistent motion spanning multiple frames. We add a time coordinate to all
the input points based on the ordering of the respective frames and pose the problem of computing the motion of
each frame as an estimation of certain kinematic properties of the resulting space-time surface. By performing
this estimation for each frame as a whole we are able to compute rigid inter-frame motions, and by adapting our
method to perform a local analysis of the space-time surface, we extend the basic algorithm to handle registration
of deformable objects as well. We demonstrate the performance of our algorithm on a number of synthetic and
scanned examples, each consisting of hundreds of scans.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling.

1. Introduction

In recent years, significant advances have been made in de-
veloping high-speed shape acquisition devices. Using range
scanning techniques such as structured light [RHHL02,
KGG03, FB05] and spacetime stereo [DRR03, ZCS,
WLG07], it is now possible to perform high-quality capture
of detailed 3D geometry at close to video frame rates. As
a result, it is now feasible to scan objects that are under-
going motion or deformation. The main limitation in scan-
ning moving and deformable objects using slower methods,
such as laser triangulation, has been the requirement that
the object remains motionless during each scanning pass.
This was not feasible, since each pass took a long time to
cover the entire visible area. On the other hand, since each
frame acquired by the fast scanning methods above covers
a large visible area of the object at once, and the frames are
closely spaced in time, it is now reasonable to assume that
the scanned object remains stationary within each frame and
the motion and deformation happen only between frames.

The challenge in registering data for high frame-rate scan-
ners lies in processing the large amount of noisy geometric
information produced by these devices. The ultimate goal of
a scanning system is to produce a complete 3D model of the
scanned object. However, the output produced by the rang-

ing devices is usually an unstructured cloud of points that
only partially covers the surface of the object. In each frame,
the points are given in the reference system of the scanner,
they are not registered in object space, and correspondences
between points in different frames are rarely available.

While there has been a large amount of work on align-
ment of point clouds (see Section 2), the research until now
has mostly focused on processing relatively small numbers
of scans that are produced by the slower scanning systems.
As a result, the traditional method of building models from
range data is to align all pairs of overlapping scans inde-
pendently, without taking into account how other scans in
the systems are registered [LPC∗00,BR02]. Since alignment
errors tend to accumulate, before pairwise transformations
can be chained together to integrate all scans into a com-
mon coordinate system, a relaxation is usually performed to
spread out the accumulated error among all scans in the sys-
tem [BSGL96, Pul99]. This standard approach to building
3D models works well when the number of input scans is
relatively small and there is relatively little coherence be-
tween successive inter-frame motions — which is the case
when each scan takes a long time, and the object or the scan-
ner is manually re-positioned between each successive scan
as to maximize the newly visible area.
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However, when scanning objects at high frame rates,
inter-frame motions are generally small, while the number
of frames is now very large (often on the order of many
hundreds or even thousands). Processing all pairs of over-
lapping frames, filtering away bad alignments, and perform-
ing global relaxation becomes too expensive. At the same
time, if the object is undergoing some motion while it is be-
ing scanned (e.g. rotating so that all sides eventually become
visible), the motion is likely to remain coherent over some
number of frames.

In this paper, we propose an algorithm for registration of
point clouds of moving and deforming objects. Instead of
performing independent pairwise alignment between con-
secutive frames, as has been done in previous methods, we
exploit the underlying temporal coherence in the data to inte-
grate together data from several frames at once and directly
compute the object motion from the raw scanner output in
one shot. Simply put, we add a time coordinate to all input
points based on their respective frames, and pose the prob-
lem of computing the motion of each scan as an estimation of
certain surface properties of the resulting kinematic space-
time surface. The main advantage of our algorithm over prior
methods is that we do not have to explicitly compute cor-
responding points between successive frames; instead, we
compute the alignment by exploiting the underlying smooth-
ness of the space-time surface which results from the prop-
erty that the inter-frame motions remain coherent.

The main contributions of this work are as follows:

• We describe an algorithm for computing all inter-frame
motions of a set of scans using fundamental kinematic
properties of the space-time surface formed by the input
points. The method does not require establishing corre-
spondence across different scans.

• We analyze the performance of our algorithm with re-
spect to increasing amounts of noise and inter-frame dis-
placement. We also compare its performance with that
of ICP [BM92, CM92], which is the standard method for
pairwise registration. We show that since the local neigh-
borhoods on the space-time surface include data from
multiple frames at once, our method, under sufficient time
sampling, is not as susceptible to the problem of accumu-
lating errors as the pairwise alignment methods.

• To handle sparse sampled data, we propose two refine-
ments to our basic algorithm to improve the motion esti-
mates, at the cost of minor increase in time complexity.

2. Related Work

Range image registration is an integral part of most shape
acquisition pipelines and a large number of algorithms has
been developed to address this challenging problem. In gen-
eral registration algorithms are usually classified into pair-
wise and multi-view registration. Pairwise registration finds
aligning transformations between overlapping pairs of scans,
and these transformations can then be chained together to
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t j
t j−1

time
spacing

sample spacing
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Figure 1: Space-time Surface. Kinematic space-time surface
traced by a rigidly moving 2D curve. For scans of a moving
3D object the corresponding surface resides in 4D.

compute the final object-space pose for each scan. Since
only pairs of scans are considered independently, local er-
rors tend to accumulate, causing poor alignments especially
between the scans with many intermediate transformations.
Thus, multi-view registration is used to spread the accumu-
lated error among all scans in the system.

Pairwise registration algorithms for range data are usu-
ally based on finding sets of corresponding points be-
tween the two input scans, which are then used to com-
pute the aligning transformation. Direct methods find cor-
respondences by comparing local shape descriptors com-
puted on the inputs [HH03,GMGP05,LG05]. Iterative meth-
ods, such as the classic Iterated Closest Point (ICP) algo-
rithm [BM92, CM92] and its variants [RL01] are often used
when the relative transformations between the two scans are
not very large. These methods alternate the computation of
correspondences with refining the aligning transformation,
and almost always require multiple iterations before the fi-
nal alignment is found [MGPG04].

As mentioned, the pairwise transformations are refined
by multi-view registration algorithms that try to aggregate
data from several scans and distribute the accumulated er-
ror. Multi-view methods are usually iterative in nature, since
they perform an optimization over all transformations com-
puted by the pairwise method [Pul99, SLW02, KLMV05].

The methods described above deal with rigid registration.
When the scanned object undergoes deformation between
the successive scans, the registration problem becomes much
more difficult due to the larger number of parameters that
need to be recovered. Pairwise registration methods based
on extending ICP to include deformations [HTB03], thin-
plate splines [BR07], and optimization over correspondence
space [ASK∗05] have been proposed. These methods are
correspondence-based and are generally aimed at aligning
a small number of deformable objects or range images.

When the scanning speed approaches video frame rates,
building a 3D model can be thought of not as a problem
in pairwise alignment or registration, but as object tracking.
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Figure 2: Space-time Velocity Vectors. The instantaneous ve-
locity vectors (in blue) are tangential to the kinematic space-
time surface generated by rigidly transforming shapes. The
space-time normals are shown in gray.

The input comes as a dense stream of frames, and the rela-
tive motions between successive pairs of frames are likely to
be similar, if the scanning speed is fast relative to the object
motion. The idea of exploiting inter-frame coherence is ex-
tensively used for object tracking in computer vision [BB95]
with techniques like optical flow, but is only recently started
to be used in 3D registration, e.g. in [RHHL02].

The main distinction between our algorithm and prior
work on rigid and non-rigid registration is that instead of
establishing correspondence between points from different
scans, we use kinematic properties of space-time surfaces to
solve for aligning motion. In addition, instead of processing
scans in pairs, we aggregate together information from mul-
tiple nearby frames when computing aligning transforma-
tions. As a result, when time sampling is sufficient, our algo-
rithm does not require the multi-view error distribution step.
Our approach is particularly well suited for applications of
high frame rate range scanning which produce a large num-
ber of frames (on the order of thousands in some examples)
with temporally coherent inter-frame motions.

3. Space-time Registration

3.1. The Space-time Surface

We describe our space-time registration framework by con-
sidering the following basic setup. An object is undergoing
some smooth motion α(t). We are given a set of frames (e.g.
range images) {P0,P1, . . . ,Pn} each consisting of n j = |P j|
points p j

1,p
j
2, . . . ,p

j
n j . Each frame P j corresponds to a poten-

tially different view of the moving object, acquired at time
t j. The coordinates of the points in each frame are given in
the local coordinate system of the scanner, and the corre-
spondences between points in different frames are unknown.
We assume that the acquisition process is fast enough that
all motion happens between successive frames, and for now
we assume that the object is moving rigidly. The goal of our
multi-frame alignment algorithm is to register all frames into
a common coordinate system (usually that of P0). We ac-
complish this by first computing a set of n inter-frame trans-
formations α j := (R j, t j), such that α j aligns P j to P j+1,

and then suitably applying the computed transforms to ob-
tain the final pose of each frame.

We change to a space-time model as follows: Say frame
P j is acquired at a time t j. We treat this scanning time as
an additional coordinate for all points in P j. That is a space-
time frame, or time slice, and is defined as P̃ j ≡ {p̃ j

i } :=
{(p j

i , t
j),p j

i ∈Rd , t j ∈R}, where d = 2 for curves and d = 3
for surface alignment. We will use the ˜ notation to dif-
ferentiate points, normals, and frames in the space-time do-
main from their regular (spatial) counterparts. The points in
P̃0, . . . , P̃n now lie on (but, due to acquisition errors, usually
just close to) a d-dimensional kinematic space-time surface
S⊂Rd+1 [PW01] (see Figure 1 for a curve example, d = 2).
It turns out that we can extract the parameters of inter-frame
motions α j using the fundamental kinematic properties of S.

By construction, for each time slice P̃ j there exists a (d +
1)-dimensional motion α̃ j that transforms each point p̃ j

i so
that α̃ j(p̃

j
i ) still lies on the space-time surface. This motion

consists of the d-dimensional unknown rigid motion (R j, t j)
that aligns the consecutive frames in the space domain, and
a translation by ∆t j := t j+1− t j along the time axis,

α̃ j(p̃
j
i ) =

(
R jp

j
i + t j, t

j +∆t j
)

. (1)

If we knew the correspondences between the points p j+1
i

and p j
i , we could compute the motion parameters directly

(and indeed would not even need the space-time formula-
tion) by minimizing the distances between corresponding
points [ELF97]. In the absence of correspondences, all we
know is that each transformed point α̃ j(p̃

j
i ) should lie some-

where on the space-time surface S. Therefore, if we assume
that all points in any time slice undergo the same motion
(rigid motion assumption), then the optimal α̃ j should sat-
isfy:

α̃ j = argmin
|P j|

∑
i=1

d2(α̃ j(p̃
j
i ),S). (2)

To compute the distance between the transformed points and
the space-time surface, we approximate S by its space-time
tangent plane at p̃ j

i . Then, the distance between the trans-
formed points and the space-time surface in Equation 2 is

Figure 3: Space-time Normal Estimation. (Left) Weighted
PCA based normal estimation with uniform neighborhood,
(center) updated neighborhood after one step of iterative
normal refinement using initial instantaneous velocity esti-
mates, and (right) normal estimation using local triangula-
tion (local tetrahedralization for 3D scans).
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Figure 4: Reconstruction Quality. Reconstruction from 300
simulated noisy scans (point clouds) of the Stanford bunny.
In the center, we overlap the reconstructed model with the
original model to show error due to dynamic registration. No
global error distribution, or data smoothing was performed.

minimized when each point p̃ j
i is moved tangentially to S.

That is, the instantaneous velocity vector field of the rigid
motion α̃ j that aligns consecutive frames should be perpen-
dicular to the normal field of S (see Figure 2). This kinematic
constraint [PW01] is a fundamental property of any space-
time surface generated by a rigid motion. This property al-
lows us to solve the registration problem as a kinematic min-
imization problem on the space-time surface. We will first
recover the (d + 1)-dimensional velocity vectors that min-
imize the tangential displacement at each point of S, and
then use these velocity vectors to compute the d-dimensional
transformations that register together the input frames.

The velocity vector field of the (d + 1)-dimensional rigid
motion α̃ j can be decomposed into velocity in space and
in time. The velocity in time is constant by construction,
since the frames are translated along the time axis to form
the space-time surface (assuming that the scanner operates
at a constant frame rate). The velocity in space is the veloc-
ity vector field of the underlying aligning rigid motion α j.

It is well known [BR90] that the instantaneous velocity
vector field of any 3-dimensional rigid motion is linear, and
can be expressed as:

v(p j
i ) = c j ×p j

i + c j. (3)

Therefore, the velocity vector field in space-time is given
as ṽ(p̃ j

i ) = (c j × p j
i + c j,1). Later in Section 4 we justify

the choice of the unit time scale. The unknown parameters
(c j,c j) are such that the velocity vectors lie in the tangent
space of S at each p̃ j

i , and can be found by minimizing:

min
c j ,c j

|P j|

∑
i=1

w j
i

[
(c j ×p j

i + c j,1) · ñ j
i

]2
, (4)

where ñ j
i is the normal to the space-time surface S at the

point p̃ j
i and w j

i is the weight of the contribution of the given
point to the minimization (to be defined in Section 3.2).

Equation 4 gives the fundamental relationship between
the space-time velocity vectors of the aligning inter-frame
motion and the normals to the space-time surface S. To solve
for the parameters of the velocity field at each time slice, we

differentiate with respect to (c j,c j), which yields a system
of linear equations of the form,

Ax+b = 0. (5)

Writing the space-time normal as ñ j
i = (n̄ j

i ,n
j
i ), n̄ j

i ∈Rd and
n j

i ∈ R, these components are given by:

A =
|P j|

∑
i=1

w j
i

[
n̄ j

i
p j

i × n̄ j
i

][
n̄ j T

i (p j
i × n̄ j

i )
T

]
,

b =
|P j|

∑
i=1

w j
i n j

i

[
n̄ j

i
p j

i × n̄ j
i

]
, and x =

[
c̄ j
c j

]
.

Remark 1. Notice that the space-time surface is generated
by a continuous (d + 1)-dimensional motion of a profile
curve (d = 2) or surface (d = 3). At points in a time slice,
the velocity vectors are tangential to this surface, and thus
are the same as those of a kinematic surface [PW01]. Kine-
matic surfaces are shapes for which there exists a continuous
rigid motion such that the transformed surface is everywhere
in contact with the original surface. Equation 4 is similar to
an equation used to determine if a set of points was sampled
from some kinematic surface [PW01].

Remark 2. Equation 4 is also similar to the motion con-
straint equation used in computer vision for computation of
optical flow in images [Fau90, BB95]. The image gradients
that are used in optical flow are replaced in our framework by
the normal field of the space-time surface, while the image
flow corresponds to the velocity vector field of the align-
ing rigid motion in our space-time registration framework.
When the input frames themselves come from a kinematic
surface (for example, when scanning a ball or a plane), A
is not full rank, and Equation 4 has multiple solutions. This
implies there are multiple valid transformations that can reg-
ister the frames equally well, analogous to the aperture prob-
lem in optical flow.

3.2. Normal Estimation

From the above derivation we see that the crucial step in
computing the velocity vectors is the estimation of normals
for points on the space-time surface. We can compute the
normal field by locally fitting a hyper-plane in Rd+1 to the
space-time neighborhood around each point p̃ j

i using the
standard PCA technique [MNG04]. In addition, we can use
the shape of the covariance ellipsoid as our confidence in the
quality of the plane fit: With λ1 ≤ ·· · ≤ λd+1 as eigenvalues
of the covariance matrix, we assign the per-point weights
in Equation 4 as w j

i := exp(−λ1/∑
d+1
k=1 λk) as proposed by

Pauly et al. [PGK02].

To compute the plane fit, we first need to form a space-
time neighborhood Nrn(p̃

j
i ) := {q̃ : ‖p̃ j

i − q̃‖ ≤ rn} for each
point p̃ j

i in the current time slice. There are two issues that
need to be addressed when computing this neighborhood:
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Figure 5: Effects of Time Scaling, Uniform Noise, and Interframe Motion. (Left) Under low noise, local tetrahedralization
reliably approximates local space-time surface even with increasing time scaling. In contrast, PCA is reliable only when spacing
and temporal sampling are comparable. (Center) Under increasing noise margin, iterative normal refinement performs better
than normal PCA at the cost of increased computation. (Right) Similar behavior is observed for increasing interframe motion.
All plots were generated using 300 simulated scans of the Stanford bunny. Estimation error was measured with respect to ground
truth motion parameters (cg, c̄g).

the relative scaling between the space and time coordinates
of the points, and the magnitude of the radius rn.

To ensure that the neighborhood Nrn(p̃) introduces lit-
tle bias between the points from the current time slice and
points from the neighboring time slices, we set the inter-
frame spacing along the time axis to be equal to the average
sample spacing (σ) of the input frames. This sample spac-
ing can be determined from the properties of the scanning
device, or estimated directly from the data [MNG04]. Al-
though the spatial density can vary over a large number of
time slices, locally in time they can be assumed constant,
and stacked as mentioned above.

Given comparable sampling in both space and time, we
now need to ensure that the size of the neighborhood is large
enough so that the plane fit is not impacted by noise, while
at the same time is not too large that curvature of the surface
affects the plane fit. The quality of the plane fit can be es-
timated using the eigenvalues given by the PCA. Therefore,
we gradually increase the radius of the neighborhood rn until
the eigenvalues stabilize, as proposed in [PGK02, MNG04].
For our experiments, maximum allowed rn was 5σ. We used
approximate nearest neighbor structure ANN [MA97] to
perform neighborhood search in 4D – more than 80% of
the total computation time was used for neighborhood query
processing.

Missing data due to self-occlusions in the input scans cre-
ate holes in our space-time surface. Using fixed radius neigh-
borhoods usually results in lower quality space-time normals
being computed near these boundary points. In our case,
since the velocity vectors are computed for entire frames,
points from areas with good normals dominate and our algo-
rithm still computes good velocity estimates for each frame
in the presence of such incomplete data. Although we did
not find it necessary, it is also possible to perform boundary
detection on the space-time surface using one of the standard
methods [RL01, PMG∗05].

3.3. Registration Algorithm

The discussion above now gives us all the components for
a multi-frame registration algorithm. Given as input frames
P0,P1, . . . ,Pn the algorithm produces the parameters (c j,c j)
that give the velocity vectors between consecutive frames.

To produce the final registered model, we need to convert
the instantaneous velocities of each point into inter-frame
rotation and translation. From spatial kinematics [PW01] we
know that this motion is a rotation about an axis A j by an
angle ρ j and a translation parallel to A j by a distance of h j =
p jρ j. The values ρ j, p j and the Plücker coordinates of the
axis A j (direction vector g j and momentum vector g j = y j×
g j, where y j is any point in A j) are given by:

g j =
c j

‖c j‖
, g j =

c j − p jc j

‖c j‖
, p j =

c j · c j

c2
j

, ρ j = ‖c j‖. (6)

To summarize, the algorithm proceeds as follows:

1. Form the space-time points by adding a time coordinate
t j = σ · j to the scan points in each frame P j, where σ is
the average sampling density of the input frames. Since
most scanners operate at a constant frame rate, this uni-
form scaling of the time coordinate is justified. This scal-
ing is done to make sure that neighborhood Nrn(p̃) used in
normal estimation has similar density of points in space
and in time. In Section 4, we show that the motion esti-
mates are invariant to local changes of this time scale.

2. Form the space-time neighborhood Nrn(p̃) around each
data point p̃, and estimate the normals ñ j

i using PCA.
3. For each time slice P j, form the minimization in Equa-

tion 4 and solve for parameters (c j,c j).
4. Compute the transformation parameters for time slice t j

from the velocity field with help of Equation 6. Using
quarternions, the computed parameters are converted to
the transform (R j, t j) and suitably applied to produce the
registered model.
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rigid registration deformable registration

Figure 6: Scan Assembly. Reconstruction results on scans of coati, teapot, and bee models scanned using a 17Hz range scanner.
Each model was reconstructed from 2,200 scans registered using regular scheme on adjacent frames. No global error distri-
bution, or noise smoothing was applied. The handle of the teapot moved during scanning, resulting in poor registration (left
teapot). The right teapot shows improved alignment when our deformable registration framework was used.

Results. Figure 4 shows the result of our algorithm on syn-
thetic scans of the bunny model. We generated 300 range
images by simulating a scanner as the model was rotated
by 1.5 degrees between successive frames. As our simulated
scanner, we used the z-buffer to generate simulated range
images, to which uniformly distributed zero-mean noise was
added. We then computed transformations α j between adja-
cent frames, and using them registered all the frames back
to the first scan. We evaluated the reconstruction quality by
comparing with the original model.

We tested our algorithm on data acquired using a stereo
and active illumination based 3D scanner developed by
Weise et al. [WLG07]. The scanning rate is 17Hz. For all
our examples, no data smoothing or global error distribution
was performed — we worked directly on the raw scanned
point clouds. Figure 6 shows our results for coati, teapot, and
bee model. For each example, 2,200 scans were registered
together by combining motion between adjacent frames in
time. The handle of the teapot moved during the scanning

registered f0 → f10 registered f0 → f20

f 0
→

f 2
0

un
re

gi
st

er
ed

f 0
→

f 1
0

Figure 7: Image Registration. Application of dynamic reg-
istration for video stabilization. The sequence was acquired
using a point and shoot digital camera that was rotated and
moved around during acquisition. Using gray scale values as
depth, we solve for the 3D camera motion rather than a rigid
transform in the image plane.

process, resulting in a distorted handle in the rigidly regis-
tered model. Later in Section 5, we address this issue.

We applied our method to another type of input — a video
sequence acquired using a point and shoot digital camera.
Using the grayscale values, each frame was converted to a
3D point cloud (height field in this case), and our method
applied (see [BR07] for a similar application). Observe that
we solve for the 3D camera motion rather than a rigid trans-
form in the image plane. Figure 7 shows our results, which
are similar to using optical flow for this problem [BB95].

4. Analysis of the Basic Algorithm

Effect of Time Scaling. Now we examine how the dif-
ferent parts of the registration algorithm are affected by
the time scaling. Let the time axis scale by some λ, thus
we can scale t j 7→ λt j. Then, the velocity vector field be-
comes ṽ((pi,λt j)) = (c̄ + c×pi,λ) and the space-time nor-
mal ñi = (n̄i,nd

i ) turns out to be (λn̄i,nd
i )/Ci, where the

normalizing constant Ci = (λ2||n̄i||2 +(nd
i )2)1/2. Inserting

these scaled expressions into Equation 4 results in w j
i get-

ting scaled by λ
2/C2

i . However, observe that for small mo-
tions, points do not undergo large transformations in space,
but necessarily undergo a λ translation in time. This means
that the 4D normal at any point is dominated by the first
three components, and hence |nd

i | ≈ ε and ‖n̄i‖ ≈ 1− ε, for
small ε. Furthermore, because the normal field is smooth, the
constants λ

2/Ci
2 are approximately equal. It follows that the

method for computing the motion parameters (c̄ j,c j) is in-
sensitive to local changes in λ. However, this is only true
if the normal estimation can capture (n̄i,nd

i ) 7→ (λn̄i,nd
i )/Ci

due to scaling along the time axis.

The regular PCA method has this desired property pro-
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Figure 8: Accumulation Error. (Left) 300 scans of the coati
model were registered (adjacent) pairwise, and the computed
transforms were used to align the last frame to the first
frame. Dynamic registration (right) gives good alignment,
while ICP algorithm results in accumulation error (center).
In presence of sufficient time sampling, our method does not
need global error distribution.

vided that the set of neighbors chosen for the plane fit is
same. Due to scaling of the fourth coordinate of every point,
the fourth coordinate of the eigenvector of the covariance
matrix scales inversely, which implies that PCA will cor-
rectly capture the effect of time scaling on normals – as long
as the set of neighbors is same. Such local time invariance is
observed in Figure 5 (left) for time scales between 0.5 and 2,
using PCA based normal estimates. Outside this range, the
neighborhood set starts changing too drastically, and hence
the normal scaling assumption no longer holds. Local tetra-
hedralization (Section 5), under similar conditions, exhibits
a wider stable range of time-scale invariance (Figure 5).

Sensitivity to Noise. In order to examine stability issues of
dynamic geometry registration using the space-time model,
we consider the effect of noise in the input data on the fi-
nal motion estimates x := (c̄ j,c j). Let the noise in points be
bounded by ‖ε0‖, and that in normals by ‖ε1‖. Please note
that for PCA, the relation between ‖ε0‖ and ‖ε1‖ has been
studied [MNG04]. We obtain ‖A′‖F = ‖A‖F + o(‖ε0‖) +
o(‖ε1‖) and ‖b′‖= ‖b‖+o(‖ε0‖)+o(‖ε1‖) for A and b in
Equation 5, where ‖.‖F denotes the Frobenius norm. From
the well known stability results [IK66] for the solution of
such a linear system,

‖x−x′‖
‖x‖ ≤ k(A)

1− k(A)‖A′−A‖F
‖A‖F

(
‖A′−A‖F

‖A‖F
+
‖b′−b‖
‖b‖

)
,

it follows that the relative error in x is linear in ‖ε0‖ and ‖ε1‖
as well. The constant may be large for bad condition number
k(A) (e.g. when we solve for nearly slippable motions).

Relation to ICP. An alternative for computing inter-frame
transformations is to register pairs of consecutive scans
using a correspondence search based method, such as
ICP [BM92, CM92]. The main advantage of our method
over pairwise registration is that information from multiple
frames is incorporated into the motion computation. This
generates a more globally consistent velocity field. Pairwise

methods usually have to perform a smoothing or global re-
laxation [Pul99] to spread the accumulated error over multi-
ple frames. This is not necessary in our method.

Figure 8 shows the results of applying pairwise ICP reg-
istration to a set of 300 scans and chaining pairwise trans-
formations to align the first and last scans. Notice that there
is a sizeable alignment error. When our method is applied to
the same input, the resulting alignment is correct. Compared
to our single pass algorithm, ICP required an average of 6
iterations to converge for each pairwise scan alignment.

We can also compare the objective function in Equation 4
computed by our algorithm to the objective function of ICP.
Consider Equation 2 which gives us the estimate of the opti-
mal motion. As mentioned, we approximate the space-time
surface by its tangent plane at point p̃ j

i . Another alternative
would be to approximate the space-time surface by its tan-
gent plane at the footpoint f̃, the point in the ( j +1)st frame
whose spatial coordinates are closest to those of p̃ j

i . Then, by
definition the transformation α̃ j uniformly translates points
in time by 1, so the time coordinates of f̃ and α̃ j(p̃

j
i ) are the

same. Thus, the distance between the tangent plane at f̃ and
the transformed point α̃ j(p̃

j
i ) gives:

d(S, α̃ j(p̃
j
i )) ≈ [̃f− α̃ j(p̃

j
i )] · ñf

= [f−α j(p
j
i )] · n̄f

where, n̄f represents the spatial coordinates of the space-time
normal ñf at the footpoint. The normal to the curve or sur-
face (time slice) at f is in the direction of n̄f. Therefore, if
the distance to the space-time surface is approximated in
this manner, the objective function of Equation 2 is equal
to the objective function of a weighted point-to-plane ICP
method [CM92]. However, in the case of uniform rigid mo-
tion, the approximation introduced in our method is more
accurate because instead of considering point-plane pairs
which only gives a second order approximation to the dis-
tance field, it permits us to rephrase the optimization from
the point of view of instantaneous motion, which is locally
exact. Thus, the only error in our algorithm comes from in-
correct normal estimation, or the uniform rigid motion as-
sumption not being fulfilled.

5. Modification of the Basic Algorithm

In this section, we describe extensions of the basic space-
time registration method to deal with larger inter-frame mo-
tions, articulated motion, and general deformations.

Iterative Normal Refinement. In Section 4 we evaluate
our algorithm in the presence of sufficient time sampling.
However, the performance suffers in the absence of enough
time slices. This is to be expected, since we have no knowl-
edge of correspondences between points across different
frames, which would allow us to deal with larger motions.
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scan #1

scan #50

scan #100

scan #1 +
scan #50

scan #1 +
scan #100

scan #1→ #50 scan #1→ #100

Figure 9: Deformable Body Registration. Deformable dynamic registration of 100 scans of a deforming hand. The first frame
is deformed using the computed motion. In presence of reasonable data, we get good tracking. However, the method fails
gracefully (right) when major parts of the data are missing (Data around the fingers are consistently missing in slices 50−100).

We can mitigate this problem at the cost of increased compu-
tation time by using the initial velocity estimates to improve
neighborhood selection for the normal estimation. The iter-
ative normal refinement procedure works as follows:

1. Compute initial velocity estimate for each frame as de-
scribed in Section 3.3.

2. The current motion estimates are converted to displace-
ments using Plücker coordinates, and used to reselect the
set of neighbors. Intuitively this deforms the initial spher-
ical neighborhood according to the current motion esti-
mate to better approximate the local surface (Figure 3).

3. Re-compute the normals using the new neighborhood
and, re-estimate the motion parameters.

4. Iterate steps 2 and 3 until the motion estimates stabilize.

Although the iterative nature of this method makes it
similar to ICP, there are two important differences. First,
the method works without ever computing point correspon-
dences. The information about the aligning motions is de-
rived from the point neighborhoods in the space-time sur-
face. Second, the input points are never moved, we are not
combining results of several iterations to get the final po-
sition, as is done in ICP. Instead, in each step, using results
from previous iteration, we improve estimates of normal and
velocity vectors in the current step.

Figure 5 compares the performance of regular and itera-
tive normal refinement schemes on simulated scans of the
Stanford bunny with increasing noise data, and increasing
inter-frame rotation, respectively. Relative motion estima-
tion error compared to the known ground truth is plotted. For
high interframe motion, as high as 15 degrees, the iterative
scheme (5-6 steps) still results in low error, while the regular
scheme performs poorly. The iterative scheme significantly
relaxes the time sampling requirement, but at the cost of in-
creased computation time. However, in presence of enough
time slices, as in our examples when using the structured
light scanner of [WLG07], the regular scheme is the method
of choice due to its speed with negligible loss in accuracy.

Normals from Local Surface Approximation. In Sec-
tion 3.2, to correctly estimate space-time normals using lo-
cal PCA, we require sufficient scanning frequency such that
space and time spacings are comparable. However, in low
noise condition, we can reliably estimate normals using a
local surface meshing approach as follows: For space-time
surfaces traced by curves, around each vertex p̃ j

i we perform
a local surface triangulation (in 3D). Then to estimate a nor-
mal at the vertex, we average its one-ring face normals. Ob-
serve that the one ring neighbor of a vertex contains points
from the adjacent time slices. Hence to construct a local tri-
angulation we only consider neighbors of a vertex in current
time slice, and also neighbors from adjacent time slices, t j−1

and t j+1. Since our local surface is only for normal estima-
tion, we neglect global issues like intersecting triangles. Fur-
ther our optimization being oblivious to orientation of nor-
mals, we do not require a consistent normal orientation.

For surfaces, we generalize this approach to generate a
local tetrahedral mesh from 4D space-time data. Again for
a vertex p̃ j

i , we take its neighbors from time t j−1, t j, and
t j+1. We now want to construct local tetrahedra with p̃ j

i as
a vertex. We consider three types of tetrahedra: Tetrahedra
formed using a triangular face in slice t j and the closest
neighbor from adjacent time slice; ones formed by a trian-
gular face in an adjacent slice and p̃ j

i , and those spanned by
an edge in t j and an edge in t j+1 (or t j−1). Again we do not
strive to compute a globally consistent tetrahedral mesh. To
compute a vector orthogonal to three linearly independent
edges of a tetrahedron, we use the four dimensional variant
of the cross product. Combining such normals from all the
constructed tetrahedrons pivoted at p̃ j

i , we estimate its nor-
mal. Such normals better capture the surface behavior even
with large time scaling in presence of low noise (see Fig-
ure 5). Such local tetrahedralization can theoretically lead to
arbitrarily bad estimates at isolated points, but since our final
optimization is over a large set of points, our estimation is ro-
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scan #1 + #50

scan #1 + #100 scan #1→ #50 scan #1→ #100

scan #50 scan #100

motion based segmentation

(7 segments detected)

Figure 10: Articulated Motion. Non-rigid registration between adjacent pairs of 100 simulated scans from a closing skeleton
hand with simultaneous ‘scanner motion’. Using the computed motion, we deform the first scan – we show the results at 50-th
and 100-th frames. Scan completion is achieved by transferring data from first frame onto others. (Right) The object can be
segmented using a clustering in 6D space of (c, c̄). We detected 7 dominant segments. The remaining object is in black.

bust to a few such outliers. To increase robustness (e.g. near
silhouettes edges or when motion smoothing is required), in-
stead of just adjacent time slices, more neighboring ones can
be considered at the cost of increased complexity.

Deformable Bodies. Deformable bodies even when
scanned with sufficient time density, do not satisfy our
requirement that the adjacent frames are related by rigid
transforms. The resulting error quickly accumulates over
a sequence of frames. However, it is possible to apply our
algorithm to this scenario with slight modifications. Observe
that most deformations have low degrees of freedom
and, hence locally (in space) the deformations are highly
correlated [ACP02] and can be considered rigid. Using
this intuition, we perform a kinematic minimization as in
Equation 4, but instead of globally over an entire time slice,
locally in overlapping regions within a time slice. In each
time slice, our algorithm proceeds as follows:

1. Generate a set of roughly uniformly spaced sampled cen-
ters from the current time slice data (3D point cloud) us-
ing a method similar to [Tur92]. For all our results, the
sample-center spacing was chosen to be 10σ.

2. For each such sample-center, perform kinematic mini-
mization as in Equation 2 considering only points from

Model # scans # points/scan Time
(in 1000s) (mins)

bunny (simulated) 314 33.8 13
bee 2,200 20.7 51
coati 2,200 28.1 71
teapot (rigid) 2,200 27.2 68
skeleton (simulated) 100 55.9 11
hand 100 40.1 17

Table 1: Performance. Timing in minutes for the different
examples on a 2.4GHz Athlon Dual Core with 2GB RAM.

the current time slice that lie within a local neighborhood
of roughly sample-center spacing (10σ).

3. For each sample-center, compute the local displacements
using methods as described in Section 3.3. Finally prop-
agate the displacement to the neighboring points in the
current time slice using a regularization method as pro-
posed in [ACP02, PMG∗05]. Since we work on point
cloud data with no connectivity, neighborhood is defined
on the basis of Euclidean proximity.

Figure 9 shows result of application to this process over
a sequence of 100 scans of a deforming hand. Model con-
solidation is achieved by transferring data from other time
slices to fill in regions of missing data. Deformable regis-
tration when applied to the teapot sequence, produces much
cleaner registration at the handle (Figure 6).

Articulated Bodies. In case of models with strongly ar-
ticulated components, it is possible to do better. Instead of
smoothly propagating the displacement fields to neighbors,
we first cluster the motion parameters (c, c̄) estimated in Step
2 of our deformable registration algorithm. Based on the
tightness of these clusters, we conclude if a model defor-
mation was articulated. If so, such cluster centers are then
used to derive a segmentation of the object similar to exist-
ing methods (see [MGP06] for details). This better preserves
articulated parts of the scanned object. We demonstrate this
method on a set of 100 simulated scans of a deforming skele-
ton grasp with simultaneous ‘scanner’ motion (Figure 10).

6. Conclusion

We demonstrated how to register multiple partial scans of
a moving and/or deforming body so that a consistent 3D
model of the entire object can be obtained. By assuming
a fast scanner that generates a dense set of object frames,
we can bypass traditional multi-view registration methods
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that require the establishment of correspondences between
frames. Instead, we conceptually combine all the frames into
a single space-time surface, and using local kinematic prop-
erties of this space-time surface to solve for the rigid mo-
tions aligning the frames. We also extend our basic formula-
tion for rigidly moving objects to the more challenging cases
of articulated or fully deformable motion. Experimental re-
sults show the robustness and versatility of our method. In
future, we plan to extend these methods to scans captured
with significant non-uniform sampling (spatial or temporal).
Our local tetrahedralization is the first step in this direc-
tion. Such technologies for acquiring deforming and moving
shapes present a wealth of new opportunities and challenges
for the area of geometry processing.
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