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This online appendix contains challenges in the discrete setting, properties of the continuous and discrete operators associated with the
Levi-Civita covariant derivative, and a periodic solution to Euler’s equation.

A. CHALLENGES IN THE DISCRETE SETTING

We would like to show that the metric compatibility is impossible
to achieve in the discrete setting even when functions and vector
fields do not live on the same domain. In what follows we will
assume that vector fields are discretized on the faces of a triangle
mesh and functions are discretized on some other domain (vertices,
edges, faces, etc.). However, the proof is quite general and can
potentially be extended to the case where even the vector fields are
also discretized on some other domain (e.g., on edges), depending
on the choice of inner product.

We will use the following formulation of the metric compatibility:

D̃XA(〈U, V 〉) = A(〈∇̃XU, V 〉 + 〈∇̃XV, U〉). (1)

Here D̃X is a covariant derivative for functions with respect to the
vector field X, that is, D̃X takes a function defined on some domain
(e.g., vertices or edges) and produces a function defined on the same
domain. ∇̃XU is the covariant derivative for vector fields, and the
inner product is the standard inner product of vector fields in R

3.
Since the inner product 〈U,V 〉 produces a function on the faces of
the triangle mesh, we need an operator A that takes functions on
faces and produces functions on vertices or edges.

We will assume that A has the following properties.

(1) It is linear: A(f + g) = A(f ) + A(g).

(2) It maps constant functions to constant functions. In other words,
if we are given a function f such that the value of f on face i
is equal to its value on face j for every j , then A(f ) is also a
constant function on the target domain (e.g., vertices or edges).

(3) It is nonnegative.
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Under these conditions, we have the following result.

LEMMA 1. If D̃X is a linear operator such that D̃Xf = 0 if f is
a constant function, and the covariant derivative for vector fields is
linear: ∇̃X(U1+U2) = ∇̃XU1+∇̃XU2, then the metric compatibility
condition (Eq. (1)), implies that D̃Xf = 0 for all f in the range of
A, that is, D̃XAh = 0 for any h.

PROOF. We will use Vi to denote a vector field which is nonzero
on face i and has unit norm, and use ei = 〈Vi, Vi〉, as the indicator
function of face i.

(1) The metric compatibility condition implies that

D̃XA(ei) = D̃XA(〈Vi, Vi〉) = 2A(〈∇XVi, Vi〉).
Since Vi = 0 on any face other than i, we have 〈∇XVi, Vi〉 =
aiei for some scalar ai . Thus,

D̃XA(ei) = 2A(aiei) = 2aiA(ei).

In other words, A(ei) is an eigenvector of D̃X with eigenvalue
2ai . Our goal will be to show that ai = 0 for all i, since in this
case D̃XA(h) = 0 for any h.

(2) For any i �= j , we have 〈Vi, Vj 〉 = 0. Thus,

0 = D̃XA(〈Vi, Vj 〉) = A(〈∇XVi, Vj 〉) + A(〈∇XVj , Vi〉).
(3) Let V = ∑

i Vi . Note that 〈V, V 〉 = ∑
ei = c a constant

function on the faces. Thus D̃XA(〈V, V 〉) = 0. But

0 = D̃XA(〈V, V 〉) = 2A(〈∇XV, V 〉)

= 2A
(〈

∇X

∑
i

Vi ,
∑

i

Vi

〉)
= 2A

(〈∑
i

∇XVi,
∑

i

Vi

〉)

= 2A

⎛
⎝∑

i,j

〈∇XVi, Vj

〉⎞⎠ = 2
∑
i,j

A
(〈∇XVi, Vj

〉)
.
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Using Parts 1 and 2 previously (which states that the cross-terms
cancel out), this further simplifies to

0 = D̃XA(〈V, V 〉) = 2
∑

i

A(〈∇XVi, Vi〉) = 2
∑

i

aiA(ei).

(4) Since A(ei) is an eigenvector of D̃X with eigenvalue 2ai , the
previous part can be rewritten as (by summing eigenvectors
with the same eigenvalue)

∑
j λjφj = 0, where λj are all

distinct and nonzero, and φj = ∑
i A(ei) such that 2ai = λj .

We claim that φj are all linearly independent. To see this,
suppose that φk = ∑

j �=k bjφj , for some k, such that {φj } are
linearly independent and bj �= 0. Then, since D̃Xφi = λiφi , we
have ∑

j �=k

bjλjφj =
∑
j �=k

bjλkφj ,

which implies (since bj is nonzero) that λk = λj for all j ,
which is a contradiction.

(5) Since φj are all linearly independent,
∑

j λjφj = 0, implies
that λjφj = 0 for all j . Thus either λj = 0 or φj = 0. But
φj = ∑

i A(ei) for some index i, and A is assumed nonnegative,∑
i A(ei) = 0 only if A(ei) = 0 for every i. But this means

that λj = ai = 0. Therefore ai = 0 for all i, which implies that
D̃XA(h) = 0 for all h.

B. PROPERTIES OF THE CONTINUOUS
OPERATORS ASSOCIATED WITH THE LEVI-CIVITA
COVARIANT DERIVATIVE

The following lemmas all deal with smooth manifolds. We will
assume each manifold is compact and without boundary. Moreover,
we will assume all vector fields are smooth.

LEMMA 2. For a closed oriented surface M without boundary,
∇UV = 0 ∀ U if and only if V = 0 or M is a flat torus.

PROOF. First, note that if M is not a genus-1 surface then, ac-
cording to the Hopf index theorem [Morita 2001 page 256], there
must be some point p such that V (p) = 0. But then pick another
point p′ and construct a vector field Z such that the flow lines of
Z connect p and p′. Since ∇ZV = 0, we have that V is parallel
transported along the flow lines of Z. As parallel transport is an
isometry, this implies that V (p′) = V (p) = 0 and thus V = 0
everywhere, since p′ was arbitrary. Let us assume now that M is a
torus. Since ∇UV = 0 ∀ U , parallel transport along any two paths
must commute, so there is no curvature and thus M must be a flat
torus.

LEMMA 3. Two vector fields U and V are equal if and only if
∇UW = ∇V W for all vector fields W.

PROOF. Recall from the definition of parallel transport that, if
∇XV = 0, then V is preserved by parallel transport along the
trajectories of X. Suppose X �= 0, so that there is some point p, such
that �t (p) �= p for some t . Then, for any vector field V , V (�t (p))
is the parallel transport of V (p) along the trajectory of X from p
to �t (p). As the parallel-transported image of V (p) is uniquely
defined, it is easy to build two vector fields V1 and V2 such that
V1(p) = V2(p) but V1(�t (p)) �= V2(�t (p)), a contradiction.

LEMMA 4. A vector field U is divergence free if and only if ∇U

is anti-symmetric with respect to the inner product on the surface,
that is, if and only if

∫
M

〈∇UX, Y 〉dx = − ∫
M

〈∇UY, X〉dx for all
vector fields X and Y.

PROOF. Suppose U is divergence free. Then, using the metric
compatibility of the covariant derivative, we have∫

M

(〈∇UX, Y 〉 + 〈∇UY, X〉) dx

=
∫

M

∇U 〈X, Y 〉dx =
∫

M

div(U )〈X, Y 〉dx = 0,

where the second-to-last equality uses Stokes’ theorem and inte-
gration by parts. Now, suppose that ∇U is anti-symmetric. Then
by the same argument we get

∫
M

div(U )〈X, Y 〉dx = 0 for any X
and Y . Suppose f = div(U ) is not zero. Then there exists a point
p such that f (p) = ε > 0. Let � be a small neighborhood of p
such that f (p) does not change sign and is strictly greater than 0. By
constructing a vector field X that vanishes outside of �, and consid-
ering

∫
M

div(U )〈X,X〉dx, it is easy to see that this integral must be
positive. But this contradicts the assumption of anti-symmetry.

C. PROPERTIES OF THE DISCRETE OPERATORS
ASSOCIATED WITH THE LEVI-CIVITA COVARIANT
DERIVATIVE

LEMMA 5. Let �̃U,t = exp(t∇̃U ), where ∇̃U is the matrix rep-
resentation of the discrete covariant derivative operator defined in
the main article, and exp is matrix exponentiation. Then

∇̃U (V )(p) = d

dt
(�̃U,t (V )(p))|t=0. (2)

PROOF. We have d

dt
�̃U,t = d

dt
exp(t∇̃U ) = ∇̃Uexp(t∇̃U ), where

we can use standard matrix derivative rules, as ∇̃U does not depend
on t . Hence for t = 0, we get d

dt
�̃U,t |t=0 = ∇̃U , as required.

LEMMA 6. If D̃U uses a full basis, then the operator ∇̃ is in-
variant to rigid transformations. Namely, let M = (V, E,F) be a
mesh embedded with coordinates X ∈ R

3, and let U, V be two
tangent vector fields on M . In addition, let T be a global rigid
transformation T : R

3 → R
3. Then

(∇̃T (X))T (U )T (V ) = T ((∇̃X)UV ), (3)

where ∇̃X is the discrete covariant derivative operator on a mesh
embedded with coordinates X.

PROOF. Since we only deal with vector quantities (e.g., the input
vectors and the edge vectors of the mesh) and intrinsic scalar quan-
tities (e.g., triangle areas), it is clear that the definition is invariant
to global translation.

Let T be given by a global rotation matrix RT . Con-
sider the gradient of the three components of V in the face
i ∈ F , namely the 3 × 3 matrix GX

V,i whose columns are
[(∇XAvx)(i), (∇XAvy)(i), (∇XAvz)(i)], where A is an intrinsic av-
eraging operator and ∇X is the gradient of nonconforming elements
on a mesh embedded with coordinates X.

From the definition of the gradient, it is easy to check that

GX
V,i = −(

EX
i

)T CiAV/
i , (4)

where EX
i is a 3 × 3 matrix whose rows are the rotated vector edges

of the face i, Ci is a 3 × |E | matrix which chooses the edges in the
face i, V is a |F |×3 matrix where the i-th row represents the vector
in face i, and 
i is the area of face i. Similarly, for the rotated mesh
we have

GXR
V R,i = −(

EXR
i

)T CiAV R/
i , (5)
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since Ci is combinatorial, A and 
i are intrinsic, and rotating the
vector field can be expressed as post-multiplying by R. Similarly,
rotating the coordinates (and thus the edge vectors) of X can also be
expressed as post-multiplying by R, hence we have EXR

i = EX
i R.

Combined with (4) and (5) we get

GXR
V R,i = RT GX

V,iR. (6)

By definition, we have that (D̃X
U V )(i) = (D̃X

U vx, D̃
X
U vy, D̃

X
U vz)(i) =

U (i)GX
V,i , where U (i) is the vector U in the face i. Hence, plugging

in (6) we get(
D̃XR

UR (V R)
)
(i) = (UR)(i)GXR

V R,i = U (i)RRT GX
V,iR

= U (i)GX
V,iR, (7)

hence (D̃XR
UR (V R))(i) = (D̃X

U V )(i)R.
It is straightforward to check that by projecting out the normal

component we get (∇̃XR
UR (V R))(i) = (∇̃X

U (V ))(i)R, as required.

LEMMA 7. Suppose A is a positive local averaging operator
A : (F → R) → (E → R). Namely, A is strictly positive and
averages only those values of faces neighboring the edge. Then,
A has an empty kernel for any mesh with at least one odd-degree
vertex.

PROOF. Given a mesh M = (V, E,F) with vertices, edges, and
faces, respectively, we assume to have an odd-degree vertex vi ∈ V .
We denote by tij ∈ N1(vi) the ordered adjacent faces (1-ring) of
vi , such that tij and ti(j+1 mod |N1(vi )|) are neighboring faces. Let
f : F → R be a function in the kernel of A, that is, A(f ) = 0.
Notice that this equation holds pointwise, that is, for every edge
of M. Suppose x1 = f (ti1) and assume without loss of generality
that x1 is positive, then x2 = f (ti2) is negative, since A is positive
and averages only those values of faces neighboring the edge. If
we continue, we get x3 = f (ti3) > 0, and so forth. However, since
the degree of vi is odd, we obtain that x1 should be negative. Thus
x1 = 0. It follows that f = 0 everywhere by applying the same
argument on the edges of the dual graph.

D. PERIODIC SOLUTION TO EULER’S EQUATION

In this section we consider the evolution of an incompressible in-
viscous fluid on a two-dimensional sphere. Our goal is to show that,
if the velocity field at time 0 equals V (0) = U0 + J∇φj , where
U0 is a killing vector field, J an operator that rotates a given vector
field by π/2 in each tangent plane, and φj an eigenfunction of the
Laplace-Beltrami operator corresponding to the j -th eigenvalue,
then the solution to the Euler equation at time t will have the form

V (t) = U0 +
∑

i

ai(t)J∇φi.

Here, ai(t) are scalar-valued functions and φi are eigenfunctions
of the Laplace-Beltrami operator corresponding to the same
j -th eigenvalue. Thus, V (t) is a linear combination of a KVF
and a rotated gradient of an eigenfunction corresponding to the
j -th eigenvalue for all times t . Moreover, we would also like to show

that the vorticity ω(t) = curl(V (t)) is advected isometrically by the
flow.

To show that V (t) = U0 + ∑
i ai(t)J∇φi, for all t , recall the

vorticity formulation of the Euler equation.

(1) V (t) = J∇ψ(t);
(2) ω(t) = −Lψ(t); and
(3) d

dt
ω(t) = −DV (t)ω(t);

where V (t) is the velocity field, ω the vorticity, ψ is called the
stream function, L is the Laplace-Beltrami operator, and DV (t) the
covariant derivative (of functions) in the direction of V (t) (see, e.g.,
Taylor [1996, page 536, Eq. (1.27.)]).

Suppose ψ(0) = φ1 + φj where φ1 corresponds to the first
nonzero eigenfunction of the Laplace-Beltrami (note that J∇φ1 is
a killing vector field). Thus we have w(0) = −Lψ(0) = −(λ1φ1 +
λjφj ) and V (0) = −J∇φ1 − J∇φj . Now

L
d

dt
ψ(0) = DV (0)Lψ(0) = 〈V (0), ∇Lψ(0)〉

= 〈J∇φ1 + J∇φj , λ1∇φ1 + λj∇φj 〉
= 〈J∇φ1, λj∇φj 〉 + 〈J∇φj , λ1∇φ1〉
= (λj − λ1)〈J∇φ1, ∇φj 〉.

Now, since U0 = J∇φ1 is a killing vector field, L〈U0,∇f 〉 =
〈U0, ∇Lf 〉 for any f , which implies in particular that L〈U0, ∇φj 〉 =
λj 〈U0, ∇φj 〉 and therefore 〈U0, ∇φj 〉 is an eigenfunction of L cor-
responding to the j -th eigenvalue. Note this implies that d

dt
ψ(0) is

contained in the span of those eigenfunctions corresponding to the
j -th eigenvalue. Moreover, using the same argument as before, the
same is true for any t . Thus we have ψ(t) = φ1 + ∑

i ai(t)φi and
V (t) = U0 + ∑

i ai(t)J∇φi, for all t , where ai(t) are scalar-valued
functions of time and φi are eigenfunctions corresponding to the
j -th eigenvalue of L.

Note that V (t) is not a killing vector field for any time t . However,
as we will show, the vorticity function ω is advected isometrically
by V (t).

For this, note that w(t) = −Lψ(t) = −(λ1φ1 + λj

∑
i ai(t)φi)

for all t , and

d

dt
ω(t) = −DV (t)ω(t) = (λj − λ1)〈J∇φ1,

∑
i

ai(t)∇φi〉.

Now consider another PDE for the evolution of ω (which would a
priori give a different flow).

d

dt
ω(t) = −DJ∇φ1ω(t) = λj

〈
J∇φ1,

∑
i

ai(t)∇φi

〉
.

Note that, when ω(t) has the form as previously given these two
equations only differ by a scalar, that is, the speed of evolution.
Moreover, note that when w(0) = −(λ1φ1 + λjφj ) then w(t) will
have this form for all t for both PDEs. Thus regardless of, w is
advected by V (t) or by a constant U0 = J∇φ1, the trajectory will
be the same. Since we know that J∇φ1 is a killing vector field, this
means that ω(t) is advected isometrically by V (t).
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