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Vector fields on surfaces are fundamental in various applications in com-
puter graphics and geometry processing. In many cases, in addition to rep-
resenting vector fields, the need arises to compute their derivatives, for
example, for solving partial differential equations on surfaces or for de-
signing vector fields with prescribed smoothness properties. In this work,
we consider the problem of computing the Levi-Civita covariant derivative,
that is, the tangential component of the standard directional derivative, on
triangle meshes. This problem is challenging since, formally, tangent vector
fields on polygonal meshes are often viewed as being discontinuous, hence
it is not obvious what a good derivative formulation would be. We leverage
the relationship between the Levi-Civita covariant derivative of a vector
field and the directional derivative of its component functions to provide a
simple, easy-to-implement discretization for which we demonstrate experi-
mental convergence. In addition, we introduce two linear operators which
provide access to additional constructs in Riemannian geometry that are not
easy to discretize otherwise, including the parallel transport operator which
can be seen simply as a certain matrix exponential. Finally, we show the
applicability of our operator to various tasks, such as fluid simulation on
curved surfaces and vector field design, by posing algebraic constraints on
the covariant derivative operator.
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1. INTRODUCTION

Tangent vector fields are ubiquitous in computer graphics. From
fluid simulation to texture synthesis, the need to represent vectorial
data arises in many applications. Often, it is necessary to compute
the covariant derivative of a tangent vector field in an arbitrary
tangent direction. For example, when simulating fluid flow using
Euler equations, the covariant derivative of the fluid’s velocity is the
main ingredient in the computation of the time evolution of the flow
[Taylor 1996]. Furthermore, some vector fields are characterized by
the properties of their derivatives: smooth vector fields [Knöppel
et al. 2013] minimize the Dirichlet energy, while geodesic vector
fields [Pottmann et al. 2010] are constant length and have sym-
metric covariant derivative operators. Although specific solutions
have been tailored to various applications, there currently exist few
works on discrete representations of derivatives of tangent vec-
tor fields on polygonal meshes which are applicable to general
scenarios.

There are two main challenges in deriving such a discretization.
First, even on smooth surfaces, defining derivatives of tangent vec-
tor fields is more involved than defining derivatives of functions.
Specifically, comparing the values of a function at two points on the
surface is trivial, but it is not obvious how, given two tangent vectors
at different points, one can determine whether they are “the same”,
since tangent vectors at different points, are expressed with respect
to different reference frames. Hence, one needs a way to trans-
port vectors across tangent planes, a construct encoded by a notion
of parallel transport. Unfortunately, most theoretical treatments
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of these topics make heavy use of local coordinates, which makes
defining discrete analogues for polygonal meshes difficult.

The second challenge is due to the nature of discrete surfaces,
namely polygonal meshes, and the way tangent vector fields are rep-
resented. The simplest representation, which is the one we opt for, is
of piecewise constant vectors on the faces of the mesh. However, in
such a representation vector fields are discontinuous across edges,
which a priori can lead to difficulties in computing their derivatives.
In this article, we formalize this intuition by showing that, for this
choice of vector field representation, there exists no definition of
a discrete vector field derivative which satisfies all the properties
of the continuous Levi-Civita covariant derivative exactly. Faced
with these challenges, we propose a novel approach to discretize
the Levi-Civita covariant derivative. We compute the directional
derivatives of the vector field’s component functions and take the
tangential part of the resulting vector field. In the continuous case,
it is well known that such a definition yields the unique Levi-Civita
covariant derivative [Morita 2001, page 181]. While being intuitive
and easy to implement, our approach offers several conceptual ben-
efits. First, by working with functions instead of vector fields, we
overcome the difficulty of comparing vectors in different tangent
planes. Second, by projecting the component functions on a multi-
scale basis, we impose some smoothness on the underlying vector
field, which allows us to obtain a stable discretization of the Levi-
Civita covariant derivative for which we demonstrate experimental
convergence. Finally, we derive a representation of the covariant
derivative as an operator acting on vector fields. This allows us to
design vector fields with various properties, and to define parallel
transport without resorting to the computation of discrete flow lines,
simply as a matrix exponential.

1.1 Related Work

Unlike the discretization of the directional derivatives of functions
which can be reduced to computing gradients and is thus well
established (e.g., Botsch et al. [2010] and Azencot et al. [2013]),
there exists, to the best of our knowledge, no unified treatment
of covariant derivatives of vector fields on meshes. Some derived
quantities such as the divergence and the curl have received wide
attention [Polthier and Preuss 2003; Wardetzky 2006; Hirani 2003;
Meyer et al. 2002], whereas the general case we are interested in,
the Levi-Civita covariant derivative of a tangent vector field, has not
been discretized directly. As a full review of the use of derivatives
of vector fields in applications is beyond our scope, we mention a
few representative examples.

Discrete calculus frameworks. There exist several frame-
works for geometry processing and graphics applications that pro-
vide discretizations of differential quantities. Discrete exterior cal-
culus (DEC) [Hirani 2003] is one of the most extensive and widely
used, and provides discrete equivalents for vector field operators
such as curl, divergence, gradient, and Hodge Laplacian. In addi-
tion, DEC provides a strong theoretical foundation in the discrete
setting with theorems which mimic the corresponding statements
for smooth surfaces. However, not all operators are supported in
DEC, and specifically there is currently no consistent discretiza-
tion of the covariant derivative of vector fields. Other frameworks,
such as surface Finite Element Methods (FEM) [Dziuk and Elliott
2013] and finite element exterior calculus [Arnold et al. 2006], have
also been proposed, but their focus has traditionally been on solv-
ing boundary value problems for differential equations. While these
approaches have been successfully used to discretize differential op-
erators including the Laplace-Beltrami operator [Wardetzky 2006;

Dziuk and Elliott 2013], discretizing arbitrary differential quantities
on unstructured meshes remains challenging.

Another approach is to use a global conformal parameterization
to the plane [Lui et al. 2005] together with standard FEM to solve a
modified problem which takes into account the distortion introduced
by the parameterization. Such methods, however, can be sensitive
to the large area distortion induced by conformal maps, which may
cause many triangles in the planar mesh to collapse, leading to
unstable numerical systems.

Vector field design. Vector derivatives are often required for
vector field design applications. One of the most prominent re-
quirements is that the resulting vector field is sufficiently smooth,
and this calls for a way to relate vectors in nearby tangent spaces.
On a triangle mesh, two classes of methods have been proposed
to quantify smoothness of vector fields. The first is to use discrete
1-forms instead of vector fields, and rephrase the required opera-
tors in terms of DEC [Fisher et al. 2007; Ben-Chen et al. 2010],
making use in particular of the Hodge Laplacian operator which
provides a measure of smoothness for vector fields in a similar way
as the Laplace-Beltrami operator does for functions. However, this
limits the scope of applications since, for example, it is not clear
how to compute the directional derivatives of vector fields, and
whether various operators (e.g., the symmetric part of the covariant
derivative operator) can be represented in DEC.

Another common method to measure smoothness of vector fields
is by prescribing a rule on every edge of the mesh, which allows
one to compare vectors on the faces across this edge. Perhaps the
most natural instance of this approach is to relate vectors on a pair
of neighboring triangles by “unfolding” them into a single plane.
Indeed, it is customary to refer to this process as the discrete Levi-
Civita connection (e.g., Crane et al. [2010]), and various comparison
rules have been proposed for different applications (among others,
Polthier and Schmies [1998], Crane et al. [2010], Pottmann et al.
[2010], and Lai et al. [2010]).

However, this general approach has several significant draw-
backs. First, these comparison rules only define directional deriva-
tives in the direction of the dual edges of the mesh, and it is not
obvious what the derivative should be in a general direction. If we
extend this approach to a general direction by following the discrete
geodesic in that direction, it is not clear what happens at a vertex.
Furthermore, the resulting definition is not stable: a small change
in the direction can change the following face on the geodesic path,
yielding a different vector and potentially a large change in the
derivative. Finally, in many cases the “unfolding” approach is used
to define discrete parallel transport, namely a way to transfer a vec-
tor between faces on the mesh. Our method provides a more general
definition of parallel transport by allowing to transport a vector field
on the flow lines of another vector field. Implementing this using the
unfolding approach would require numerically integrating the di-
rection vector field to generate the flow lines and then unfolding the
triangles along the flow lines, which are both algorithmically com-
plicated and numerically sensitive operations. Using our method we
can compute discrete parallel transport simply using a matrix-vector
multiplication.

Fluid simulation. The directional derivative of a vector field
with respect to itself appears in various PDEs, one of them given by
the Euler equations for inviscid incompressible flow. Understand-
ing the solutions to these equations is a research field in itself (see,
e.g., Batchelor [2000]), thus we only mention some of the more
relevant work in computer graphics, and specifically fluid simula-
tion on surfaces. Existing solutions include parameterization-based
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techniques [Lui et al. 2005], and methods which assume a particular
structure on the mesh, for example, by working with subdivision
surfaces [Stam 1999]. These methods have the drawbacks of intro-
ducing unwanted errors due to the distortion of the parameterization,
and the added complexity of converting a general triangle mesh to
a subdivision surface. Note that, on a two-dimensional surface, the
Euler equations can be reformulated in terms of the vorticity of the
flow [Nitschke et al. 2012; Elcott et al. 2007], yielding a simpler
representation of the velocity through the stream function. How-
ever, vortex methods have several limitations, for instance, it can
be more difficult to set boundary conditions, and therefore in some
cases it is preferable to use a velocity-based method. Finally, a
method which is tailored for inviscid and incompressible flows on
triangle meshes is provided in Shi and Yu [2004]. This method is
based on semi-Lagrangian velocity advection on a triangle mesh,
which requires tracing velocity flow lines and triangle unfolding
that suffer the drawbacks mentioned previously.

1.2 Contributions

Our main contribution is a simple yet efficient method for dis-
cretizing the Levi-Civita covariant derivative on triangle meshes.
We focus on three aspects in our exposition: properties of the dis-
cretization, the novel perspective offered by the operator approach,
and sample applications. Note that, since we provide a tool and not
a specialized application, we focus on proof-of-concept scenarios
to illustrate the possibilities associated with our discretization.

In the following sections we discuss our main contributions:

—the discrete formulation of the Levi-Civita covariant derivative,
including experimental convergence results (Section 3);

—a representation of the derivative as a linear operator that takes
vector fields to vector fields, whose algebraic properties have
geometric meaning, for example, exponentiation leads to an al-
gebraic definition of parallel transport (Section 4); and

—several examples demonstrating the applicability of our discrete
derivative: vector field design and fluid simulation on surfaces
(Section 5).

2. DIRECTIONAL DERIVATIVES OF VECTOR
FIELDS

Our main goal is to discretize the directional derivative of a vector
field on a surface, also known as the Levi-Civita covariant deriva-
tive. We will first discuss the definition of such a derivative and
its properties in the continuous case. We provide a brief intuitive
introduction to the required concepts in this section. Readers well
versed in differential geometry can skim these sections and proceed
to the discrete treatment in Section 3. As we focus mostly on the
geometric intuition behind the definitions, we refer interested read-
ers to Morita [2001, Chapters 5.2 and 5.3] and do Carmo [1992,
Chapter 2] for the detailed treatment.

2.1 Notation

In the following we denote a surface by M ⊂ R
3, uppercase letters

(e.g., U, V,W ) denote tangent vector fields, and lowercase letters
(e.g., f, g) denote real-valued functions. We denote by ‖ · ‖ an
operator which takes a tangent vector field and outputs a function
of its pointwise norms.

2.2 The Levi-Civita Covariant Derivative

To gain some intuition, first consider the motion of a particle in
the plane, R

2. Its trajectory forms a path γ (t) ∈ R
2, t ∈ R, and

Fig. 1. (left) The velocity U (t) and acceleration U ′(t) of a particle trav-
eling along a curve γ (t) on a surface, and the tangential component of
the acceleration ∇UU ; (right) the parallel transport of V0 along γ is the
vector field V (t) defined as the unique solution of the differential equation
∇γ ′(t)V (t) = 0 with V (0) = V0.

its velocity γ ′(t) = U (t) ∈ R
2 is a vector tangent to the path. Its

acceleration is the vector:

U ′(t) = lim
�t→0

U (t + �t) − U (t)

�t
. (1)

For example, if the trajectory is a straight line and the velocity is not
constant, then U ′(t) will point in the direction of travel. If the particle
travels at constant speed, then the acceleration U ′(t) is in a direction
orthogonal to the path, since 〈U (t), U (t)〉′ = 2〈U ′(t), U (t)〉 = 0.
Like the velocity, the acceleration vector lies in R

2.
Now, consider the same particle traveling on a curved surface

M ⊂ R
3. Again, its trajectory forms a path γ (t) ∈ M, t ∈ R, to

which its velocity vector U (t) is tangent. However, the accelera-
tion vector U ′(t) is no longer tangent to M and decomposes into a
component normal to M , the normal acceleration, and into a com-
ponent tangent to M , the tangential acceleration (see Figure 1, left).
Intuitively, since the particle is constrained to live on the surface
M , we can take an intrinsic point of view by considering only the
tangential part of the acceleration.

We can similarly compute the tangential component of the deriva-
tive of any vector field V defined along a curve, and not neces-
sarily tangent to it, by considering the tangential component of
lim�t→0

V (γ (t+�t))−V (γ (t))
�t

along the curve γ . Finally, using the stan-
dard x, y, z coordinates in R

3, this definition can be further ex-
tended to define the covariant derivative of a tangent vector field
V = (vx, vy, vz) on M in a specific direction given by a vector field
U on M:

∇UV (p) = Pp((DUvx,DUvy, DUvz)(p)), p ∈ M, (2)

where Pp is the orthogonal projection on the tangent plane to M at p
and, for any function f , DUf =< ∇f,U > denotes the derivative
of f in the direction of U . Notice that (DUvx, DUvy, DUvz)(p) is
a vector in R

3, while ∇UV (p) is a tangent vector. The vector field
∇UV is known as the Levi-Civita covariant derivative of V with
respect to U [Morita 2001, page 181].

2.3 Parallel Transport

The definition of the covariant derivative is closely related to the
notion of parallel transport. Intuitively, parallel transport allows
to “carry” a vector along a curve such that it remains “parallel”
to itself. For example, the norm of a parallel-transported vector
remains fixed, and if the curve is a geodesic then the angle the
vector forms with the tangent to the curve also remains fixed. This
is formalized using the idea that parallel transport should be the
integral of the covariant derivative. Formally, given a curve γ (t)
in M and a tangent vector V0 at γ (0), the parallel transport of V0
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Fig. 2. Constant norm vector fields Ui on a surface of revolution, and their
norm ‖∇Ui

Ui‖ and flow lines. Note that the norm is zero on the geodesics
(marked red), and that the flow lines are orthogonal to Ui , since they are
constant norm.

along γ is defined as the unique solution of the differential equation
∇γ ′(t)V (t) = 0 with initial condition V (0) = V0 [do Carmo 1992,
page 52] see Figure 1 (right).

Before we dive into the properties and the proposed discretization
of ∇UV we would like to give some intuition as to the quantity
we are computing. Consider a surface of revolution like the ones
shown in Figure 2, and a constant norm vector field U which is
orthogonal to the rotation axis (i.e., it “goes around” the surface).
Now consider a particle traveling on the flow lines of U at constant
speed. If the flow line is a geodesic, such as the curves marked
in red in Figure 2, then traveling at constant speed would yield
0 tangential acceleration. This is seen in the center figures which
show the color coding of ‖∇UU‖. If the particle is not traveling on
a geodesic, it has to accelerate to keep “turning”. However, since
the speed is constant, the acceleration U ′(t) would be orthogonal to
the direction of travel as seen in the figures showing the flow lines
of ∇UU .

2.4 Properties

As we aim for a generic discretization of ∇UV , which works well
in various applications, we would like to assess the properties that
are required from such an object. For example, it has been shown
in Wardetzky et al. [2007] that, for the Laplace-Beltrami operator
and under mild conditions, there is no discretization which fulfills
all the defining properties of the continuous operator. In our case,
the fundamental theorem of Riemannian geometry guarantees that,
if an operator fulfills the following five properties, then it is the
unique Levi-Civita covariant derivative [do Carmo 1992, page 50
to 55]. Hence, it is of interest to understand these properties and
to see whether they are achievable in the discrete case. To make
the discussion more concrete, we also denote for each property the
application in which it will be required.

Linearity. As any derivative, it is a linear operator:

∇U (V + W ) = ∇UV + ∇UW. (3)

Linearity allows us to represent the operator ∇V in a basis and
construct various energies for vector field design.

Product rule.

∇U (f V ) = f ∇UV + V DUf. (4)

Although we do not use this property directly in our applications,
the product rule is a fundamental characteristic of any derivative.

Locality. The derivative operator is “local” in the direction argu-
ment, namely it depends on the value of U at a point, and not on its
neighborhood. In other words, if U1 and U2 are vector fields such that
U1(p) = U2(p) for some point p, then (∇U1V )(p) = (∇U2V )(p)
for any smooth vector field V . This means there are no derivatives

of U involved, and therefore this requirement can be rephrased as
linearity with respect to functions in the direction argument:

∇f U+gW (V ) = f ∇UV + g∇WV. (5)

This allows us to represent the operator ∇U in a basis, which we use
for computing parallel transport.

Metric compatibility. This property relates the derivative of a
vector field to the derivative of its norm. Similar to the case of a
particle in R

2 where we had 〈V (t), V (t)〉′ = 2〈V ′(t), V (t)〉, in gen-
eral, DU 〈V, V 〉 = 2〈∇UV, V 〉. Note that, together with linearity,
this implies that, for any pair of vector fields V and W ,

DU 〈V,W 〉 = 〈∇UV,W 〉 + 〈V,∇UW 〉. (6)

Symmetric Hessian. Finally, the last property relates to the second
derivatives of functions. In the Euclidean case, the Hessian matrix
is symmetric since partial derivatives commute. The generalization
of the Hessian to the surface is the bilinear operator: H (f )(U,V ) =
〈∇U∇f, V 〉 [do Carmo 1992, page 142]. The last property requires
that this operator is symmetric:

〈∇U∇f, V 〉 = 〈∇V ∇f, U〉. (7)

A consequence of this property is that [U, V ] = ∇UV − ∇V U for
any vector fields U and V , where [·] represents the Lie bracket
operator [do Carmo 1992, page 27]. We use this operator to design
local parameterizations.

In the following section we investigate the discretization of the
covariant derivative. We first address the question of how vector
fields are represented on a mesh, and discuss our choices. Then
we consider the challenges for our choice of representation in the
discrete setting. We show that, for piecewise constant vector fields,
under some mild conditions, it is not possible to define a discrete
version of the covariant derivative operator which is both linear
and fulfills the metric compatibility property. Finally, we propose a
simple approach that is based on the recently introduced multiscale
discretization of the directional derivative of functions [Azencot
et al. 2013], and we demonstrate experimental convergence of the
previously mentioned properties under mesh refinement when both
the vector fields and functions are smooth.

3. DISCRETIZATION

3.1 Vector Field Representation

The definition of a derivative of a vector field is closely linked
with the way vector fields are represented in the discrete setting.
One option is to use discrete 1-forms [Hirani 2003], which would
require using the flat and sharp operators for converting from vector
fields to 1-forms and back. Another option is to define a smooth
atlas on the mesh through a parameterization of the 1-ring of each
vertex (e.g., as in Zhang et al. [2006] and Knöppel et al. [2013]),
effectively turning the mesh into a smooth manifold. If a vector
field is continuous and piecewise smooth in the atlas, it is possible
to define first weak derivatives. Further, recent work by Ray and
Sokolov [2013] and Myles et al. [2014] showed how a combinatorial
data structure can be used to represent vector fields while ensuring
that field flow lines do not merge.

While these options can be a potential starting point for discretiz-
ing the covariant derivative, they require a somewhat complicated
definition of a discrete vector field. We, on the other hand, choose
the most simple discretization of a tangent vector field, namely
piecewise constant on faces. Such vector fields occur often in ap-
plications. For example, scalar functions are often discretized as
piecewise linear on the vertices of the mesh, and their gradients
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are piecewise constant vector fields. Furthermore, in mesh param-
eterization and mesh quadrangulation applications [Kälberer et al.
2007; Bommes et al. 2009, 2013; Campen et al. 2012; Myles and
Zorin 2013; Myles et al. 2014; Panozzo et al. 2014] piecewise con-
stant vector fields are often given as constraints for controlling the
alignment of the result. Hence, as we work directly with piecewise
constant vector fields without requiring additional conversions to 1-
forms or atlas-based representations, our approach is simpler, more
intuitive, and easier to implement.

3.2 Notation

We represent surfaces with triangle meshes, given by M =
(V, E,F), which denote the vertices, edges, and faces, respec-
tively. Functions are represented as piecewise constant on the
faces, namely f : F → R, f = {f i, i ∈ F}. Tangent vec-
tor fields are given as piecewise constant on triangles, namely
U : F → R

3, U = {Ui = (ui
x, u

i
y, u

i
z), i ∈ F}, such that Ui is

parallel to the plane containing the i-th face. Discrete operators
are represented with a “tilde”, for instance, D̃U : (F → R) →
(F → R) is the discrete directional derivative for functions and
∇̃U : (F → R

3) → (F → R
3) is the discrete covariant derivative

for vector fields. In what follows, we assume to be given a function
f and tangent vector fields U, V .

3.3 Challenges in the Discrete Setting

As mentioned, we choose to represent vector fields as piecewise
constant on the faces. Such a representation, while simple and intu-
itive, leads to an inherent difficulty in defining a meaningful notion
of covariant derivatives since, intuitively, the derivatives of piece-
wise constant vector fields should be zero at the faces.

Indeed, inside a triangle, taking derivatives of piecewise constant
vector fields is futile. Thus, a bigger patch must be taken into ac-
count. This, however, would require constructing a mechanism for
transporting vectors across triangles. Moreover, it is easy to see
that, given the prior discretization of vector fields and functions,
the product rule (Eq. (4)), cannot hold exactly for every pair of
functions and vector fields. This, however, is true for many notions
of discrete derivatives.

Unfortunately, there exists a more fundamental difficulty in dis-
cretizing the Levi-Civita covariant derivative, which holds not only
for our discretization, but even if functions do not “live on the same
domain” as the vector fields, such as functions that are piecewise
linear. In particular, even in this case, two of the defining properties
of the covariant derivative, namely linearity and metric compatibil-
ity, cannot be both satisfied exactly in the discrete setting, under
some mild conditions. To state this precisely, since the inner prod-
uct 〈U,V 〉 produces a function on the faces of the triangle mesh,
to allow discrete functions to live on a different domain we can use
an averaging operator A that takes functions on faces and produces
functions on vertices, edges, or faces. We will assume that A is lin-
ear, nonnegative, and maps constant functions to constant functions.
This leads to the following formulation of the metric compatibility
condition:

D̃XA(〈U, V 〉) = A(〈∇̃XU, V 〉 + 〈∇̃XV, U〉). (8)

Here D̃X is a directional derivative for functions with respect to the
vector field X. That is, D̃X takes a function defined on some domain
(e.g., vertices, edges, or faces) and produces a function defined on
the same domain. ∇̃XU is the covariant derivative for vector fields,
and the inner product is the standard inner product of vector fields

in R
3. Under these conditions, we have the following result (proved

in the supplemental material).

LEMMA 1. If D̃X is a linear operator such that D̃Xf = 0 if f is
a constant function, and the covariant derivative for vector fields is
linear: ∇̃X(U1+U2) = ∇̃XU1+∇̃XU2, then the metric compatibility
condition (Eq. (8)), implies that D̃Xf = 0 for all f in the range of
A, that is, D̃XA(h) = 0 for any h.

We note that, although this lemma is stated for vector fields that
are constant on the faces, the proof is actually quite general and
can be adapted to other settings as well. Hence, as we cannot hope
to achieve the exact properties of the smooth covariant derivative,
we opt for a simple discretization which is based on the directional
derivative of the component functions, as given by Eq. (2). Using
this definition, it is possible to show that all the properties of the
Levi-Civita covariant derivative (except the symmetry of the Hes-
sian) are all consequences of the product rule for functions [Morita
2001, page 181]. Therefore, if the operator D̃Uf provides a better
approximation to the product rule as the mesh resolution increases,
so we can expect that the operator ∇̃UV will give a better approxima-
tion to Properties 3–6 under mesh refinement, although the metric
compatibility condition will never be satisfied exactly.

It has recently been shown in Azencot et al. [2013] that it is pos-
sible to discretize the directional derivative of functions D̃Uf using
a multiscale basis, such that the error in the product rule property
experimentally decreases with the increase in the mesh resolution.
We choose a similar discretization for the directional derivative of
functions defined on the faces of the mesh, and thus get experimen-
tal convergence of the product rule for the component functions
of the vector field. This in turn, in the convergence experiments
we performed, leads to experimental convergence of the covariant
derivative properties.

3.4 Directional Derivative of Functions

In the discrete differential geometry literature, functions are com-
monly discretized either as scalars on the vertices or as scalars on
edge midpoints, which are then linearly interpolated to the faces.
These are known as conforming and nonconforming linear ele-
ments, respectively. In both cases, the gradient operator is well
defined as piecewise constant on the faces (see, Wardetzky [2006,
Chapter 2] for a full discussion).

Contrary to the common setting, our functions are defined on
faces, thus we need to extend the notion of a discrete gradient.
Given a function f , we define an averaging operator A and define
∇̃f = ∇Af , where A averages the values of f to the edges, and
∇ is the discrete gradient for nonconforming elements. Potentially,
it is possible to define A such that it averages values to the vertices
instead of edges. However, then A will be of size |V| × |F |, and
therefore its range will be smaller than its domain. Thus, there will
necessarily be two functions on the faces which are mapped to the
same function on the vertices. This will lead to difficulties, as it can
introduce nonzero vector fields whose interpolation to the vertices
leads to a zero vector field. If, on the other hand, A averages to the
edges, its size is |E | × |F |, and therefore the range is larger than
the domain and this problem is potentially avoided. It is easy to
see that a positive local averaging operator A will have an empty
kernel in general, and in particular for any mesh that has at least
one odd-degree vertex (see the proof in the supplemental material).

Formally, we define the directional derivative for functions as

D̃Uf = 〈∇Af, U〉, (9)
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Fig. 3. Comparison of our discretization ∇̃UV with the analytic solution
for specific U,V on the sphere. We show the convergence graph for the
RMSE error for decreasing mean edge length, as well as a visualization of
the flow lines and norm of the computed ∇̃UV for the densest mesh.

where Aij = wj/
∑

wk if i is an edge in face j , and Aij = 0,
otherwise. wj is the area of face j and the sum runs over the faces
which share the edge i. Now, as Af is a function on edges, its
gradient is piecewise constant per face and has a standard definition
(see Polthier [2005, Section 2.3]).

As mentioned previously, we represent the operator D̃U in a re-
duced multiscale basis (the eigenfunctions of the Laplace-Beltrami
operator), as this enforces some smoothness on our vector fields.

3.5 Covariant Derivative of Vector Fields

Our covariant derivative operator is based on the extrinsic definition
presented in Eq. (2). Given the discretization for the directional
derivative of functions on the faces, the covariant derivative for
vector fields follows easily:

∇̃UV (p) = Pp((D̃Uvx, D̃Uvy, D̃Uvz)(p)), p ∈ M, (10)

where V = (vx, vy, vz) and Pp is the projection operator onto the
tangent plane of M at p. As the directional derivatives of the
components of V are given on the faces, Pp is well defined.

To summarise, given two piecewise constant vector fields U and
V , we first take the component coordinate functions of V , average
them onto the edges, and compute the corresponding gradients.
These are piecewise constant on the faces, therefore their inner
products with U give us three real-valued functions on the faces.
We use these functions to construct a vector field in R

3, and project
this vector field onto the faces.

To validate our discretization, we experiment with known vector
fields U, V on the unit sphere and compare our result with the
expected result in the continuous setting. Figure 3 shows the result
of this comparison for meshes with decreasing average edge length
h. We show U, V , the analytic result ∇UV , and the result of our
computation ∇̃UV . Note that the convergence is polynomial in h
and that, for the most dense mesh, the figures of the flow lines
and norm are almost indistinguishable from the ground truth. We
further demonstrate the convergence results in Figure 4 which shows
the log log plot of the RMSE error of Properties 4–7 for ellipsoid
meshes with decreasing average edge length h. We additionally
show the vector fields U, V,W and the functions f, g which were
used for the mesh with smallest edge length. The functions f, g are
the eighth and tenth eigenfunctions of the area weighted cotangent
Laplace-Beltrami operator and the vector fields U, V,W correspond
to eigen 1-forms 4, 3, and 1 of the Hodge Laplacian. Note that the
plot suggests a polynomial convergence rate in h, where we denote
by m the respective slope estimate. Furthermore, given Eq. (10), it
is easy to verify that Property 3 holds exactly.

Fig. 4. The behavior of our discretization of the covariant derivative on the
Properties 4–7 under mesh refinement for the ellipsoid model. We show the
RMSE error of the left-hand side vs. the right-hand side of the equation for
decreasing mean edge length h. Note that the plot suggests a polynomial
convergence rate in h, where we denote by m the respective slope estimate.
We additionally show the functions and vector fields that were used for the
highest mesh resolution. See the text for further details.

4. GEOMETRY FROM LINEAR OPERATORS

In addition to computing the quantity ∇̃UV , it is often advanta-
geous to fix one of the vector fields and consider the corresponding
operator on all possible inputs. For example, we can omit the di-
rection U and consider the operator ∇̃V , which will provide some
information on the derivatives of V in all possible directions. This
point of view is useful because it can uncover some hidden structure
of V in a global way. As a simple example, the singular vector of
∇̃V which corresponds to the smallest singular value will provide
the directions in which V changes as little as possible.

This interplay between the algebraic properties of the operators
and the geometry of the vector fields they represent is quite useful
in practice, because it allows to do global, operations which are
traditionally local. For example, manipulating ∇̃V is instrumental
for vector field design, and ∇̃U allows to easily compute parallel
transport.

4.1 Preliminaries

Matrix representation. While it is possible to analyze these
operators directly as abstract linear operators, it is more intuitive
to consider their matrix representation. Specifically, we assume, we
have a finite orthonormal basis of vector fields {�i, i ∈ 1, . . . , k},
that is,

∫
M

〈�i, �j 〉 = 1 if i = j and 0 otherwise, and such that
the vector fields in which we are interested can be represented as
V = ∑k

i=1 ai�i (in Section 5.1 we will elaborate more on our
choice of basis). Now, any linear operator R from tangent vector
fields to tangent vector fields can be represented using a k×k matrix
R, whose (i, j ) entry is Ri,j = ∫

M
〈R(�i), �j 〉. In the following we

will discuss the properties of the operators using their matrix repre-
sentations. For example, when we mention the operator transpose,
we refer to the corresponding matrix transpose.

Flow of a vector field. We will need the following definition.
The flow of a vector field U is a one-parameter family of maps
�t

U : M → M for t ∈ R such that the following holds:

d

dt
�t

U (p) = U
(
�t

U (p)
)
, �0

U (p) = p.

Intuitively, the flow of a vector field encodes what happens to a
particle which starts at a point p ∈ M , and its velocity is dictated
by the vector field at every point. Hence, it provides a way to recover
the trajectory of a particle from its velocity, and thus computing the
flow is also known as integrating the vector field.
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Fig. 5. Approximate killing vector fields computed by minimizing the
symmetric part of ∇V .

4.2 The Operator ∇V

Operator action: (∇V )(U ) = ∇UV . Here V is fixed, and we com-
pute its derivative in some direction given as input. This operator is
the extension to surfaces of the Jacobian operator of vector fields in
Euclidean space, which is simply the matrix of partial derivatives.
Its algebraic structure provides information about the nature of the
derivatives of V in various directions. For example, as any linear
operator, it can be decomposed into symmetric and anti-symmetric
parts

∇V = 1

2

(∇V + (∇V )T
) + 1

2

(∇V − (∇V )T
) = KV + GV ,

where, as discussed previously, we consider the operator as a k ×
k matrix representation and thus can compute its transpose. The
symmetric and anti-symmetric parts are also linear operators which
take tangent vector fields to tangent vector fields and have geometric
meaning.

Symmetric part. The operator KV = 1
2 (∇V +(∇V )T ) is related to

how much the flow �t
V distorts the metric. Specifically, if KV = 0,

then V is called a killing vector field (KVF), and its flow �t
V is an

isometry for all t Petersen [2006, Chapter 7.1]. One such example
in the plane is V = (−y, x), whose flow is simply a global rotation.
Such vector fields are quite rare and exist only on very specific
surfaces, however, we can try to minimize ‖KV ‖2 for any surface,
yielding vector fields whose flow is close to an isometry. Such vector
fields are useful in geometry processing applications, as they allow
to generate texture and geometric patterns [Ben-Chen et al. 2010].

We use this property to design vector fields which are approxi-
mate KVFs by solving a linear system of equations. Note that, as op-
posed to previous work, we can pose the constraints directly on the
derivative operator, without requiring an indirect approach through
commutativity with the Laplace-Beltrami operator [Azencot et al.
2013], or reformulation using DEC [Ben-Chen et al. 2010]. Fig-
ure 5 shows a few approximate killing vector fields computed this
way. Interestingly, KVFs are also related to fluid flow on surfaces,
as they provide a steady-state solution to the Euler equations (see
Section 5). Furthermore, the killing operator KV plays a role in the
behavior of viscous fluids [Nitschke et al. 2012], which we would
like to investigate in future work.

Anti-symmetric part. The operator GV = 1
2 (∇V − (∇V )T ) en-

codes the failure of ∇V to be symmetric. We know from Property 7
that if V = ∇f for some function f then ∇V is symmetric, hence
it is possible to consider GV as the failure of V to be the gradient
of a function. Specifically, minimizing ‖GV ‖2 with some additional
conditions would provide vector fields which are “as gradient as
possible”. For example, if we require that ‖V ‖ = const it is possi-
ble to show that the flow lines of V are geodesics and V is a geodesic

vector field (GVF) if and only if GV = 0 [Pottmann et al. 2010],
which can be useful in architectural geometry. In the applications
section we demonstrate how, by constraining ∇V to be symmet-
ric, then in addition to the smoothness induced by our framework,
we can, using a much simpler setup, achieve similar results, even
without adding the constraint on the norm of V . Furthermore, our
approach allows to combine various constraints, for instance, that
the resulting vector field is symmetric with respect to some sym-
metry map of the surface.

Uniqueness. As we discussed, we can design vector fields V
which have certain properties by posing constraints (e.g., symmetry
or anti-symmetry) on ∇V . This raises the question whether a given
∇V completely encodes V , or whether there can be multiple vector
fields with the same ∇V . We have the following lemma.

LEMMA 2. For a closed oriented surface M , ∇UV = 0 for every
smooth U if and only if V = 0 or M is a flat torus.

Hence, if ∇V1 = ∇V2 then ∇U (V1 − V2) = 0 ∀ U which, by the
lemma, implies that V1 = V2, yielding the uniqueness we required.

4.3 The Operator ∇U

Operator action: (∇U )(V ) = ∇UV . Here the direction of the deriva-
tive is given by a fixed U , and we compute the derivative of some
vector field V given as input. This operator is closely related to
the directional derivative of functions, which we denoted as DU .
The scalar directional derivative operator was recently used by
Azencot et al. [2013] to represent, analyze, and design discrete
vector fields. While this approach is useful in certain applications,
it is also limited, since the scalar directional derivative operator DU

does not depend on the metric of the surface, making the computa-
tion of metric-dependent operations such as the parallel transport of
vector fields impossible without additional structure. As we show
shortly, the Levi-Civita covariant derivative, acting on vector fields,
shares many useful properties with the functional operator such
as uniqueness and decomposition, but also enables more applica-
tions including parallel transport in a very compact and convenient
manner.

Uniqueness. The operator ∇U encodes the vector field U uniquely.
Hence we can design a vector field U by defining constraints on
∇U . We have the next lemma.

LEMMA 3. Two smooth vector fields U and V are equal if and
only if ∇UW = ∇V W for all smooth vector fields W .

Symmetric part. The operator ∇U allows to easily distinguish
divergence-free vector fields as those whose symmetric part of ∇U

is zero.

LEMMA 4. Let M be a closed surface. A smooth vector field U is
divergence free if and only if ∇U is anti-symmetric with respect to the
inner product on the surface, that is, if and only if

∫
M

〈∇UV, W 〉dx =
− ∫

M
〈∇UW,V 〉dx for all smooth vector fields V and W .

Parallel transport. The Levi-Civita covariant derivative, repre-
sented as an operator ∇U , is intimately related to parallel translation
along the flow lines of U . Suppose we have a vector field V and
let �t

U (p) be the flow of U . Now, consider the operator �U,t which
takes a vector field on M and returns a vector field on M , which
is defined as follows: �U,t (V )(p) is the vector obtained by parallel
transporting the vector V (�t

U (p)) along the flow line from �t
U (p)

to p. It is well known (e.g., do Carmo [1992, page 57]) that the
following relation between the operators ∇U and �U,t holds:

∇U (V )(p) = d

dt
(�U,t (V )(p))|t=0. (11)
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Fig. 6. Parallel transport of a vector field U (left) along its own flow lines
comparison to the ground truth on the sphere (middle). Note the three marked
singularity curves: the red curve is a geodesic, so vectors transported on it
preserve their orientation. The blue curves are two symmetric singularity
curves. The vectors transported on them rotate by π , so they reverse their
orientation. The transition between these singularity curves is smooth; (right)
convergence graph of the error in the computed angle, and the final result of
our computation for the largest number of basis functions.

Hence the ∇U operator is the derivative of the backward parallel
transport operator at the point p. Now, if we consider the discrete
version of (11), that is, replace ∇U and �U,t with their discrete
matrix-based representations ∇̃U and �̃U,t , respectively it is easy to
check (see supplemental material) that �̃, given by

�̃U,t = exp(t∇̃U ), (12)

where exp is the matrix exponentiation, is a solution. By defining
�̃U,t as in (12) we maintain the relation between the discrete par-
allel transport and covariant derivative operators which exists in
the continuous case, and gain an easy-to-implement matrix-based
operator.

This observation allows to compute the parallel transport of vec-
tor fields, along the flow lines of other vector fields, simply by using
the matrix exponential of ∇̃U . This is somewhat remarkable since
computing discrete parallel transport on discrete flow lines directly
would require to numerically integrate the field U to generate the
flow lines, and then compute the discrete geodesic curvature of these
flow lines for the transport, such as done in Polthier and Schmies
[1998]. This procedure can be cumbersome, computationally heavy,
and potentially numerically unstable. For example, the result may
not even be a well-defined vector field with multiple vectors in a
single face, and some faces not containing any vectors.

On the other hand, when considering the Levi-Civita covariant
derivative as an operator acting on vector fields, and representing
it as a matrix in a basis, computing parallel transport becomes a
standard linear algebra operation involving only matrix exponent
and matrix vector multiplication. Note that parallel transporting a
vector field U along its own flow lines is closely related to the
numerical scheme known as semi-Lagrangian advection in fluid
simulation [Shi and Yu 2004]. It is therefore possible that our par-
allel transport matrix operator could be used in such a setup. We
leave further investigation of this direction as future work.

In Figure 6 we compare the result of parallel transport done using
our approach to the ground truth on the sphere. We take a vector
field U = (0, z, −y) which rotates around the sphere, and compute
�̃U,2π (U ), the parallel transport of U over itself for time t = 2π ,
by taking exp(2π∇̃U )U . In this case, the flow lines are constant
latitude lines, and the result of the parallel transport has an analytic
expression [do Carmo 1976, page 243].

Figure 6 shows the vector field U (left) and the ground-truth
result (center). Our parallel transport operator uses a fixed number of

Fig. 7. Parallel translation of U (top row) along the flow lines of U . Our
discrete parallel transport is robust to merging flow lines, as shown in the
result, �̃U,2π (bottom row).

basis vectors, and the parallel-transported vector field is nonsmooth,
therefore we expect the result to improve with an increasing number
of basis vectors. This is indeed demonstrated in the graph on the
right. The graph shows the error in our computation of the angle of
the parallel-transported vector field �̃U,2π (U ) with U with respect to
using a growing number of basis vectors ND . The two figures in the
graph show the flow lines and the norm of �̃U,2π (U ) for the largest
number of basis functions. Interestingly, the norm of the parallel-
transported vector field can be flown separately using the flow of
the operator for functions D̃U , which leads to more accurate results.
Note that the resulting norm and angles are almost indistinguishable
from the ground truth.

We provide further evaluation of our discrete parallel transport. It
is known that discrete flow lines of vector fields can in some cases
merge or split (e.g., Szymczak and Zhang [2012, Figure 4]). In
Figure 7 we demonstrate the result of parallel translation of U (top
row) along U . Notice that, although the flow lines of U might split
(see the zoomed area, top, right), our result, �̃U,2π (U ), preserves its
smooth behavior.

While matrix exponentiation is itself a difficult problem and the
result can be inaccurate for large matrices [Moler and van Loan
2003], note that in our case the matrices are relatively small (on the
order of 300), as the vector field is represented a multiscale basis.
In our implementation we used Matlab’s expm function and did not
encounter any issues. Furthermore, to compute the parallel transport
there is no need to compute the full matrix exponent, but only
the matrix vector product exp(2π∇̃U )U for which more stable and
efficient methods exist [Al-Mohy and Higham 2011]. It is possible
that more basis vector fields would be required to represent complex
vector fields with a large number of singularities, which are common
in parameterization and quadrangular remeshing applications. In
such cases, it might be instrumental to investigate our operator in
the hat basis, which will lead to a sparse representation for which
methods such as Al-Mohy and Higham [2011] are still applicable.
We leave further study in this direction for future work.

4.4 The Operator [U, ·]
Operator action: [U, ·](V ) = ∇UV −∇V U . Given two vector fields
U, V , consider the problem of constructing local texture coordinates
(u, v) such that the iso-v and iso-u lines align with U and V ,
respectively. Given p ∈ M , one naı̈ve approach would be to flow
along U from p and sample the flow line at fixed constant intervals.
Then, starting from the resulting sampled points, we flow along V
and sample again. The union of the sampled points forms a grid.
Of course, we could reverse the order and flow first on V and then
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Fig. 8. Given a vector field U (left), we construct local parameterization
by optimizing for V (middle) which minimizes the energy

∫
M

‖[U,V ]‖2 +
λ

∫
M

‖ < U,V > ‖2. The local coordinates are computed by flowing on U

and V , resulting in a texture-mapped grid marked in blue (right).

on U , however, we expect to obtain the same set of sampled points.
Formally, this requirement means that the flows of U and V should
commute.

The operator [U, V ] known as the Lie bracket or Lie derivative of
U and V , computes exactly this property: the lack of commutativity
of the flows of U and V . Specifically, it is possible to construct
a local parameterization as described previously around a point
p ∈ M if and only if U (p), V (p) form a basis for the tangent plane
and [U, V ] = 0 (see, e.g., Kolar [1993, Theorem 3.17]).

Using the operators ∇U and ∇U we can represent [U, ·], and
use it for vector field design. For example, given a vector field U ,
we can construct a matrix representation of [U, ·] and compute its
singular vectors. Since [U, U ] = 0, U is always the singular vector
corresponding to the 0 singular value. However, the next singular
vector V minimizes

∫
M

‖[U, V ]‖2, and would give us the best vector
to couple with U to get a parameterization. Note that we can easily
add additional terms to the energy, such as

∫
M

‖ < U, V > ‖2, if
we want U and V to be orthogonal.

Figure 8 demonstrates this for the computation of a local pa-
rameterization. We are given U (left), and we minimize the energy
E[U,·](V ) = ∫

M
‖[U,V ]‖2 + λ

∫
M

‖ < U, V > ‖2. The resulting
vector field V (middle) together with U is used to build the local
coordinates using the flow method described previously. This yields
a textured-mapped grid (right, shown in blue). Note that the vector
fields U, V are orthogonal but do not have the same norm. Hence,
simply rotating U by π/2 would not have given the same texture
coordinates, as the flows would not necessarily commute.

5. APPLICATIONS

Until now we have concentrated on the properties of the various
operators we can derive from the Levi-Civita covariant derivative,
and provided some proof-of-concept applications for the geometric
quantities it allows to compute. In this section, we first discuss
some implementation details and limitations, and then discuss two
concrete applications of this machinery: designing tangent vector
fields and simulating fluid flow on surfaces.

5.1 Implementation Details

Choice of basis. For our basis for D̃U , we chose the first Nf

eigenvectors of the DEC-based 2-form Hodge Laplacian [Hirani
2003]. For ∇̃U , ∇̃V and all operators acting on vector fields, the
basis is given by the first ND eigenvectors of the DEC-based 1-form
Hodge Laplacian [Fisher et al. 2007]. To represent our operators
as matrices in the basis, we first convert the 1-forms to piecewise
constant vector fields (as in Fisher et al. [2007, Eq. (4)], where we
sample at the barycenter of the triangle), then apply the operator to
the basis elements and project the result back onto the basis.

Limitations. We define the covariant derivative using the em-
bedding in R

3, however, a classical and fundamental property of the
covariant derivative in the continuous case is that it is intrinsic, that
is, it does not depend on this embedding [Morita 2001, page 181].
In the discrete case, we no longer maintain this property. For rigid
deformations, there exists a trade-off between invariance and dis-
cretization error. If we use a small number of basis functions, the
component functions are smooth, but we lose invariance to rigid
transformations. However, the error introduced by the rigid trans-
formation decreases polynomially in the number of basis functions.
If, on the other hand, we use the full basis in Eq. (9), the operator
will be invariant to rigid transformations (see supplemental material
for the proof). For isometric deformations, the averaging operator
A introduces some error even when using the full basis (as it causes
averaging of vectors on faces which undergo different rotations),
and for a truncated basis we again have an error which decreases
polynomially. Despite this limitation, we believe the additional sim-
plicity we gain by using the embedding is worthwhile, especially in
applications which use a single nondeforming mesh.

5.2 Vector Field Design

As discussed in the previous sections, by using the covariant deriva-
tive operators, we can pose various constraints to design tangent
vector fields with some prescribed differential properties. Since the
operators ∇̃U and ∇̃V are linear, each of the optimization prob-
lems that we formulate can be solved efficiently by solving a linear
system, or by computing a singular value decomposition.

As-gradient-as-possible vector fields. We first consider min-
imizing the energy ‖∇̃V − (∇̃V )T ‖2, which quantifies the anti-
symmetric part of ∇̃V . As mentioned in Section 4.2, this energy
will be zero if V is a gradient field. Furthermore Pottmann et al.
[2010] showed that if additionally the norm of V is constant, then
the energy will be zero only if V is a vector field whose flow lines
are geodesics, also known as a geodesic vector fields (GVFs).

While we do not impose the additional constraint, our results on
the Oloid model as shown in Figure 9 are comparable to the results
of Pottmann et al. [2010] when weighing the edges according to
their mean curvature is not taken into account.

Finally, as we work in the generic framework of functional op-
erators, it is straightforward to combine this energy with additional
constraints in a similar manner to Azencot et al. [2013]. For exam-
ple, we can require the vector field to be symmetric with respect
to some symmetry map provided for the surface. By weighing dif-
ferently the constraints, we can allow the user to explore multiple
solutions (see Figure 10) which may be difficult to achieve using
other frameworks.

As-killing-as-possible vector fields. As mentioned previ-
ously, vector fields V for which ∇̃V is anti-symmetric are vector
fields whose flow preserves the metric, also known as killing vector
fields (KVFs). These are useful for pattern generation, as shown,
for instance, in Ben-Chen et al. [2010]. By minimizing the energy
‖∇̃V + (∇̃V )T ‖2, we can construct vector fields that are as close as
possible to KVFs, as we demonstrate in Figure 5.

Smooth vector fields. As our last design goal we consider the
task of computing as-smooth-as-possible vector fields, similarly to
what was done in Knöppel et al. [2013]. One way to character-
ize such vector fields is to minimize the Dirichlet energy ‖∇̃V ‖2.
Figure 11 shows an example of two vector fields computed this way,
and Figure 12 compares the vector field computed using our method
(left) with that computed by the approach of Knöppel et al. [2013]
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Fig. 9. Approximate geodesic vector field design. We seek a vector field V

which minimizes the energy ‖∇V − (∇V )T ‖2, which yields V that is close
to a geodesic vector field (top left). The Oloid model has zero Gaussian
curvature everywhere except on the creases, hence when it is flattened the
flow lines should yield straight lines (bottom left). Compare with the result
of Pottmann et al. [2010] (right). Our results are comparable, while our setup
is considerably simpler and allows for combination of constraints.

Fig. 10. Trade-off between as-gradient-as-possible vector field constraints
and symmetric vector field constraints, with the symmetry constraints
weighted higher in the image on the right.

(right). Note that the resulting vector fields are comparable in terms
of smoothness. Compared to the ground truth on the unit sphere, the
Dirichlet energy obtained by Knöppel et al. [2013] is more accu-
rate than ours (1.0017 versus 0.9515, where the analytic solution is
1), potentially due to energy loss incurred by our projection on the
basis of vector fields. Furthermore, the method by Knöppel et al.
[2013] is more general than ours, as it can handle N-RoSy fields in
addition to vector fields.

To conclude, while there exist other specialized methods for pos-
ing many of the design constraints mentioned here, such as Azencot
et al. [2013], Pottmann et al. [2010], Knöppel et al. [2013], and Ben-
Chen et al. [2010], our setup is unique in that it is simple, allows to
pose all of these constraints, and to generate a large variety of vector
fields, since we have direct access to the ∇V and ∇U operators.

5.3 Fluid Simulation on Surfaces

As our last application, we consider the problem of simulating the
behavior of an incompressible flow on a curved surface. A fluid can

Fig. 11. Designing smooth vector fields by finding vector fields which
minimize the energy ‖∇̃V ‖2.

Fig. 12. Our smooth vector field (left) compared to the one obtained by
the method of Knöppel et al. [2013] (right).

be described as a time-varying velocity field U (t), whose behavior is
governed by the Navier–Stokes equations [Taylor 1996]. We discuss
here only incompressible (divergence-free) inviscid (viscosity-free)
flows, for which the defining equations are known as the Euler
equations Taylor [1996, Eq. (1.10)]:

∂U

∂t
= −Pcurl(∇UU ), (13)
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Fig. 13. (top) A few frames from a periodic solution of the Euler equations
on the sphere. Note that the vorticity (color coded) is globally rotated, as
expected. See the text for details; (bottom, left) the relative kinetic energy∫
M

‖U (t)‖/∫
M

‖U (0)‖ during the simulation. Note that it is periodic and
remains within 98% of the original energy; (bottom, right) a histogram of
the vorticity for the first (blue) and last (red) frames. Note that the histogram
is preserved as expected.

where Pcurl is the orthogonal projection onto the space of
divergence-free vector fields.

Using our discrete definition of the covariant derivative, it is
straightforward to compute the time-varying velocity U (t) of a
flow, given some initial conditions. We implemented a very sim-
ple pipeline using a black-box time integrator (Matlab’s ode45
[Dormand and Prince 1980]). One iteration consists of comput-
ing ∇̃UU using our operator, followed by projection onto the
space-divergence-free vector fields by solving the Poisson equa-
tion �s = −ω, where ω is the vorticity function given by the curl
of U , projected onto the space of functions spanned by our basis.
The change in U is now given by the gradient of s rotated by π/2
in each face. We use the operator from Polthier and Preuss [2003]
for computing the curl of a vector field.

Despite the simplicity of this approach, we found that in most
cases it was enough to simulate interesting flows for which we know
the analytic solution or expected behavior. We demonstrate some
examples in the accompanying video for the simulation of the flows.
We stress that this is a proof of concept of the applicability of our
operator to fluid simulation on surfaces. We leave further tuning, as
well as incorporating a more sophisticated time integrator, as future
work.

Steady-state solutions. If U is a killing vector field, or U =
J∇φi , where φi is an eigenfunction of the Laplace-Beltrami opera-
tor, then U (t) = U is a steady-state solution to Eq. (13) (see Majda
and Bertozzi [2001, page 46, Eq. (2.13)], and also the supplemental
material for a simple proof). Hence, as a sanity check we compute
the average of ‖Pcurl(∇̃UU )‖/‖U‖ for such a vector field U . The
result can be considered an indicator to the stability of our method,
and was on the order of 10−4 for the unit sphere.

Periodic solution on the sphere. On the sphere there ex-
ists a periodic time-varying solution, given by U (t) = U0 +∑

i ai(t)J∇φi , where U0 is a killing vector field, and φi are eigen-
functions of the Laplace-Beltrami operator corresponding to the
same eigenvalue. Furthermore, the curl of the velocity field (its vor-
ticity) ω(t) is advected by this flow isometrically, namely a pure
rotation. We are not aware of a reference for this solution in the
literature, and thus provide the proof in the supplemental material.

Fig. 14. A few frames from a solution of the Euler equations on the torus
for a co-rotating vortex pair.

Fig. 15. Three frames from a fluid flow simulation showing a positive/
negative vortex pair on a surface.

Figure 13 (top) shows a few frames from such a simulation on
the unit sphere, where we took φi to be an eigenfunction in the
third group of spherical harmonics. We show the color coding of
the vorticity function, which is indeed advected as an isometry.
Figure 13 (bottom right) shows the relative kinetic energy∫

M
‖U (t)‖/∫

M
‖U (0)‖ during the simulation. Note that the energy

itself exhibits periodic behavior and remains within 98% of the orig-
inal energy. This indicates the stability of our method, especially
since we used a straightforward black-box time integrator for all
simulations. Finally, Figure 13 (bottom left) shows a histogram of
the vorticity values for the first and last frames of the simulation.
Note that the histogram remains fixed, as expected.

Co-rotating vortex pair. On a plane, a pair of point vortices
(namely, singular points where all the vorticity is concentrated)
spinning in the same direction should rotate around each other
Saffman [1992, page 117]. We generate a similar configuration on
a torus, where we take the initial vorticity ω0 to be constant at
all vertices except two vertices vi, vj , where we take ω0 to be 1.
The constant is set such that

∫
ω0 = 0, and then ω is projected

onto the span of our basis functions. Figure 14 shows a few frames
from this simulation (see also the accompanying video). Note that
the vortices rotate as expected. One limitation of our method is
that it is not circulation preserving as is, for example, the method
in Elcott et al. [2007]. This is visible in the torus simulation, as
some of the vorticity is lost due to numerical dissipation. We leave
the exploration of efficient methods to overcome this limitation as
future work.

Counter-rotating vortex pair. Similarly to the previous ex-
periment, we take two point vortices rotating in opposite directions.
In the plane such a configuration translates in a straight line Saffman
[1992, page 117] and a similar behavior is demonstrated on the back
of the frog model in Figure 15 and in the accompanying video that
can be accessed in the ACM Digital Library. The stability of our
method is exhibited by the fact that the vortex pair travels intact the
whole length of the frog model.

N-vortex structures. Here we take a more complicated config-
uration of vortices. The first includes two pairs of counter-rotating
vortices which collide, where the expected behavior is that they
continue in a direction orthogonal to the original direction after
collision. This is shown in Figure 16 and in the accompanying
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Fig. 16. A few frames from a solution of the Euler equations on the teddy
bear for two colliding pairs of counter-rotating vortices.

video on the teddy bear model. The second configuration includes
three co-rotating vortices forming an equilateral triangle, where the
flow should rotate the three vortices as a single unit Newton [2001,
page 78]. We reproduce this behavior, as can be seen in the video.
Note that, while two of the vortices merge during the process, they
separate again at the end of the flow, returning to a configuration
similar to the original one.

6. CONCLUSIONS AND FUTURE WORK

In this article, we proposed a novel discretization for the Levi-Civita
covariant derivative of vector fields on discrete surfaces, which has
various appealing properties. First, it exhibits experimental conver-
gence of the five defining properties of the derivative in the continu-
ous case. Second, it can be represented as a linear operator acting on
tangent vector fields, thus allowing to harness tools from linear al-
gebra, such as matrix exponential, to perform geometric operations
which were otherwise harder to achieve (e.g., parallel transport of
a vector field along the flow lines of another vector field). Finally,
we demonstrated the applicability of our discretization to various
geometry processing tasks such as local parameterization, vector
field design, and fluid simulation.

We believe there is much more left to explore, as we only gave a
taste of the possible applications of our formulation. First, the co-
variant derivative appears in many PDEs on surfaces, and it would
be interesting to apply our discretization to additional problems. For
example, it is possible to compute the covariant derivative of the
normal vector field, thus yielding a novel discretization of the shape
operator. Second, our parallel transport approach can potentially be
applied to fluid flow simulation to yield a more stable exponen-
tial integrator, and the killing operator can be used for simulating
viscous flow. Furthermore, we would like to investigate additional
operators derived from the covariant derivative, such as the con-
nection Laplacian which can potentially be used for vector field
smoothing. To conclude, we believe our discrete covariant deriva-
tive will inspire future work that tackles additional challenges in
vector field processing, thus providing a stepping stone towards a
complete framework for vector calculus on discrete surfaces.

ELECTRONIC APPENDIX

The electronic appendix to this article is available in the ACM
Digital Library.
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