SA Conference Papers '23, December 12-15, 2023, Sydney, NSW, Australia

Zero-Shot 3D Shape Correspondence

Supplementary Materials for: Zero-Shot 3D Shape Correspondence

Figure 1: The textual prompt for proposing a class label given a rendered image using BLIP2 model.

A IMPLEMENTATION DETAILS

We run all our experiments on a single Nvidia RTX 3090 (24 GB RAM). We use the ChatGPT-3.5 turbo model via OpenAI Python API. We use the Nvidia Kaolin library [Fuji Tsang et al. 2022] written in PyTorch for rendering shapes. We render the mesh on a black background with 512×512 resolution. We use a bounding box prediction threshold of 3.7 for the DINO [Caron et al. 2021] model. To ensure fairness, we use the same number of views when comparing SAM-3D and SATR.

B SEMANTIC REGION GENERATION AND MATCHING PROMPTS

In Figure 4, we show the textual prompt we use for proposing sets of semantic regions R^1 , R^2 for the input shapes S^1 and S^2 as discussed in Section 3.2. We replace the "SHAPE_SRC_LABEL" and "SHAPE_TRGT_LABEL" strings with the predicted class label for S^1 and S^2 , respectively.

C PROMPT CONSTRUCTION TRIALS

We investigated different prompts for obtaining the coarse shape correspondences. First, we try a two-step approach. For each shape separately, we ask Visual-ChatGPT [Wu et al. 2023b] to propose a list of semantic regions given at one time in a rendered image. The answers are then unified using ChatGPT in a similar approach as in Figure 3. Then, we ask ChatGPT to provide a set of semantic regions that can be shared/used for both shapes. We used the prompts, which are shown in Figure 2:

Figure 2: The two-step textual prompt we used for proposing the semantic region per shape and the semantic region mapping.

Figure 3: The textual prompt provided to ChatGPT agent to unify the responses produced by BLIP2 model and obtain a single class label per shape.

So, we construct a better prompt using only a single-step approach as described in Section 3.2, wherein the same prompt we ask ChatGPT to provide semantic regions for both input shapes and propose a mapping between the regions. In this manner, we can match region names that are different from each other but can be matched semantically.

D ZERO-SHOT 3D OBJECT CLASSIFICATION

We show in Figure 1 and Figure 3 the prompts used by BLIP2 and ChatGPT in our proposed method for zero-shot 3D object classification. In Figure 3, we replace the "ANSWERS_LIST" strings with a list of the proposals predicted by the BLIP2 model given the rendered images of an input shape.

D.1 GT Synonyms List

Figure 5 shows the collected synonyms we used in our proposed evaluation metrics.

I want to compute a high-quality point-to-point shape correspondence mapping from shape A to shape B. I would like to do so by first matching each semantic region from shape A to each semantic region in shape B. The semantic regions are high-level, non-overlapping, and represent well-used semantic parts.
Each semantic region has specific functionality. Let's say shape A is a man and shape B is a giraffe. Then one possible high-quality mapping from a man (shape A) to a giraffe (shape B) is: { 'arm' : 'leg', 'head' : 'head', 'leg' : 'leg', 'torso' : 'torso'}
Note: it is possible to map a part from Shape A to another part from Shape B (or vice-versa) if they have similar positions and functions.
Here are other examples: Input: Shape A: person to Shape B: duck
Output: { 'Shape A parts': ['head', 'arm', 'torso', 'leg'], 'Shape B parts': ['wing', 'leg', 'head', 'torso'], 'Mapping': {'leg': 'leg', 'head': 'head', 'arm': 'wing', 'torso': 'torso'} }
Input: Shape A: person to Shape B: elephant
{ 'Shape A parts': ['arm', 'head', 'leg', 'torso'], 'Shape B parts': ['leg', 'torso', 'tail', 'head'], 'Mapping': {'arm': 'leg', 'head': 'head', 'torso': 'torso', 'leg': 'leg'} }
Input: Shape A: person to Shape B: car
{ 'Shape A parts': ['head', 'torso', 'leg', 'arm'], 'Shape B parts': ['mirror', 'wheel', 'hood', 'frame'], 'Mapping': {'torso': 'frame', 'arm': 'mirror', 'head': 'hood', 'leg': 'wheel' } }
Input: Shape A: cat to Shape B: dog Output: { 'Shape A parts': ['leg', 'head', 'tail', 'torso'], 'Shape B parts': ['leg', 'head', 'torso', 'tail'], 'Mapping':{'leg': 'leg', 'head': 'head', 'tail': 'tail', 'torso': 'torso'} }
So, given the following input: Shape A: SHAPE_SRC_LABEL to Shape B: SHAPE_TRGT_LABEL , what would be a high-quality output?
Note: it is possible to map a part from Shape A to another part from Shape B (or vice-versa) if they have similar positions and functions. Note avoid proposing a mapping using part names that are not proposed in either Shape A or Shape B. Avoid proposing not common part names and duplicates. DO NOT use less common or not well-known part names. Assume you provide an answer to a kid programmer.

Figure 4: The textual prompt for proposing labels representing the semantic regions for an input pair of shapes and semantic region mapping using ChatGPT agent.

Figure 5: The collected synonyms for the ground-truth object classes and semantic regions we used in our proposed evaluation metrics.