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Abstract

Transfer learning is fundamental for addressing prob-

lems in settings with little training data. While several

transfer learning approaches have been proposed in 3D,

unfortunately, these solutions typically operate on an en-

tire 3D object or even scene-level and thus, as we show,

fail to generalize to new classes, such as deformable or-

ganic shapes. In addition, there is currently a lack of un-

derstanding of what makes pre-trained features transfer-

able across significantly different 3D shape categories. In

this paper, we make a step toward addressing these chal-

lenges. First, we analyze the link between feature local-

ity and transferability in tasks involving deformable 3D ob-

jects, while also comparing different backbones and losses

for local feature pre-training. We observe that with proper

training, learned features can be useful in such tasks, but,

crucially, only with an appropriate choice of the recep-

tive field size. We then propose a differentiable method

for optimizing the receptive field within 3D transfer learn-

ing. Jointly, this leads to the first learnable features that

can successfully generalize to unseen classes of 3D shapes

such as humans and animals. Our extensive experiments

show that this approach leads to state-of-the-art results on

several downstream tasks such as segmentation, shape cor-

respondence, and classification. Our code is available at

https://github.com/pvnieo/vader.

1. Introduction

Extracting informative representations from 3D geome-

try is a central task in Computer Vision, Computer Graph-

ics, and related fields. Classical approaches have relied on

hand-crafted features derived from basic geometric princi-

ples [9,11,55,87,100]. More recently, the focus has shifted

towards data-driven approaches that learn features directly

from 3D data [17, 20, 46] in a task-specific manner.

In addition to methods that learn features from scratch

for each application, several recent works have also advo-

cated for general-purpose representation learning on geo-

metric data [51,103,110]. Inspired by the success of transfer

learning in other domains [117], these methods aim to learn
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Figure 1. We present VADER, a novel feature pre-training tech-

nique aiming for deformable shapes. By pre-training local feature

extractors on 3D scenes for rigid alignment, our approach enables

transfer learning to downstream deformable shape analysis tasks,

such as shape matching and semantic segmentation.

informative representations of 3D data, which can then be

exploited in data-limited downstream tasks.

Despite this progress, state-of-the-art architectures in de-

formable shape analysis still either rely on classical hand-

crafted features as input signals to their learning pipelines

[70, 81, 88, 99], or are trained from scratch for each task

[30, 42, 67], thus requiring significant amounts of labeled

data. Unfortunately, as we demonstrate in our work, exist-

ing 3D representation learning approaches fail to provide a

useful signal in tasks that involve highly deformable shapes,

such as shape correspondence or segmentation.

This result is perhaps expected since existing approaches

have primarily focused on transfer learning across man-

made 3D objects or scenes [109], and are typically restricted

to settings with significant domain overlap between training

and test data. Furthermore, there is currently a lack of un-

derstanding of what makes pre-trained features transferable,

especially across significantly different shape classes.

In this work, we aim to investigate the transferabil-

ity of geometric features to develop representation learn-

ing approaches that are useful in downstream deformable

shape analysis tasks, such as non-rigid shape matching

and semantic segmentation (see Fig. 1). Taking inspira-

tion from recent studies that emphasize the importance of

low and mid-level features in enabling 2D transfer learn-

ing [78, 116], we explore the impact of feature locality on

downstream task accuracy across significantly different 3D

shape categories. Our study shows that, with a carefully

chosen architecture, successful general-purpose represen-
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Figure 2. Method overview. We propose generalizable local feature pre-training for deformable shape analysis. We first pre-train a local

feature extractor Fs,Θ, which has a learnable receptive field size s and network parameters Θ, on a pretext task of matching local features

for 3D alignment. We then propose a differentiable method for optimizing the receptive field size s to transfer Fs,Θ to downstream tasks.

For illustration purposes, we use a molecular surface segmentation task as an example on the right.

tation learning for deformable 3D shape analysis is possi-

ble. We also find that the receptive field (or local support)

size plays a crucial role in the transferability of features and

needs to be adapted between training and test data. To ad-

dress this, we propose a receptive field optimization strat-

egy, which, combined with a specific pre-training approach,

leads to state-of-the-art results on a wide range of down-

stream tasks. An overview of our proposed method can be

found in Fig. 2.

To summarize, our main contributions are as follows:

1. We investigate the link between the locality of geomet-

ric (3D) features and their transferability in challeng-

ing deformable shape tasks.

2. We build upon the investigation and propose a novel

method for optimizing the receptive field size of local

features in the context of transfer learning in 3D tasks.

We demonstrate that this optimization brings signifi-

cant improvement and allows pre-trainable features to

generalize well to unseen data in downstream tasks.

3. We show that pre-training local features with an unsu-

pervised cycle consistency loss outperforms the stan-

dard contrastive PointInfoNCE loss.

4. Based on all of these insights, we propose a new lo-

cal feature pre-training mechanism and show its utility

in a wide range of tasks involving deformable objects,

going beyond man-made objects or scenes considered

in previous 3D transfer learning approaches.

2. Related Work

Extracting robust local features is a key problem in 3D

shape analysis, and a full review is beyond the scope of

this paper. Below we discuss methods most closely related

to ours and refer the readers to both early [16, 44, 49] and

more recent surveys including [17,20,45,46] for a compre-

hensive overview of local feature extraction and geometric

deep learning more broadly.

Hand-crafted features. Early efforts in designing in-

formative features for 3D geometry have focused primar-

ily on either ensuring invariance to rigid motion [55, 59,

60, 101, 114] or intrinsic features invariant to isometries.

Intrinsic descriptors are typically based on either analysis

of geodesic distances [38, 50] or derived quantities such

as spectral properties arising from the eigenbases of the

Laplace-Beltrami operator [9, 18, 100]. Intrinsic descrip-

tors, such as the HKS [100] and WKS [9], are a very pop-

ular choice in deformable shape correspondence methods,

especially based on the functional maps framework, e.g.,

[1, 19, 33, 54, 82, 92, 95], among many others.

Learning for deformable shape matching. To overcome

the limitations of hand-crafted features, more recent ap-

proaches have tried to learn descriptors directly from de-

formable shape data [6, 15, 72, 77, 88, 108]. Remarkably,

however, many learning-based works still use hand-crafted

features (most commonly, SHOT, HKS, WKS, or similar) as

input to their learning pipelines [32, 69, 70, 76, 96, 99, 104].

Several recent works [5, 7, 30, 35, 42, 67, 75] investigate

learning robust deformable shape correspondence directly

from raw geometry, either by exploiting extensive train-

ing sets or combining spatial and spectral regularization

[30, 32]. Nevertheless, the features learned in these works

are typically application and dataset-specific and fail to gen-

eralize to new shape classes and shape processing tasks.

Learning for man-made shape matching. A parallel line

of studies has focused on learning local geometric features

for man-made object or scene alignment. Many efforts have

been made to explore different representations for local 3D

geometry [29, 41, 52, 56, 66, 115]. With the advancement

of 3D deep learning techniques, networks based on Point-

Net [4, 105, 106, 112, 113], sparse convolution [24, 26], or

kernel point convolution [10] have been applied to dense



feature extraction. However, these networks have very lim-

ited generalization ability even across 3D scene datasets,

such as from indoor scenes to outdoor scans [10], due to

local features being coupled with global scene structures.

Feature pretraining. Most closely related to ours are

the recent PointContrast [110] and its follow-up works

[23, 51, 103] that explore the potential of learning informa-

tive representations for 3D data, which can then be lever-

aged in downstream tasks. In contrast to these works, which

focus on man-made objects or scenes, we consider general-

izable feature pre-training for deformable shape analysis,

and study generalizability across significantly different 3D

shape categories. Most importantly, our work highlights the

impact of feature locality on transferability, which is lack-

ing in prior works.

3. Motivation

Our main objective is to build a general-purpose feature

extractor that can be applied to highly deformable shape

analysis tasks, such as matching human shapes or segmenta-

tion of molecular surfaces, among others. We first examine

existing designs of geometric feature pre-training and per-

form a pilot study to understand their generalization power

in such tasks. Our key insight is that the locality of geomet-

ric features plays a crucial role in their transferability across

different categories, which has so far been overlooked in

prior works. To this end, we first perform an in-depth anal-

ysis of feature locality versus transferability in a represen-

tative deformable shape matching task.

Revisiting PointContrast. PointContrast [110] is a recent

feature pre-training framework, in which a geometric fea-

ture extractor is pre-trained by a pretext task involving cor-

respondences on 3D scenes [28] related by rigid motion.

Specifically, PointContrast uses a fully-convolutional sparse

U-Net [26] to output a feature vector for every point in the

input. During pre-training, given two scene fragments, a

contrastive PointInfoNCE loss is used to minimize the fea-

ture distance for corresponding points and maximize it for

non-corresponding ones:

Lnce = −
∑

(i,j)∈Ω

log
exp(fi · fj/τ)

∑

(·,k)∈Ω exp(fi · fk/τ)
, (1)

where Ω is the set of corresponding point pairs in the over-

lap region, f□ denotes the learned point-wise feature vector,

and τ is a temperature hyper-parameter.

Pilot study on deformable shapes. We study the link be-

tween the locality of geometric features and their transfer-

ability through the lens of a downstream deformable shape

matching task [30, 32, 48, 96, 98]. Specifically, we lever-

age a widely-used human shape dataset, FAUST-Remeshed

(FR) [12, 93], consisting of 100 humans in diverse poses.
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Figure 3. Feature locality vs. transferability in a downstream task

of non-rigid shape matching on the FAUST-Remeshed dataset. Lo-

cal in the legend denotes local patch-based input at each point.

Given a pair of 3D shapes as input, we first use pre-trained

feature extractors to compute a feature vector for every

point in the input. We then find correspondences via near-

est neighbor search between the extracted features and ap-

ply a lightweight refinement with ZoomOut [80], a common

practice in prior works. We use the standard mean geodesic

error [57] as the evaluation metric. Note that there is no

fine-tuning of network weights, and thus this study provides

a good indication of how informative and transferable the

pre-trained features are in downstream applications.

Feature locality vs. transferability. We evaluated the

features produced by PointContrast in this context and ob-

tained a matching error of 28.7, compared to 6.1 achieved

by a recent axiomatic method [92]. We attribute this limited

utility of PointContrast features for deformable shapes to

the global structure of its network, which employs a fully-

convolutional U-Net design. Furthermore, this network is

trained on entire 3D scenes with a global receptive field,

making it significantly less likely to generalize to unseen

shape categories.

To address this issue, we propose to limit the receptive

field size and pre-train feature extractors that take as in-

put only a local patch centered at each point, and output a

feature vector for the center point (Fig. 2). Intuitively, the

space of local patches is significantly smaller than the space

of shapes, thus potentially enabling generalization across

different shape categories [3, 21, 37, 39, 43, 102].

To evaluate this general approach, we select three dif-

ferent architectures for pre-training a local feature extrac-

tor: a) SparseConv [25,110], a sparse tensor-based network,

which also constitutes the backbone of PointContrast; b)

PCPNet [43, 90], a PointNet-based architecture; and c) 3D

CNN [41, 65], operating on voxel grids. We then pre-train

these local feature extractors for the rigid alignment task on

3D man-made scenes [115], following a similar strategy as



in PointContrast. We follow the standard design choices and

optimal pre-training patch size as used in the existing liter-

ature. Please see the exact architectures and pre-training

details in the supplementary.

Given these pre-trained local feature extractors, a natural

question would be how to adapt the receptive field (patch)

size between pre-training and downstream 3D data, which

may consist of significantly different shape classes, to make

the local feature extractors generalize well. For this, we test

a wide range of receptive field sizes (as ratios of the pre-

training one) and plot their corresponding matching perfor-

mance on FR in Fig. 3.

When comparing PointContrast and Local SparseConv

in Fig. 3, we observe that making the network local and

operating on patches significantly improves feature trans-

ferability, especially for some specific receptive field size in

this downstream task. Moreover, we observe that Local 3D

CNN has the best generalization performance on FR, com-

pared to Local SparseConv and Local PCPNet.

Most importantly, this pilot study highlights the impor-

tance of feature locality and the crucial role that the optimal

receptive field size plays in the downstream task for suc-

cessful transfer learning. In practice, performing an exhaus-

tive search of receptive field sizes is typically infeasible. To

address this issue, we propose a differentiable approach to

feature locality optimization for downstream 3D geometric

data (Sec. 4.2).

4. Methodology

In this section, we first briefly introduce our chosen local

feature pre-training method in Sec. 4.1. We then describe

our novel differentiable method for optimizing the recep-

tive field size of local features for transfer learning across

datasets in Sec. 4.2.

In the following, we represent our local feature extrac-

tor as Fs,Θ, where s ∈ R is a learnable receptive field size

(Sec. 3) and Θ denotes the parameters of the network back-

bone. Given a shape P represented as either a triangle mesh

or a point cloud and a point p ∈ P , the feature extractor

Fs,Θ associates a feature vector to p, which summarizes

the local 3D geometry around p. The feature extractor is

composed of two stages: local patch extraction, denoted

by Gs(p, P ), and geometric feature extraction, denoted by

HΘ(Gs(p, P )) = Fs,Θ(p, P ).

4.1. Local Feature Pre-training

Feature extraction. Following the transferability study in

Fig. 3, we build Fs,Θ by adapting the local feature extractor

architecture from WSDesc [65], which is based on a voxel-

based representation [41,115] and a 3D CNN for geometric

learning. Fig. 4 illustrates the local patch extraction pro-

cedure. A voxel grid Vp = Gs(p, P ) is anchored at p,
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Figure 4. To extract local features, we parameterize the 3D geom-

etry around point p ∈ P with a voxel-based representation Vp,

reoriented by a local reference frame (LRF) and endowed with an

optimizable receptive field size s.

whose size is determined by the optimizable s, to capture

the local geometric structure. Vp is reoriented by a local

reference frame (LRF) for rotation invariance in local fea-

tures [41, 65]. The voxel values in Vp are computed by a

differentiable voxelization layer based on probabilistic ag-

gregation [65] for back-propagating gradients to s. Next,

for geometric feature extraction, Vp is fed to a 3D CNN

HΘ, which consists of six convolutional layers with ReLU

and normalization in-between [41]. The resulting feature

vector HΘ(Vp) is 32-dimensional.

Pre-training loss. We adopt the pretext task of match-

ing local features for 3D scene alignment, as advocated in

PointContrast [110], to pre-train the feature extractor Fs,Θ.

This allows us to gain access to large-scale 3D training data,

which has been absent thus far for deformable shape anal-

ysis. In this work, we examine two different loss functions

for pre-training: one is the PointInfoNCE loss Lnce (Sec. 3),

and the other is an unsupervised loss Lc based on cycle con-

sistency, introduced in [65] and briefly described below for

completeness.

Cycle consistency evaluates the extracted features in a

rigid registration pipeline without using ground truth labels.

Given two shapes P and Q and their per-point features ex-

tracted by Fs,Θ, putative correspondences between P and

Q are first constructed by differentiable nearest neighbor

search [86] in the learned feature space. Then a 3D trans-

formation aligning P to Q is estimated from the corre-

spondences and represented as a rotation R ∈ R
3×3 and

a translation t ∈ R
3. Let R′ and t′ denote the computed

alignment, in the reverse direction, from Q to P . The cy-

cle consistency loss enforces the composition of (R, t) and

(R′, t′) to be an identity matrix as follows:

Lc = ∥RR′ − I∥1 + ∥Rt′ + t∥1, (2)

where I is an identity matrix. We refer the reader to [65] for

more details.

As shown in Fig. 3, pre-training with Lc leads to local



features having significantly better transferability on FR,

compared to pre-training with Lnce.

This is remarkable as the PointInfoNCE loss is a go-to

choice for representation learning across many domains and

application scenarios [23, 34, 64]. We ascribe this perfor-

mance difference partly to the fact the PointInfoNCE loss

focuses on whether individual point correspondences are

correct or not, and does not consider local or global fea-

ture consistency [64]. In contrast, the cycle consistency

loss jointly assesses all the extracted local features and thus

imposes correspondence consistency between P and Q for

successful global alignment. As a result, Lc promotes more

consistent (and smoother) local features to be learned for

nearby points than Lnce.

To validate this hypothesis, we measure the Dirich-

let energy [84] of the pre-trained features (the lower, the

smoother) on the human shapes of FR, resulting in 86.8

for Lnce and 75.4 for Lc. These measurements confirm

that the local features pre-trained by the cycle consistency

loss are smoother (and thus more consistent) than those by

the PointInfoNCE loss, which can potentially benefit down-

stream applications, especially across different datasets.

4.2. Local Feature Transfer

As we demonstrated in Sec. 3, the size of the receptive

field is of crucial importance for downstream tasks. In this

section, we introduce a receptive field optimization method,

which automatically determines the best receptive field for

each downstream dataset. To this end, we take advantage of

the full differentiability of our network design and optimize

the learnable receptive field size s, so that the distribution

of features extracted on the target dataset is similar to that

of features extracted by the pre-trained network on the pre-

training dataset.

We draw inspiration from the domain adaptation liter-

ature [53, 62, 68, 73], where the main goal is to transfer

knowledge from a network trained in a domain with abun-

dant labeled data to a domain of interest with minimal or

unlabeled data. This is achieved by minimizing the domain

shift between the feature distribution of the two domains

using some distance in the probability measure space. Thus

we propose to minimize the discrepancy between the distri-

bution of features extracted from the pre-training dataset,

and the distribution of features extracted from the target

(downstream) dataset. For this, we base our approach on

the Maximum Mean Discrepancy (MMD) used in previous

works [14, 73, 74, 91]. Intuitively, networks are pre-trained

to have a strong response signal under the distribution of

training local patches, and thus our goal is to optimize the

local patch sizes, given unlabeled downstream data, so that

the extracted features have a similar distribution.

In practice, after pre-training the feature extractor, we

sample ns points from the pre-training (source) dataset and

extract the features from these points with the pre-trained

network. We denote these features as F s = {fs
i }i=1..ns

.

For each new downstream (target) dataset, we formulate an

optimization problem, where we freeze the network back-

bone weights Θ but optimize the receptive field size s, so

that the network produces features as close to F s as possi-

ble, using the MMD metric. Our network is fully differen-

tiable, and we solve this problem via gradient descent to find

the optimal receptive field s. This optimized receptive field

is then used for all downstream tasks involving this dataset.

At each iteration during optimization, we randomly sample

nt points from the target dataset and compute features for

them with the pre-trained network. We denote these fea-

tures as {f t
i }i=1..nt

and formulate the loss as follows:

Emmd =
1

nsns

ns
∑

i,j=1

κ(fs
i , f

s
j ) +

1

nsnt

ns,nt
∑

i,j=1

κ(fs
i , f

t
j )

+
1

ntnt

nt
∑

i,j=1

κ(f t
i , f

t
j ), (3)

where κ is the Radial Basis Function (RBF) kernel. The

Adam optimizer [58] is used in gradient descent.

Figure 5. Qualitative visualization of the receptive field of local

patches used in our downstream experiments on both the human

and RNA datasets. The points of interest are indicated in black.

The surface areas in pink represent the local receptive fields after

optimization. We also show the corresponding voxel grids and the

XYZ axes of the local reference frames.

5. Experiments

In this section, we provide extensive experiments to

highlight the generalization power of our local feature pre-

training and receptive field size optimization methods in

a suite of downstream shape analysis tasks especially in-

volving highly deformable, organic shapes. We consider

diverse benchmarks including human and partial animal

shape matching as well as molecular surface segmentation.

We reuse the same pre-trained local feature extractor Fs,Θ

and then perform our receptive field size optimization once

individually on each deformable shape dataset (Sec. 4.2).



Method / Dataset FR-SH SR-SH

SURFMNET [96] 30.1 28.6

Cyclic FMaps [40] 36.5 38.6

WSupFMNet [98] 26.3 30.2

Deep Shells [32] 26.3 22.8

DiffusionNet - XYZ 22.4 23.3

DiffusionNet - HKS 10.4 15.4

DiffusionNet - WKS 9.3 24.0

DiffusionNet - SHOT 10.8 21.5

DiffusionNet - PCH 25.8 33.2

DiffusionNet - PCN 22.6 36.2

DiffusionNet - VADER (ours) 6.4 6.9

Table 1. Performance of various features for unsupervised de-

formable shape matching on un-aligned data. X-Y means training

on X and testing on Y. Values are mean geodesic error ×100 on

unit-area shapes.

Implementation. We denote our features as VADER for

Voxelized Alignment-based DEscriptoR. In the pre-training

stage, we use the 3DMatch dataset [115] and train the local

feature extractor Fs,Θ for 16K steps. We use the Adam op-

timizer with a learning rate of 10−3 for network weight up-

date. For receptive field size optimization, we use the same

learning rate for Adam, and we take ns = 104 extracted

patches from the pre-training dataset.

Baselines. We compare a wide spectrum of hand-crafted

and pre-trained features in deformable shape tasks. For the

hand-crafted features, we consider the Heat Kernel Signa-

ture (HKS) [100], Wave Kernel Signature (WKS) [9], and

SHOT descriptors [101], as well as the straightforward ver-

tex positions (XYZ). For the pre-trained features, we use the

PointContrast features learned with the PointInfoNCE loss

(PCN) or a hardest-contrastive loss (PCH) [110].

5.1. Human Shape Matching

Unsupervised matching. We perform unsupervised shape

matching [32, 96] on the FAUST-Remeshed (FR), SCAPE-

Remeshed (SR), and SHREC’19 datasets (SH) [2, 12, 79,

93], consisting of 100, 71, and 44 unaligned human shapes

in different poses, respectively. The same train/test splits

in prior works [32, 98] are adopted. We feed the above

baseline features and our VADER respectively as input to

a surface learning backbone DiffusionNet [99], which pro-

duces a functional map [70, 82] as output for a given pair

of shapes. We leverage the unsupervised functional map

losses [98] for training the backbone. The evaluation metric

is the mean geodesic error of predicted maps with respect

to the ground truth on unit-area shapes [57]. We use X-Y to

denote training on dataset X and testing on dataset Y.

As shown in Tab. 1, our approach yields the best re-

Source Target XYZ HKS SHOT VADER (Ours)

Source Target XYZ HKS WKS VADER (Ours)

Figure 6. Qualitative comparisons of human shape matching by

texture transfer. Top: results of unsupervised matching on SH.

Bottom: results of supervised matching on FQ. The best three per-

forming competitors are shown.

sults for unsupervised shape correspondence in both FR-SH

and SR-SH settings, while the other tested features fail to

achieve reasonable matching performance. We stress that

this is a challenging test case as most existing unsupervised

methods rely on aligned shapes, e.g., [31,98]. Note that the

PointContrast features perform worse than the hand-crafted

features, indicating the overfitting to the pre-training data

distribution, as discussed in Sec. 3, and thus the limited

transferability. Our approach also outperforms several re-

cent unsupervised approaches in Tab. 1, including SURFM-

NET [96], Cyclic FMaps [40], WSupFMNet [98], and Deep

Shells [32]. The comparisons clearly demonstrate the utility

of incorporating generalizable pre-trained features, which is

missing in prior works. We provide qualitative comparisons

in Fig. 6 (Top), showing that only our approach leads to vi-

sually plausible results.

Robustness to meshing. We evaluate the performance

of supervised shape matching [30] on the original FAUST

(FO) dataset [12] and its remeshed version by quadratic er-

ror simplification (FQ) [99] to demonstrate the robustness

and generalization of our approach against significant mesh

connectivity changes across datasets. We build a point-wise

MLP network [70] (to reduce the dependence on the back-

bone architecture) on top of the baseline features and our

VADER respectively, and then predict functional maps for

shape pairs. The MLP backbones are trained on FO with

predictions supervised by the ground-truth maps with a sim-

ple L2 loss. We report the mean geodesic error metric on

FQ.

Fig. 7 shows the correspondence quality with a varying

error threshold. It can be seen that hand-crafted features

such as SHOT degrade rapidly under remeshing. Although
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Figure 7. Accuracy of various features for supervised shape

matching when the connectivity changes from training to test

(mean errors ×100 are reported in the legend).

Method Accuracy ± s.d

Full Dataset 50 Shapes 100 Shapes

PointNet++ [90] 74.4% ± ±

PCNN [8] 78.0% ± ±

SPHNet [89] 80.1% ± ±

SplineCNN [35] 53.6% ± ±

SurfaceNetworks [61] 88.5% ± ±

DiffusionNet - XYZ [99] 90.5 ± 0.6% 82.7 ± 0.63% 83.4 ± 0.67%

DiffusionNet - HKS 90.6 ± 0.15% 82.7 ± 0.16% 84.5 ± 0.09%

DiffusionNet - WKS 88.7 ± 0.26% 77.6 ± 0.16% 81.2 ± 0.20%

DiffusionNet - SHOT 92.1 ± 0.08% 81.6 ± 0.31% 85.7 ± 0.11%

DiffusionNet - PCH 90.3 ± 0.1% 79.9 ± 0.59% 83.6 ± 0.08%

DiffusionNet - PCN 90.1 ± 0.09% 80.1 ± 0.29% 83.4 ± 0.28%

DiffusionNet - VADER (ours) 92.6 ± 0.02% 83.2 ± 0.20% 86.8 ± 0.09%

Table 2. Accuracy of various mesh and point cloud based methods

for RNA segmentation. The reported numbers are mean accuracy

over 5 runs randomly initialized. ± denotes standard deviation.

WKS and HKS are intrinsic features and do not depend on

the meshing connectivity, they are not expressive enough by

themselves and need to be combined with a powerful net-

work backbone such as DiffusionNet, instead of the point-

wise MLPs used in this experiment. Differently, our ap-

proach achieves superior generalization performance in this

challenging setting, showing that VADER is highly robust

to remeshing and resampling, and effectively captures local

geometric structures in deformable shapes. Fig. 6 (bottom)

presents a qualitative comparison of the computed maps

with the three best-performing competitors.

5.2. Molecular Surface Segmentation

Next, we conduct experiments in the molecular surface

segmentation task, which aims to segment RNA molecules

into functional components. We use the dataset introduced

in [89], consisting of 640 RNA triangle meshes, where each

vertex is labeled into one of 259 atomic categories. The

dataset has an 80/20% split for training and test sets. We

Method / Dataset SHREC’16 CUTS Animals

PFM [94] 8.8

FSP [71] 12.2

DiffusionNet - XYZ 4.9

DiffusionNet - SHOT 4.6

DiffusionNet - VADER (ours) 3.7

Table 3. Performance (mean geodesic error ×100) of various fea-

tures on the SHREC’16 CUTS Animals benchmark.

Source Target SHOT PFM FSP VADER (Ours)

Figure 8. Qualitative comparisons of partial animal matching by

texture transfer on the cat class of the SHREC’16 CUTS Animals

benchmark.

feed the baseline features and our VADER respectively as

input to DiffusionNet and train it to predict a label at each

vertex as output.

As shown in Tab. 2, our approach achieves state-of-the-

art segmentation performance when used with the full train-

ing set, outperforming both hand-crafted and pre-trained

PointContrast features as well as several recent shape seg-

mentation networks, such as [61]. We also perform experi-

ments in more challenging settings, where only a fraction of

the training set, with respectively 50 and 100 shapes (corre-

sponding to 9% and 18% of the training set), is used. We

observe in Tab. 2 that our method consistently outperforms

the competitors by a significant margin when given limited

training data. The results highlight that our pre-training and

receptive field size optimization strategies bring significant

improvement to downstream organic shape analysis tasks.

5.3. Partial Animal Matching

We also evaluate how well different geometric features

perform on deformable shapes in the presence of significant

partiality. For this, we test on the challenging SHREC16’

Cuts dataset [27], where the animal classes (cat, centaur,

dog, horse, and wolf) are used for partial shape matching.

We follow the setup of DiffusionNet described in Sec. 5.1

for correspondence prediction.

We compare our approach to XYZ and SHOT as they

are widely used in partial matching pipelines, in addition

to full-fledged methods PFM [94] and FSP [71], specifi-

cally tailored toward partial shape matching. The results

are summarized in Tab. 3. Qualitative results are visual-

ized in Fig. 8. Observe that our approach outperforms the

competitors in this setting by a significant margin, including

specially-tailored partial matching methods PFM and FSP.



% train data PointContrast VADER (ours)

From scratch PointInfoNCE From scratch PointInfoNCE

1% data 53.2 60.7 59.5 66.5

10% data 74.4 73.7 72.2 77.2

100% data 76.9 77.2 79.0 81.2

Table 4. ShapeNet classification accuracy with limited labeled

training data for fine-tuning.

Dataset FR-SR SR-FR

DFAUST 27.7 4.4

3DMatch 4.1 3.8

Table 5. Results of using features pre-trained on different datasets

in the downstream task of unsupervised non-rigid shape matching.

Values are mean geodesic error ×100 on unit-area shapes.

5.4. Shape Classification

We use the ShapeNet dataset [22] to demonstrate the

effectiveness of our pre-trained feature extractor on man-

made objects. We follow the classification setup from Point-

Contrast [110], using pre-trained weights as initialization

for fine-tuning a classification network. Here our feature

extractor is pre-trained with the PointInfoNCE loss. We

conduct experiments on the ShapeNetCore v2 dataset with

the same train/test split as PointContrast. We also consider

a limited fine-tuning data setup, using a fraction of the fine-

tuning data (1% or 10%). The classification accuracy com-

parison is summarized in Tab. 4. It can be seen that fea-

ture pre-training improves performance compared to train-

ing from scratch. Also, our network achieves higher classi-

fication accuracy than PointContrast in all training setups.

5.5. Ablation Study

We also evaluate the role of the pretraining dataset for

local feature learning. For this, we compare 3DMatch used

in our experiments to DFAUST [13], a large-scale dataset

of human subjects in motion. We use the unsupervised

shape matching task and the evaluation protocol introduced

in Sec. 5.1 to test the generalization of a pre-trained feature

extractor to the FR and SR datasets.

The comparisons in Tab. 5 show that pre-training on

3DMatch leads to more generalizable features and con-

sistent matching performance, even though DFAUST has

greater similarity to the downstream human shape datasets

FR and SR. We attribute this to the fact that local geometries

in 3DMatch, which consists of real-world scans, are richer

and more complex than those in template-fitted DFAUST,

leading to a more universally useful pre-training signal.

To validate this, we perform PCA analysis [36] on the lo-

cal patches of 3DMatch and DFAUST. For each dataset, we

first randomly extract 200K local patches. We then encode

each patch as a high dimensional vector by first orienting

(a) (b)

Figure 9. Comparing richness of local geometries in 3DMatch

and DFAUST via PCA. (a) We perform PCA on sampled 3D lo-

cal patches and plot the unexplained variance w.r.t. the number of

principal components. (b) We project the local geometries onto

the first two principal components.

it using a local reference frame and then voxelizing it to a

small 3D grid of resolution = 163 using the method of [41].

The resulting vectors are 4096-dimensional and are fed as

input to PCA. In Fig. 9 (a), we report the unexplained vari-

ance as a function of the number of principal components.

It can be seen that 3DMatch is significantly more diverse

than DFAUST since more principal components are needed

to explain its full variance. In Fig. 9 (b), we visualize the

projection of patches in the first two principal components

and observe that local patches in DFAUST (red dots) are in-

cluded in 3DMatch (blue dots), demonstrating the diversity

and richness of 3DMatch once more.

6. Conclusion and Limitations

In conclusion, we have shown that our method of pre-

training local features on rigid 3D scenes can general-

ize well to new and unseen classes of deformable organic

shapes, enabling effective performance in various shape

analysis tasks. Our study has highlighted the importance

of selecting the right receptive field size to ensure feature

transferability, which has led to the first general-purpose lo-

cal feature pre-training for deformable shape analysis tasks.

This research also sheds light on the relationship between

rigid and non-rigid processing tasks, providing a link be-

tween two fields that have traditionally used different tools.

One limitation of our method is its reliance on dif-

ferentiable voxelization, which can be memory and time-

consuming, particularly during pre-training. Nonetheless,

our results outperform PointContrast [110], a point-based

method that requires more training data and has limited

generalizability. Another limitation is that our features rely

on LRF estimation, which might lack robustness to thin

structures or boundaries of partial shapes. Exploring alter-

native scalable and robust local feature pre-training strate-

gies is an fascinating direction for future work.
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In this document, we collect all the results and discus-

sions, which, due to the page limit, could not find space

in the main manuscript. This supplementary material con-

sists of two parts. First, in Appendix A, we describe more

implementation details mainly regarding our pilot study, lo-

cal feature pre-training, and experiments on downstream de-

formable shape data. Next, in Appendix B, we present addi-

tional experimental results and analysis of our local feature

pre-training strategy and its generalization in downstream

tasks, including deformable shape matching and segmenta-

tion.

A. Implementation Details

A.1. Feature Locality vs. Transferability

In Sec. 3 of the main text, we conducted a pilot study

on feature locality vs. transferability on deformable shapes.

We tested three different architectures for pre-training a lo-

cal feature extractor, and their details are as follows.

SparseConv. We used the ResNet14 architecture intro-

duced in [24]. During pre-training, given a 3D point cloud

P , a fixed-size local patch with a radius of 0.15 is cropped

at point p ∈ P and then reoriented with a local reference

frame (LRF) computed by the method in [41] for rotation

invariance. The resulting local patch is fed to the sparse

convolution network, which extracts a 32-dimensional fea-

ture vector for point p.

PCPNet. It is a variant of PointNet [90] endowed with a

quaternion spatial transformer. We used the single-scale ar-

chitecture proposed by [43]. PCPNet is designed to be a lo-

cal network requiring input patches to have a fixed number

of points. Thus during pre-training, a fixed-size local patch

(radius = 0.15) is cropped at point p and reoriented by an

LRF. The local patch is then resampled to 1,024 points and

fed to the network, resulting in a 32-dimensional feature

vector for point p.

3DCNN. We used the architecture from [65] with a learn-

able receptive field size and differentiable voxelization, the

same as our VADER in Sec. 4.1 of the main text. More

details can be found in Appendix A.2.

Dataset. We pre-trained the above local networks on the

3DMatch dataset, which is a collection of RGB-D scan

datasets with 62 indoor scenes and 4,142 point cloud frag-

ments. There are 13K points on average in a fragment after

downsampling.

Loss. We used the PointInfoNCE loss, in which 300 point

correspondences were randomly sampled for a pair of point

clouds for faster training and the temperature parameter τ
was set to 0.07.

We also used the cycle consistency loss Lc. During pre-

training, we use the extracted features to build correspon-

dences for rigid alignment between shapes P and Q. The

intuition for Lc is that the estimated transformation (R, t)
aligning P to Q should be the inverse of the transforma-

tion (R′, t′) aligning Q to P . Mathematically, this can be

expressed as:

[

R t

0 1

] [

R′ t′

0 1

]

=

[

RR′ Rt′ + t

0 1

]

= I (4)

Application to deformable shape matching. In Fig. 3 of

the main text, we have shown the results of shape match-

ing on the Faust Remeshed dataset, directly using the pre-

trained feature extractors. Given two shapes S1, and S2,

we compute their respective point-wise features F1 and F2

using a specific pre-trained model. We first produce an

estimate of the point-to-point maps Tnn
21 and Tnn

12 using

nearest neighbor search between F1 and F2. We then fil-

ter the correspondences by mutual check: a pair of points

x ∈ S1, y ∈ S2 is considered to be in correspondence,

if and only if in the feature space, x is the nearest neigh-

bor of y, and y is the nearest neighbor of x. This results

in two filtered maps Tmf
21 and Tmf

12 . Finally, we further re-

fine these two maps using the ZoomOut method [80], which

is based on navigating between the spectral and spatial do-

mains while progressively increasing the number of spectral

basis functions. We emphasize that if the initial point-to-

point map is noisy or contains strong ambiguities like sym-

metry ambiguities, ZoomOut is not able to remedy these

errors, thus leading to final correspondences of bad qual-

ity. We perform 10 iterations of ZoomOut, starting from 30

eigenfunctions up to 100 eigenfunctions.

A.2. Local Feature Pre-training

In Sec. 4.1 of the main text, we introduced our local fea-

ture pre-training strategy.



Feature extraction. We use rLRF = 0.3 and σ = 10−3 for

differentiable voxelization [65], and the voxel grid resolu-

tion is set to 163. We pre-trained on the 3DMatch dataset

introduced in Appendix A.1.

Pre-training loss. For the PointInfoNCE loss Lnce, its set-

tings are described in Appendix A.1. For the cycle consis-

tency loss Lc, 300 points were randomly sampled on each

point cloud for feature extraction and alignment estimation.

A relaxation-based solver is used in Lc for estimating a 3D

transformation between two point clouds, and its details can

be found in [65].

In the main text, we investigated the performance dif-

ference between the cycle consistency loss and PointIn-

foNCE loss w.r.t learned feature smoothness. Suppose that

F ∈ R
m×n is the matrix of extracted n-dimensional point-

wise features for a shape of m vertices, we measure the

Dirichlet energy as follows:

EDirichlet(F ) =
1

n

n
∑

i=1

F⊤
i WFi, (5)

where Fi is the ith column of F , and W is the standard

stiffness matrix computed using the classical cotangent dis-

cretization scheme of the Laplace-Beltrami operator [85].

A.3. Baselines

In Sec. 5 of the main text, we tested our proposed

VADER features against a wide spectrum of competitors,

including both hand-crafted and learned features.

Specifically, the Heat Kernel Signature (HKS) and Wave

Kernel Signature (WKS) features are both sampled at 100

values of energy t, logarithmically spaced in the range pro-

posed in their respective original papers. SHOT descrip-

tors are 352-dimensional, and we used the implementation

from the PCL library [97]. PointContrast features are 32-

dimensional, and we used the publicly available implemen-

tation and the pre-trained weights released by the authors1.

A.4. Downstream Shape Analysis Training

In Sec. 5 of the main text, we used DiffusionNet on top

of the baselines features and our VADER respectively, in

both the shape matching and segmentation tasks. We em-

ployed the publicly available implementation of Diffusion-

Net released by the authors2. Unless specified otherwise,

in our experiments, we used four DiffusionNet blocks of

width = 128. The DiffusionNet is trained by an ADAM op-

timizer [58] with an initial learning rate of 10−3.

In Sec. 5.1 of the main text, we also used a point-wise

MLP network on top of the baselines features and our

1https : / / github . com / facebookresearch /

PointContrast
2https://github.com/nmwsharp/diffusion-net

Humans Animals

Figure 10. Visualizing the optimized receptive field for shape

pairs.

VADER respectively for supervised shape matching. For

this, we use the same MLP architecture as in FMNet [70].

After computing the point features with the MLP, we use

them to compute the predicted functional map Cpred as

in [30] and penalize its deviation from the ground-truth map

Cgt using the L2 loss: L = ∥Cpred − Cgt∥
2
2.

A.5. Computational Specifications

All our experiments were executed using Pytorch [83],

on a 64-bit machine, equipped with an Intel(R) Xeon(R)

CPU E5-2630 v4 @ 2.20GHz and an RTX 2080 Ti Graphics

Card.

In terms of computational time, pertaining our method

takes about 12 hours on a single RTX 2080 Ti Graphics

Card, in contrast to the 64 hours required for PointContrast.

The receptive field optimization takes about 20 minutes per

dataset. For feature extraction, our method takes 3 seconds

to extract local features for a 5000-vertex shape, which is on

par with other local features like SHOT [101], but slower

than PointContrast (0.1s). Finally, the forward pass using

VADER takes the same time as for all baseline features,

e.g., 0.2 seconds per iteration for the unsupervised shape-

matching experiment in Sec 5.1 of the main text.

B. Additional Results and Analysis

B.1. Size of the learned receptive field

Fig. 5 of our paper provides an illustration of the opti-

mized receptive field in downstream tasks. In Fig. 10, we

include more visualizations for shape pairs for both humans

and animals. Observe that the optimized receptive field in-

deed corresponds to interpretable concepts, such as the head

or foot of a human, and is consistent across shape pairs.

B.2. Human Shape Matching

In Sec. 5.1 of the main text, we performed unsupervised

shape matching on the FAUST-Remeshed (FR), SCAPE-

Remeshed (SR), and SHREC’19 datasets (SH) and reported

the matching performance in Tab. 1. We provide additional

quantitative results of the FR-SR and SR-FR settings in

Tab. 6. Compared with the baseline features, our VADER

https://github.com/facebookresearch/PointContrast
https://github.com/facebookresearch/PointContrast
https://github.com/nmwsharp/diffusion-net


Method / Dataset FR-SR SR-FR

SURFMNET 15.2 9.5

Cyclic FMaps 23 23.2

WSupFMNet 27.1 14.2

Deep Shells 6.0 3.4

DiffusionNet - XYZ 25.7 8.4

DiffusionNet - HKS 7.9 23

DiffusionNet - WKS 4.2 24.1

DiffusionNet - SHOT 7.2 4.1

DiffusionNet - PCH 11.4 8.7

DiffusionNet - PCN 20.4 9.1

DiffusionNet - VADER (ours) 4.1 3.9

Table 6. Accuracy of various features for unsupervised shape

matching on un-aligned data. X-Y means train on X and test on Y.

Values are mean geodesic error ×100 on unit-area shapes.

Ground truth Ours Ground truth Ours

Figure 11. Qualitative evaluation of RNA segmentation on the

dataset of [89]. Left: ground truth. Right: prediction by Diffu-

sionNet + VADER.

has the best and most consistent performance in both set-

tings.

B.3. Molecular Surface Segmentation

In Fig. 11, we show qualitative results of RNA segmen-

tation using DiffusionNet + VADER. It can be seen that the

challenging RNA molecules can be robustly segmented into

functional components with our pre-trained features.

B.4. Human Shape Segmentation

We performed an additional experiment on the human

shape segmentation task. We used the dataset introduced in

[76], which combines segmented human models taken from

a variety of existing datasets. We used the same train/test

split of 380 training and 18 test shapes as in prior works.

We compared our VADER only with methods that used the

original evaluation protocol as in [76], i.e., without using

post-processing and evaluating the results on the full shape

resolution (techniques such as Mesh Walker [63] are thus

excluded).

We ran each experiment five times and report the mean

and standard deviation of the accuracy in Tab. 7. Our

Method Accuracy ± s.d

GCNN [77] 86.4%

ACNN [15] 83.7%

Toric Cover [76] 88.0%

PointNet++ [90] 90.8%

MDGCNN [89] 88.6%

DGCNN [107] 89.7%

SNGC [47] 91.0%

CGConv [111] 89.9%

DiffusionNet - XYZ 91.9 ± 0.27%

DiffusionNet - HKS 91.5 ± 0.21%

DiffusionNet - WKS 91.8 ± 0.33%

DiffusionNet - SHOT 91.5 ± 0.77%

DiffusionNet - PCH 85.6 ± 0.75%

DiffusionNet - PCN 87.3 ± 0.57%

DiffusionNet - VADER (ours) 92.4 ± 0.25% (+0.9)

Table 7. Human shape segmentation on the dataset of [76]. Our

VADER achieves the state-of-the-art performance among methods

that do not perform post-processing and evaluate on the full shape

resolution. The reported numbers are the mean and standard devi-

ation of the accuracy over five runs initialized randomly.

Ground truth Ours Ground truth Ours

Figure 12. Qualitative evaluation of human shape segmentation

on the dataset of [76]. Left: ground truth. Right: prediction by

DiffusionNet + VADER.

VADER features achieve an accuracy of 92.4± 0.25%, the

state-of-the-art result on this dataset. In Fig. 12, we present

qualitative results of human segmentation using Diffusion-

Net + VADER. Note that the segmentation results are sim-

ply the network predictions, and we do not perform any

complex post-processing to the segmentation.

B.5. Robustness to Noise

We performed an additional experiment to evaluate the

robustness of our features to noise. For this, we followed

the same setup as in Sec. 5.1 of the main text and in Ap-

pendix B.2, by performing unsupervised learning on FR and

testing on SR with an increasing amount of noise as input.

We compared our method to the best three competing fea-

tures. The results are shown in Fig. 13 - left. It can be seen



Noise level 0 Noise level 1 Noise level 2

Figure 13. Left: Evolution of the geodetic error as a function of

different input noise levels. Right: Qualitative visualization of

noise levels.
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Figure 14. Evolution of the RNA segmentation accuracy on the

validation set, during the training of DiffusionNet with different

features.

that our features are more robust to noise, i.e., the perfor-

mance does not vary much with different noise levels (the

intensity of the noise can be seen in Fig. 13 - right), which

is not the case with other features, such as SHOT, whose

performance degrades very quickly.

B.6. Convergence Speed

In our experiments, we observed that our VADER de-

scriptors take less time to train and facilitate learning. To

demonstrate this, we show in Fig. 14 the evolution of val-

idation accuracy during learning of the RNA segmentation

task (Sec. 5.2 of the main text). It can be seen that compared

to the other features, VADER requires far fewer training it-

erations to achieve similar performance. This clearly indi-

cates the better descriptiveness and generalizability of our

features.
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Sharma, Peter Wonka, and Maks Ovsjanikov. Zoomout.

ACM Transactions on Graphics, 38(6):1±14, Nov 2019. 3,

9

[81] Federico Monti, Davide Boscaini, Jonathan Masci,

Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.

Geometric deep learning on graphs and manifolds using

mixture model cnns. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 5115±

5124, 2017. 1

[82] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon,

Adrian Butscher, and Leonidas Guibas. Functional Maps:

A Flexible Representation of Maps Between Shapes. ACM

Transactions on Graphics (TOG), 31(4):30, 2012. 2, 6

[83] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An

imperative style, high-performance deep learning library.

In Advances in Neural Information Processing Systems 32,

pages 8024±8035. 2019. 10

[84] Ulrich Pinkall and Konrad Polthier. Computing discrete

minimal surfaces and their conjugates. Experimental math-

ematics, 2(1):15±36, 1993. 5

[85] Ulrich Pinkall and Konrad Polthier. Computing discrete

minimal surfaces and their conjugates. Experimental Math-

ematics, 2(1):15±36, Jan. 1993. 10

[86] Tobias PlÈotz and Stefan Roth. Neural nearest neighbors net-

works. Advances in Neural information processing systems,

31, 2018. 4

[87] Helmut Pottmann, Johannes Wallner, Qi-Xing Huang, and

Yong-Liang Yang. Integral invariants for robust geometry

processing. Computer Aided Geometric Design, 26(1):37±

60, 2009. 1

[88] Adrien Poulenard and Maks Ovsjanikov. Multi-directional

geodesic neural networks via equivariant convolution. ACM

Transactions on Graphics (TOG), 37(6):1±14, 2018. 1, 2

[89] Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty,

and Maks Ovsjanikov. Effective rotation-invariant point

cnn with spherical harmonics kernels. In 2019 International

Conference on 3D Vision (3DV), pages 47±56. IEEE, 2019.

7, 11

[90] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classifica-

tion and segmentation. Proc. Computer Vision and Pattern

Recognition (CVPR), IEEE, 1(2):4, 2017. 3, 7, 9, 11

[91] Can Qin, Haoxuan You, Lichen Wang, C. C. Jay Kuo, and

Yun Fu. Pointdan: A multi-scale 3d domain adaption net-

work for point cloud representation, 2019. 5

[92] Jing Ren, Adrien Poulenard, Peter Wonka, and Maks Ovs-

janikov. Continuous and orientation-preserving correspon-

dences via functional maps. ACM Transactions on Graph-

ics (TOG), 37(6), 2018. 2, 3

[93] Jing Ren, Adrien Poulenard, Peter Wonka, and Maks Ovs-

janikov. Continuous and orientation-preserving correspon-

dences via functional maps. ACM Transactions on Graph-

ics (ToG), 37(6):1±16, 2018. 3, 6
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