

1. Motivation

2. Contributions

- Extension of the Discrete Optimization framework to pointwise energies
- A new efficient method to promote smoothness for nonisometric shape matching
- [•] Uniformization of **several formulations** for smoothness using coherent notations
- New **non-isometric dataset** with dense ground truth correspondences

3. Background

• Functional map *C* transfer **functions** between shapes. In the spectral basis, they are represented as $K \times K$ matrices

• Smoothness is measured using the Dirichlet Energy of the pointwise map Π : $E_D(\Pi) = \frac{1}{4} \|\Pi X\|_W^2$

Smooth Non-Rigid Shape Matching via Effective Dirichlet Energy Optimization Robin Magnet¹ Jing Ren² Olga Sorkine-Hornung² Maks Ovsjanikov¹ ¹LIX, Ecole Polytechnique, IP Paris ²IGL, ETH Zurich

DiscreteOpt

3. Spectral Algorithms

• ZoomOut¹ and Discrete Optimization² compute correspondences using iterative conversions between functional and pointwise maps. They however only handle spectral energies.

3. Our Algorithm

- **Extends** the DiscreteOpt energy with the Dirichlet Energy
- use an **iterative solver** similar to DiscreteOpt.

$$E_{ours}(C, Y, \Pi) = E_s$$

 $E_{smooth}(\Pi, Y) = \frac{1}{4} \|Y\|_{W}^{2} + \beta \|\Pi X - Y\|_{2}^{2}$

ALGORITHM 1: Meta-algorithm

Input : Initial maps Π_{12}^{in} , Π_{21}^{in} and vertex positions X_1, X_2 **Output:** Refined pointwise maps Π_{12}, Π_{21} **Initialization** : $\Pi_{ij}^{(0)} = \Pi_{ij}^{in}, Y_{ij}^{(0)} = \Pi_{ij}^{(0)} X_j$ for $i, j \in \{1, 2\}$ while Not converged do $C^{(k+1)} = \operatorname{arg\,min}_C E_{\operatorname{bij}}(\Pi^{(k)}, C)$ $Y^{(k+1)} = \operatorname{arg\,min}_Y E^c_{\operatorname{sm}}(\Pi^{(k)}, Y)$ $\Pi^{(k+1)} = \arg\min_{\Pi} E_{ours}(\Pi, C^{(k+1)}, Y^{(k+1)})$

4. Extension of Smoothness Energy

- Smooth Shells and RHM
- extra regularization

References:

- ¹ Simone Melzi et al. Zoomout: Spectral upsampling for efficient shape correspondence, 2019
- ² Jing Ren et al. Discrete optimization for shape matching, 2021

Code : https://github.com/RobinMagnet/smoothFM

methods	accuracy	bijectivity	smoothness	coverage	runtime (s)
Init	12.71	11.70	3.60	24.57%	-
rs w/ ARAP rs w/ nICP rs w/ Shells	$12.16 \\ 9.56 \\ 8.41$	$11.70 \\ 3.89 \\ 2.59$	$\begin{array}{c} 0.71 \\ 1.72 \\ 2.18 \end{array}$	$31.0\%\ 40.4\%\ 51.7\%$	$25.3 \\ 100.8 \\ 48.2$
ZO DO	$\begin{array}{c} 8.57\\ 9.01 \end{array}$	7.14 1.78	$\begin{array}{c} 4.02\\ 3.21 \end{array}$	$67.0\%\ 62.4\%$	$\begin{array}{c} 17.5 \\ 40.9 \end{array}$
Durs w/ D rs w/ RHM	$\begin{array}{c} 8.19\\ 8.10\end{array}$	$2.63 \\ 2.18$	$\begin{array}{c} 1.56 \\ 1.47 \end{array}$	$50.4\% \\ 56.0\%$	21.4 42.1

No. 758800 (EXPROTEA), the ERC Consolidator Grant No. 101003104 (MYCLOTH), and the ANR AI Chair AIGRETTE.

