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Abstract

We introduce pointwise map smoothness via the Dirich-

let energy into the functional map pipeline, and propose an

algorithm for optimizing it efficiently, which leads to high-

quality results in challenging settings. Specifically, we first

formulate the Dirichlet energy of the pulled-back shape co-

ordinates, as a way to evaluate smoothness of a pointwise

map across discrete surfaces. We then extend the recently

proposed discrete solver and show how a strategy based

on auxiliary variable reformulation allows us to optimize

pointwise map smoothness alongside desirable functional

map properties such as bijectivity. This leads to an effi-

cient map refinement strategy that simultaneously improves

functional and point-to-point correspondences, obtaining

smooth maps even on non-isometric shape pairs. Moreover,

we demonstrate that several previously proposed methods

for computing smooth maps can be reformulated as variants

of our approach, which allows us to compare different for-

mulations in a consistent framework. Finally, we compare

these methods both on existing benchmarks and on a new

rich dataset that we introduce, which contains non-rigid,

non-isometric shape pairs with inter-category and cross-

category correspondences. Our work leads to a general

framework for optimizing and analyzing map smoothness

both conceptually and in challenging practical settings.

1. Introduction

Shape correspondence is a fundamental task in Geome-

try Processing, acting as a building block for many down-

stream applications [46, 43, 9]. One of the key challenges

in designing a successful general-purpose shape matching

method is the choice of the objective function that should

promote high quality correspondences and, at the same

time, be easy enough to optimize in order to be applicable

on complex, densely sampled geometric objects.
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Figure 1. Our method can deal with noisy inputs and produce high-

quality and smooth pointwise maps for non-isometric shape pairs.

As a comparison, ZoomOut [28], the current state-of-the-art re-

finement method, cannot explicitly control the map smoothness

and can have large discontinuous patches in the obtained maps.

We report the smoothness metric ED for each map.

A widely acknowledged desirable objective in non-rigid

shape matching is smoothness, which intuitively promotes

local consistency or continuity of computed correspon-

dences, while being less restrictive than, e.g., isometries or

conformal maps. Several works have incorporated smooth-

ness into the map computation pipelines either via auxiliary

energy terms [16], or by structuring the search space priv-

ileging continuous, often low frequency, correspondences

or deformation fields, e.g., [12, 13]. Despite the utility of

smoothness as a supervising signal in map computation, ex-

isting approaches can either be difficult to scale to dense

meshes or are incorporated in an ad-hoc manner. Moreover,

there is no coherent framework for comparing different ex-

isting strategies for promoting map smoothness using a sin-

gle consistent computational and conceptual formalism.

In this paper we focus on the functional map framework,

which was originally proposed as a tool for near-isometric
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Figure 2. DEFORMTHINGS4D-MATCHING Dataset. We construct a new dataset for non-isometric shape matching based on the DE-

FORMTHINGS4D [25]. We show some example humanoid shapes and visualize the cross/inter-category correspondences via color transfer.

Note that the shapes in the same category are remeshed independently (zoom in to see the mesh wireframes).

shape matching [32] and has since then been significantly

extended to different tasks [42, 21] and correspondence

models [40, 24, 10], among many others. The key advan-

tages of this framework are its efficiency and flexibility. The

efficiency of functional maps-based approaches stems from

representing maps as small matrices using a reduced basis,

which leads to small-scale optimization problems. At the

same time, this framework is flexible and can incorporate a

wide range of desirable constraints using simple linear al-

gebraic formulations, e.g., [14, 31, 33].

Although originally functional map-based methods fo-

cused on constraints in the functional (spectral) domain,

recent works have started to highlight and exploit links

that exist between pointwise and functional map represen-

tations, while leveraging the strengths of both [39, 16, 38].

Specifically, a recent discrete optimization scheme was pro-

posed in [38], demonstrating that many desirable map prop-

erties can be optimized directly in the pointwise map repre-

sentation. Unfortunately, while the class of energies consid-

ered in [38] covers many existing functional map objectives,

such as bijectivity or commutativity with the Laplacian, it

does not address desirable pointwise map properties such

as map smoothness. This can lead to local inconsistencies,

such as discontinuous mapped patches, thus severely limit-

ing the utility of the computed maps in practice.

In this paper we introduce a novel method that allows

to explicitly promote pointwise map smoothness within the

functional map framework. Our method is based on, first,

formulating smoothness as the optimization of the Dirich-

let energy of the pointwise map, and second, an iterative

method for solving this energy optimization by extending

the method introduced in [38]. This allows our approach

to be used alongside other desirable objectives, while ex-

plicitly promoting smooth and locally consistent maps. We

therefore both extend the scope of discrete map optimiza-

tion to new energies not covered in [38] and use this insight

to develop an efficient non-rigid shape matching approach

that directly promotes pointwise map smoothness.

In addition to introducing a novel method for promot-

ing smooth maps within the functional maps framework,

we also investigate multiple previous approaches for com-

puting smooth maps in different settings [16, 13, 45, 3] and

show how they can be interpreted as variants of each other

and thus compared within a unified formalism. This allows

us to design a family of different approaches, parametrized

by the choice of the smoothness energy and its associ-

ated optimization strategy. We propose a coherent for-

malism within which various energies can be compared

and demonstrate their relative utility in different settings.

Finally, we observe that most public datasets focus on

near-isometric pairs, making it non-trivial to evaluate ac-

curacy and smoothness in more realistic scenarios, which

can involve diverse and non-isometric shapes. To fill this

gap we introduce a new challenging dataset based on DE-

FORMTHINGS4D [25], but with additional cross-category

ground truth maps (Fig. 2). We use this dataset alongside

existing benchmarks in a comprehensive comparison of var-

ious approaches computing smooth correspondences. To

summarize, our key contributions include:

1. We show how pointwise map smoothness can be formu-

lated and optimized within the functional map frame-

work, by extending the discrete solver proposed in [38].

2. Based on this construction, we introduce a simple and

effective map refinement method that is both computa-

tionally efficient and leads to high-quality results in non-

isometric settings (Fig. 1).

3. We show how several previously proposed methods are

intimately related both to our approach and within them-

selves, and propose a coherent framework, allowing us

to directly compare ways to promote smoothness within

a consistent formalism and computational strategy.

4. We construct a new dataset for non-rigid shape match-

ing tasks with inter-category correspondences for ani-

mal shapes, and inter-/cross-category correspondences

for humanoid shapes that are independently remeshed.

2. Related Work

In this section, we briefly review the previous works of

shape matching, commonly used map evaluation metrics,

and various map solvers, that are most related to this work.

We refer to recent surveys [9, 43, 4] for more thorough dis-

cussions of shape matching.

Shape Matching Our work focuses on the problem of

shape matching, that looks for dense correspondences be-

tween two non-rigid 3D shapes. One solution to shape



matching is to solve for correspondences directly by mini-

mizing an explicit and carefully designed energy [6, 20, 34],

which can lead to complex combinatorial problems with

high computational complexity. An alternative solution is to

find correspondences between parametric representations,

where the input shapes are mapped into a canonical do-

main [26, 2, 1]. Our work is based on the functional map

representation [32, 33], which computes correspondences

between functions defined on the shapes. Different regular-

izers have been proposed to promote the accuracy of func-

tional maps [31, 30, 39, 19, 49, 50]. Computing a functional

map is usually reduced to solving a least-square system,

which has a relatively low computation cost, but recover-

ing a point-wise correspondence from the computed func-

tional map is error-prone [41, 15, 38]. To further improve

the accuracy of the recovered point-wise correspondences,

different refinement methods have been proposed as a post-

processing step [44, 27, 48, 47]. A common technique for

map refinement in the functional maps framework is to it-

eratively update functional maps and the underlying point-

wise maps according to different energies such as Dirichlet

energy and bijectivity [32, 16, 39, 28, 37, 38]. In this work,

we present a new refinement method that can robustly deal

with noisy input and efficiently produce smooth maps in the

functional maps framework.

Metrics for Map Quality Evaluation Different criterion

have been taken into consideration to evaluate map qual-

ity, which are incorporated into map computation. The

most commonly-used metric is the map accuracy, which is

measured by comparing the geodesic distance between the

mapped position and the pre-specified ground-truth posi-

tion. Some previous work [3, 27, 19] adopt a landmark term

to enforce map accuracy. To achieve a fully automatic solu-

tion, other metrics such as smoothness, bijectivity, confor-

mality, and coverage are considered for map optimization

other than accuracy which needs manually specified land-

marks. For example, Reversible Harmonic Maps [16] pro-

poses to optimize the Dirichlet energy together with the bi-

jectivity of the pointwise maps. Smooth Shells [13] adopts

the ARAP energy [45] to compute a smooth deformation

field, which potentially leads to a smooth pointwise map.

[23] blends across multiple maps to get a smooth one. [39]

proposes heuristics to improve the bijectivity, smoothness,

and coverage of the pointwise map in both spatial and spec-

tral domain. In this work, we observe how several previous

proposed approaches are closely related in formulating map

smoothness. We show different variants can be compared

in a coherent way within a consistent formalism.

Map Solver Previous methods adopt different search

space for maps and hence need different solvers. For ex-

ample, some work [17, 44, 11, 35] solve for maps that

are represented by doubly stochastic matrices. Functional

maps framework [32, 31, 30, 39] usually solves a least-

square system for functional maps. Quadratic-splitting

technique [15, 16] is also used to solve vertex-to-point (also

called precise) maps. [38] introduces a discrete solver to op-

timize commonly used functional map energies constrained

on the proper functional maps, which is a subset of func-

tional maps that are associated with pointwise maps. In this

work, we introduce map smoothness into functional map

pipeline and present an efficient algorithm to minimize the

smoothness which extends the scope of discrete solver.

3. Notation & Background
Notation Given a triangle mesh S = (X,F ) with the ver-

tex positions X and face set F , we denote the cotangent

weight matrix by W and the diagonal lumped mass matrix

by A [29]. By solving the generalized eigenvalue problem

Wϕj = λjAϕj , we can obtain the Laplace-Beltrami basis

Φ by collecting the first k eigenfunctions as columns, i.e.,

Φ =
�

ϕ1...ϕk

�

and the corresponding eigenvalues in a diag-

onal matrix, denoted as ∆ = diag
"

λ1...λk

"

. We then have

Φ¦AΦ = I . A pointwise map is denoted as Πij : Si → Sj ,

where the subscript indicates the map direction. Specifi-

cally, Πij ∈ {0, 1}ni×nj (ni is the number of vertices in

Si) is a binary matrix indicating the correspondences be-

tween the two shapes. For example, if the p-th vertex on

Si is mapped to the q-th vertex on shape Sj , we then have

Πij(p, q) = 1 and Πij(p, t) = 0 for ∀t ̸= q.

Functional Maps Framework The goal of shape match-

ing is to find semantically meaningful and continuous point-

wise map for a given shape pair. In this work, we follow

the functional map framework [32] and encode a point-wise

map as a linear transformation (called functional map) in the

Laplace-Beltrami basis. Specifically, for a pointwise map

Πij : Si → Sj , the associated functional map is given as

Cji = Φ 
iΠijΦj . Note that Cji a pull-back linear opera-

tor that maps functions on shape Sj to functions on shape

Si. In the original pipeline [32], a functional map is com-

puted by solving a least-squared system in the continuous

linear operator space, i.e., C21 = argminC∈Rk1×k2
E(C),

where E(·) is a functional map energy that preserves input

descriptors or landmarks, surface area or angles, multiplica-

tive operators, or shape orientation [32, 30, 39, 22]. Solv-

ing for a function map in the unconstrained search space

simplifies the optimization problem, but can lead to errors

when converting the computed functional map to a point-

wise one [41, 15, 38]. Thus, additional post-processing

techniques are used to improve the quality of the pointwise

maps [39, 16, 28, 35].

Discrete Optimization A recent work [38] has proposed

a discrete solver for functional map pipeline which con-

strains the optimization problem to the space of proper

functional maps. Specifically the functional map, C21 =



argminC∈P21
E(C), is solved in a discrete search space

P21 =
�

C21 | ∃Π12 s.t. C21 = Φ 
1Π12Φ2

"

, i.e., the set

of functional maps arising from some pointwise correspon-

dence. The general strategy to solve this constrained prob-

lem, advocated in [38] mimics the Augmented Lagrangian

methods with variable splitting [18] and consists of the fol-

lowing two main steps: (i) reformulate the energy E(·) by

making C21 and Π12 independent variables, and adding a

coupling term:

Ecouple(C21,Π12) =
�

�C21 − Φ 
1Π12Φ2

�

�

2

F
, (1)

(ii) iteratively solve for C21 and Π12 with the other variables

fixed. This approach is shown to be efficient and leads to

high-quality and well-regularized functional maps. Key to

the success of this strategy is the ability to reformulate the

given functional map energy so that the resulting optimiza-

tion problems for C21 and Π12 in step (ii) can be solved

in closed form. In [38], a range of energies is considered

including bijectivity, landmarks preservation, orthogonality

and Laplacian commutativity.

Dirichlet Energy Given two Riemannian manifolds S1

and S2, the Dirichlet energy of a map f : S1 → S2 is

defined as ED(f) = 1
2

�

S1

∥df∥2dµS1
, with df the map dif-

ferential, which intuitively acts as a measure of the stretch

induced by the map (see, e.g., [16] for a discussion). A

smooth map f is therefore characterized as being a mini-

mizer of the Dirichlet energy. In the discrete setting, a map

f : S1 → S2 can be seen as a function between the two

surface embeddings (i.e., f : R
3 → R

3) and is assumed

to be affine on each face. We can then define the discrete

Dirichlet energy [36]:

ED (f) =
�

(xi,xj)∈E(S1)

wij

�

�f(xi)− f(xj)
�

�

2
, (2)

where E(S1) is the set of edges on S1 and wij the cotangent

weight of edge (i, j). We can rewrite Eq. (2) in a more

compact way: ED(f) = Trace(f¦W1f) :=
�

�f
�

�

2

W1

, where

W1 is the cotangent weight matrix of shape S1.

Note that in practice one only needs to store the value

of f at each vertex of S1 and therefore if f is a point-

wise map from S1 to S2, we can represent it in matrix form

f = Π12X2, where the value at row i gives the coordinates

f(xi). We therefore define the Dirichlet energy of the map

Π12 as the Dirichlet energy of f , which is the W -norm of

the pull-back vertex coordinates:

ED (Π12) =
�

�Π12X2

�

�

2

W1

. (3)

Note that [16] adopts a similar formulation to measure

the smoothness of a given map, but pulls-back a high-

dimensional embedding, in which the L2 distance approxi-

mates the geodesic distance, and that is computed via mul-

tidimensional scaling [8].

source ini ZoomOut DiscreteOp ours

ED=101.1 ED=107.4 ED=94.6 ED=3.91

Figure 3. Previous methods focus on improving map accuracy and

do not have explicit control over the map smoothness. Here we

show an example of a non-isometric pair. We report the Dirichlet

energy (ED) of maps after refinement by different methods.

While the Dirichlet energy defines a measure of distor-

tion induced by a map, we note that mapping all vertices in

S1 to a single vertex in S2 leads to zero energy, as seen by

setting f(xi) = y for some fixed y in Eq. (2). The Dirich-

let energy thus only contains partial information about the

quality of the map, and one needs to use additional con-

straints to obtain a non-trivial smooth map.

4. Discrete Solver for Dirichlet Energy

While functional maps intrinsically represent correspon-

dences using low frequency eigenfunctions, thus inducing

some smoothness, they do not provide any explicit control

over the pointwise map smoothness (see Fig. 3).The discrete

solver proposed in [38] has shown that many desirable map

properties can be promoted directly on the functional maps,

including bijectivity, landmarks preservation or conformal-

ity, the latter being unable to effectively promote smooth-

ness as shown in the supplementary material. In this work

we therefore seek to extend this framework by introducing

pointwise map smoothness constraint that can be efficiently

used alongside other objectives.

4.1. Problem Formulation

As discussed in Sec. 3, the Dirichlet energy, seen as a

measure of smoothness, is globally minimized by constant

maps. To avoid such trivial solutions, we propose to cou-

ple a smoothness energy with bijectivity constraints, which

can be enforced in the spectral domain using the discrete

optimization framework [38].

Specifically, given two shapes S1 and S2 we consider

functional maps Cij and pointwise maps Πij from both di-

rections, where (i, j) ∈ {1, 2}2 indicates the map direction.

The discrete solver framework [38] introduces a bijectivity

energy which reads:

E
bij

"

Π, C
"

=
�

ij

�

�ΠjiΦiCji − Φj

�

�

2

Aj
+ α

�

�ΦjCij −ΠjiΦi

�

�

2

Aj
,

(4)

where the first term is derived from a spectral bijectivity

energy and the second is a coupling term between functional

maps Cij and pointwise maps Πji (note the change in map

directions). Note that variables Π and C contain maps in

both directions in order to simplify notations. We refer the

reader to [38] for a detailed derivation.



In this work, we augment this energy using smoothness

constraints, acting on the primal domain instead of the func-

tional (dual) one, which reads:

min
C,Π

Ebij(Π, C) + γ Esmooth(Π) (5)

where Esmooth penalizes non-smooth pointwise maps, its

most basic version being the sum of the Dirichlet energies

of the pointwise maps Esmooth(Π) =
�

ij ED(Πij) with

ED being defined in Eq.(3). In section 5, we highlight how

other common energies for smoothness can be expressed

as variations of this Dirichlet energy, thus enabling their

straightforward introduction within our formulation.

4.2. Smoothness­promoting Discrete Solver

We aim at solving Eq. (5) using a similar algorithm to

the standard discrete solver discussed in Sec. 3. However

as long as the energy Esmooth includes quadratic terms in

Πij , for instance the Dirichlet energy, this solver cannot be

applied as it assumes row-separable variables (see Lemma

4.1 in [38]). Since quadratic terms in the Dirichlet energy

appear as W -norms of terms ΠijXj , we introduce auxiliary

variables Yij as surrogate for products ΠijXj , and add a

corresponding coupling term between the two, resulting in

a new coupled smoothness energy:

Ec
sm(Π, Y ) = Esmooth(Π, Y )+β

�

ij

�

�Yij−ΠijXj

�

�

2

Ai
(6)

where the second term is a spatial coupling term and, us-

ing some abuse of notations, Esmooth(Π, Y ) is obtained by

replacing products ΠijXj in Esmooth(Π) by Yij . In the par-

ticular case where Esmooth = ED, the coupled smoothness

energy is now row-separable for Π:

Ec
sm(Π, Y ) =

�

ij

�

�Yij

�

�

2

Wi
+ β

�

�Yij −ΠijXj

�

�

2

Ai
(7)

Note that this particular half-quadratic splitting was used

in [16] to handle similar constraints. Furthermore we will

show in Sec. 5 that multiple common energy for smoothness

can benefit from this similar technique, resulting in a row-

separable problem for Π in all cases.

Total energy Eventually, the initial optimization prob-

lem, Eq. (5), has been relaxed into a problem of the form

min
Π,C,Y

Eours(Π, C, Y ) with

Eours(Π, C, Y ) = Ebij

"

Π, C
"

+ γ Ec
sm

"

Π, Y
"

(8)

Crucially, this reformulation makes the total energy row-

separable w.r.t. the pointwise maps Π. We can therefore

propose a general iterative method (summarized in Algo-

rithm 1) to minimize the total energy, in the spirit of the dis-

crete solver, which iteratively updates each variable Π, C, Y
with the other two sets fixed.

Solver The solver described in Algorithm 1 is divided

in three optimization problems for which we present the

solution procedure. (1) Computing C(k+1) from Π(k) re-

duces to a simple K ×K linear system, which has actually

been introduced as bijective ZoomOut in [37]. (2) Com-

puting Y (k+1) from Π(k) also reduces to a sparse linear

system whose form depends on the choice of smoothness

energy Esmooth, some of which are given in section 5. In

the case of Esmooth = ED, computing Yij requires solving

(Wi + βIn)Yij = βΠjiXj where the system can be pref-

actored to further improve efficiency. (3) Since introducing

auxiliary variables leads to a row-separable problem for Π,

computing Π(k+1) from C(k+1) and Y (k+1) reduces to a

simple nearest neighbor search. Note that this step is done

in a high-dimensional space obtained by concatenating sev-

eral terms, and can be heavily accelerated by only using

coupling terms from equations Eq. (4) and Eq. (6), which

significantly reduces the embedding dimension on which to

perform nearest neighbor Finally, following [38], we also

increase the size K of the functional map as iterations grow,

which has shown to be a great regularization procedure in

many spectral algorithms.

5. Smoothness Analysis in Unified Framework

In this section, we formulate several existing formu-

lations for promoting map smoothness, including non-

rigid ICP (nICP) [3], as-rigid-as-possible (ARAP) [45],

reversible harmonic maps (RHM) [16], and Smooth

Shells [13]. Our first objective is to provide a coherent for-

mulation of various smoothness terms in the form of the

Dirichlet energy on either a map or a deformation. Sec-

ondly, we aim to show how different energy terms and

solvers can ultimately be introduced in our smoothness-

promoting Discrete Solver. This will form the basis for

our quantitative evaluation in the next section, in which we

compare different terms within our solver. We remain suc-

cinct regarding the following derivations and their incorpo-

ration in our algorithm, and refer the interested reader to the

supplementary material for a more complete overview.

nICP was originally proposed to wrap a source shape S1

onto a target shape S2 via a per-vertex affine deformation

ALGORITHM 1: Meta-algorithm

Input : Initial maps Πin
12,Π

in
21 and vertex positions X1, X2

Output: Refined pointwise maps Π12,Π21

Initialization : Π
(0)
ij = Πin

ij , Y
(0)
ij = Π

(0)
ij Xj for i, j ∈ {1, 2}

while Not converged do

C(k+1) = argminC Ebij

�

Π(k), C
�

Y (k+1) = argminY Ec
sm

�

Π(k), Y
�

Π(k+1) = argminΠ Eours

�

Π, C(k+1), Y (k+1)
�

end



field D. nICP implicitly maintains a pointwise map Π12

such that the deformed coordinates D◦X1 approximate the

pointwise map Π12X2.The total energy reads

Enicp(Π12,D) =
�

�D
�

�

2

W1

+ β
�

�D ◦X1 −Π12X2

�

�

2

A1

(9)

with
�

�D
�

�

2

W1

=
�

i∼j wij

�

�Di −Dj

�

�

2

F
extends the Dirich-

let energy to per-vertex matrices. In our algorithm, this en-

ergy may be used as a surrogate for Ec
sm given in Eq. (7).

ARAP is a commonly-used energy that aims at promot-

ing local rigidity of the shape deformation by enforcing the

deformation to remain locally close to a rotation. ARAP

optimizes both for expected vertex coordinates Y12 and per-

vertex rotations R. The total reformulated energy reads:

Earap(Y12,R) =
�

�Y12

�

�

2

W1

+ λErigid
arap (Y12,R), (10)

where E
rigid
arap is a bilinear term promoting local rigid defor-

mations. One can augment the energy using the coupling

term from Eq. (6) to use the ARAP energy in our algorithm.

Smooth Shells models the deformation D as a simple

per-vertex translation seen as a function S1 → R
3, restricted

to lie in the spectral basis of size K, i.e., D ∈ R
K×3.

In addition smooth shells uses the ARAP energy to en-

force the smoothness of the deformation. Specifically if

Y12 = X1 + Φ1D denotes the updated vertex positions,

the shells energy is defined as

Eshells(D,R,Π12) = Earap(Y12,R) (11)

which is augmented with a coupling term ∥X1 + Φ1D −
Π12X2∥

2
A1

to remain close to given correspondences.

RHM directly minimizes the Dirichlet energy of a map

without manipulating deformation fields. To avoid making

the map collapse the authors look for bijective maps with

the lowest possible Dirichlet energy. Specifically using no-

tations of Sec. 4, smoothness is enforced by minimizing the

same energy as in Eq. (6) extended with a pointwise bijec-

tivity term
�

ij

∥ΠijYji−Xi∥Ai
, resulting in a slower solver.

All these smoothness terms can be incorporated quickly

within our solver, only affecting steps 2. and 3. of algo-

rithm 1. Furthermore note that, for fairness of compari-

son, we ignored additional building blocks used in these

works like normal preservation, high-dimensional embed-

dings, etc. More details on these two points can be found in

the supplementary material.

6. Experiment

6.1. DEFORMTHINGS4D-MATCHING Dataset

We propose DEFORMTHINGS4D-MATCHING (Fig. 2), a

new dataset based on the DEFORMTHINGS4D dataset [25],

a rich synthetic dataset with significant variations in both

identities and types of motions, containing 1,972 anima-

tion sequences spanning 31 categories of humanoids and

animals. However, using DEFORMTHINGS4D to evaluate

shape matching is difficult since: (1) most shape models

are disconnected; (2) the meshes belong to the same cate-

gory are in the same triangulation, which provides perfect

ground-truth but can lead to over-fitting issues for match-

ing algorithms [39], while cross-category ground truth is

missing; (3) some meshes of the synthesized poses have

unrealistic distortions such as large self-intersections and

unnatural twists. We therefore select 56 animal categories

and 8 humanoid categories from DEFORMTHINGS4D, each

containing 15-50 poses selected from different motion clips

while ensuring large enough pose variations. We then apply

LRVD [51] to independently remesh all the meshes in the

same category. For the humanoid shapes, we further use the

commercial software 1R3DS to non-rigidly fit one shape

into another to get cross-category correspondences. See

Fig. 2 for some examples, where the corresponding vertices

are assigned the same color. See supplementary materials

for more details of how we construct the dataset and obtain

the ground-truth correspondences between the remeshed

shapes with different triangulations. The dataset is

available at https://github.com/llorz/3DV22_

DeformingThings4DMatching_dataset.

6.2. Comparison on Smoothness Formulation

We evaluate our method on the standard benchmark

for non-isometric shape matching TOSCA non-Isometric

Dataset [7], and the cross-category humanoid shape pairs

from our DEFORMTHINGS4D-MATCHING Dataset. Note

that on standard benchmarks like the FAUST dataset [5], ex-

isting methods already perform well as shapes remain near-

isometric. We provide some results in Table 2 to show our

method performs similarly in these simple cases, and refer

to supplementary material for additional discussions.

Evaluation Metrics We follow [39] to measure the accu-

racy, bijectivity, coverage and runtime to compare different

methods. Additionally, We apply Eq. (3) to compute the

Dirichlet energy on the obtained pointwise maps to evaluate

the smoothness. See supplementary materials for detailed

definitions and discussions.

Initialization & Baselines Since the tested shape pairs

are highly non-isometric and challenging, standard shape

descriptors failed to produce reasonable initialization as

shown in supplementary. We therefore compute each initial

map from a 5× 5 functional map obtained by using 5 land-

marks. Our baselines can be categorized into three groups:

(1) We compare to ZoomOut (ZO) [28] and Discrete Solver

(DO) [38], the current-state-of-the-art refinement methods

1https://www.russian3dscanner.com/

https://github.com/llorz/3DV22_DeformingThings4DMatching_dataset
https://github.com/llorz/3DV22_DeformingThings4DMatching_dataset
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Figure 4. Qualitative evaluation on two pairs from DEFORMTHINGS4D-MATCHING. For a near-isometric shape pair shown on the top,

all methods achieve smooth maps. For a shape pair that is far from isometry shown on bottom, nICP, ARAP, RHM, and Shells achieve

relatively smooth maps but contain large patch of back-to-front ambiguity. The maps obtained by ZoomOut and Discrete Solver are

locally smooth due to their spectral representation, but fail to maintain global smoothness. As a comparison, our methods can be robustly

generalized to non-isometric shape maps and achieve globally smooth maps.

Table 1. DEFORMTHINGS4D-MATCHING Dataset: Summary

over 433 shape pairs. We highlight the best two in blue, except

those of Shells and RHM (see text for details).

methods accuracy bijectivity smoothness coverage runtime (s)

Init 12.71 11.70 3.60 24.57% -

RHM 11.8 1.6 0.50 56.6%
Shells 11.4 5.1 1.50 50.8%

Ours w/ ARAP 12.16 11.70 0.71 31.0% 25.3

Ours w/ nICP 9.56 3.89 1.72 40.4% 100.8

Ours w/ Shells 8.41 2.59 2.18 51.7% 48.2

ZO 8.57 7.14 4.02 67.0% 17.5

DO 9.01 1.78 3.21 62.4% 40.9

Ours w/ D 8.19 2.63 1.56 50.4% 21.4
Ours w/ RHM 8.10 2.18 1.47 56.0% 42.1

in functional maps pipeline. (2) We compare the stan-

dard Dirichlet Energy with the different variants presented

in Sec. 5, namely nICP [3], ARAP [45], Shells [13] and

RHM [16], all using the same algorithm. We highlight the

Dirichlet energy (ours w/ D) and the RHM energy (ours w/

RHM) as respectively the simplest and globally best per-

forming energies within our algorithm, which we both ad-

vocate. (3) We also include the results using original im-

plementations of RHM and Shells for reference only since

additional regularizers besides smoothness are included.

DeformThings4D-Matching Dataset We report the av-

erage metrics over 433 cross-category shape pairs from

the humanoid shapes from our DEFORMTHINGS4D-

MATCHING dataset in Tab. 1. Among all the baseline meth-

ods, our method achieves the best accuracy. Compared

to ZoomOut (ZO) and Discrete Solver (DO), our two se-

Table 2. Results on a random subset of 200 pairs of the FAUST

dataset. We highlight the best two in blue.

methods accuracy bijectivity smoothness coverage

Init 6.45 5.51 2.67 38.47 %

ZO 3.95 2.16 0.79 82.16 %
DO 4.07 1.08 0.86 77.96 %

Ours w/ D 4.43 1.83 0.64 67.47 %
Ours w/ RHM 3.94 1.11 0.71 79.26 %

lected energies achieve 3× better smoothness on average

with comparable bijectivity and coverage. It suggests that,

our method, as an extended algorithm of discrete solver by

adding a smoothness term, is indeed effective to promote

map smoothness. In supplementary, we also report per-

category map evaluation. We show two qualitative exam-

ples in Fig. 4, where the obtained maps are visualized by

color transfer. For the pair between CRYPTO and SKELE-

TONZOMBIE, we also visualize the per-vertex smoothness

error for each map. We additionally display texture transfer

for a difficult pair in Fig. 5, using [15] to obtain a vertex-to-

point map for each method to improve visualization. While

this figure shows that our maps clearly outperform standard

spectral method starting from poor initialization, there is

room for improvement for all energies.

TOSCA Non-Isometric Dataset contains cross-category

correspondences among one gorilla shape (with 5 different

poses), one male shape (with 7 different poses), and one

female shape (with 12 different poses). We use all 95 non-

isometric shape pairs between the gorilla shapes and the hu-

man (male and female) shapes. The summary evaluation is

shown in Tab. 3. See supplementary for qualitative exam-



Source Initial ours w/nICP ours w/ARAP ours w/Shells ours w/RHM ZoomOut DiscreteOp Ours w/ D

Figure 5. Starting from a poor initial map, our method can produce a more smooth and accurate map compared to the baseline methods.

Table 3. TOSCA Non-Isometric Dataset: Summary over 95 shape

pairs. We highlight the best two in blue, except those of Shells and

RHM (see text for details).

methods accuracy bijectivity smoothness coverage runtime (s)

Init 7.51 7.23 1.94 26.9% -

RHM 9.20 1.37 1.55 54.3 % 818

Shells 10.20 6.72 5.58 45.6 % 29.0

ours w/ ARAP 7.55 8.35 0.83 48.6% 42.8

Ours w/ nICP 7.78 3.63 1.16 40.2% 178

Ours w/ Shells 11.85 7.40 1.18 37.8% 72.5

ZO 12.47 8.17 6.53 56.8% 33.7

DO 13.30 1.90 5.51 53.4% 79.2

Ours w/ D 7.25 3.02 1.22 42.2% 33.3

Ours w/ RHM 6.26 1.87 1.39 53.1% 40.1

ples. Enforcing the smoothness of the pointwise maps via

Dirichlet energy (Ours + D) help us achieve much more ac-

curate and 5× smoother maps. We additionally highlight

that adding extra pointwise bijectivity (ours w/ RHM) has a

positive effect on the metrics, but results in a slower solver.

Finally, while ARAP and nICP energies perform quite well,

the Shells energy seems to suffer from the high level of non-

isometry in the dataset as it mainly relies on spectral quan-

tities.

6.3. Implementation & Parameters

We implemented all the baselines (based on their re-

leased code) and our methods in Python to guarantee a

fair comparison. We follow the discrete solver [38] to

adopt the progressive upsampling technique into our algo-

rithm, which is introduced in [28], and gradually increase

the spatial coupling term weight γ to avoid over-smoothing

in the earlier iterations. Detailed parameters can be found

in supplementary, or in the released version of the code at

https://github.com/RobinMagnet/smoothFM.

7. Conclusion, Limitations & Future Work

In this work, we extended the discrete solver formula-

tion from [38] to optimize the Dirichlet energy to promote

map smoothness. We then proposed an efficient algorithm

that can produce high-quality and smooth maps from noisy

initial maps for between non-isometric surfaces. Further-

more, we demonstrated that multiple previously proposed

methods for computing smooth maps, including nICP [3],

ARAP [45], RHM [16], and Smooth Shells [13], can be re-

formulated in a coherent framework. This allowed us to

compare and analyze different formulations for smoothness

using a single algorithm. Finally, to address the scarcity of

evaluation data, we proposed a new dataset based on DE-

FORMTHINGS4D, with variable mesh structure, and dense

ground truth cross-category correspondences for eight chal-

lenging categories. We believe both our framework and this

dataset can be helpful for the shape matching community.

Our method still has some limitations. First, optimiz-

ing the Dirichlet energy can indeed greatly improve the

smoothness compared spectral methods. This, however, can

come at the expense of loss of coverage, and we observe

that our maps can still collapse locally, as seen from the

texture transfer of Figure 5. It would be interesting to in-

vestigate techniques that to further prevent local collapse

and obtain a smooth maps with high coverage. Second,

our results show that the proposed method improves signif-

icantly results from ZoomOut and discrete solver on com-

plete shapes, even for non-isometric cases. However, for

the partial matching setting, though our maps still outper-

form ZoomOut and discrete solver, there is still a lot room

for further improvement. Finally, our energy is a weighted

sum of a bijectivity and a smoothness term, which can be-

come hard to balance across all initialization quality.

In the future, we would like to study different energies

for partial matching and to ways prevent local map collapse.

It will also be interesting to apply our approach for comput-

ing dense correspondences in other domains, such as point

clouds, graphs or even 2D images.
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Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas,

Frederic Chazal, and Alex Bronstein. Computing and pro-

cessing correspondences with functional maps. In ACM SIG-

GRAPH 2017 Courses, pages 5:1–5:62, 2017. 2, 3

[34] Maks Ovsjanikov, Quentin Merigot, Facundo Memoli, and

Leonidas Guibas. One point isometric matching with the

heat kernel. CGF, 29(5):1555–1564, 2010. 3

[35] Gautam Pai, Jing Ren, Simone Melzi, Peter Wonka, and

Maks Ovsjanikov. Fast sinkhorn filters: Using matrix scaling

for non-rigid shape correspondence with functional maps.

In Computer Vision and Pattern Recognition (CVPR), pages

384–393, 2021. 3

[36] Ulrich Pinkall and Konrad Polthier. Computing Discrete

Minimal Surfaces and their Conjugates. Experimental math-

ematics, 2(1):15–36, 1993. 4

[37] Jing Ren, Simone Melzi, Maks Ovsjanikov, and Peter

Wonka. Maptree: Recovering multiple solutions in the space

of maps. ACM Transactions on Graphics (TOG), 39(6), Nov.

2020. 3, 5

[38] Jing Ren, Simone Melzi, Peter Wonka, and Maks Ovs-

janikov. Discrete optimization for shape matching. In Com-

puter Graphics Forum, volume 40, pages 81–96. Wiley On-

line Library, 2021. 2, 3, 4, 5, 6, 8

[39] Jing Ren, Adrien Poulenard, Peter Wonka, and Maks Ovs-

janikov. Continuous and orientation-preserving correspon-

dences via functional maps. ACM Transactions on Graphics

(TOG), 37(6), 2018. 2, 3, 6
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