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In this supplementary material, we first include more im-
plementation details in Appendix A. Next, we perform fur-
ther investigation of our spectral loss in Appendix B. Fi-
nally, we present more quantitative and qualitative results
in Appendix C.

A. Implementation Details
A.1. 3D Shape Matching

We use DiffusionNet [5] as the feature extraction back-
bone, and its implementation is based on the publicly avail-
able codebase1 released by its authors. The network is com-
posed of four DiffusionNet blocks of width 128. The net-
work takes 3D point positions (i.e., xyz) as input signals
and outputs 128-dimensional point-wise features. We set
the batch size to 1 and use the ADAM optimizer [3] with an
initial learning rate of 0.001. We use servers equipped with
NVIDIA A100 and GeForce GTX 1080 GPUs for network
training.

In Tab. 4, we show the matching performance w.r.t. λ in
Eq. (4) on the SHREC’19 and SMAL datasets, resulting in
the choice λ = 10 for the spectral loss Eq. (9) and λ = 1
for the Dirichlet energy loss Eq. (7).

In Tab. 5, we show the runtime of shape matching on
the SMAL dataset. The statistics were collected on a server
with AMD EPYC 7302 CPU, 512GB RAM, and NVIDIA
A100 GPU. The columns Feature, FMap, and PMap rep-
resent the runtime of feature extraction by DiffusionNet,
functional map computation, and point-wise map computa-
tion with k-d tree, respectively. We reiterate that the feature
matching based methods, i.e., CL, SRFeat-S, and SRFeat-
D, do not require functional map computation at test time.
Note that the distribution of high dimensional features can
affect the nearest neighbor search performance of k-d trees
used in the point-wise map computation. Nevertheless,
SRFeat-D has the best runtime performance.

A.2. Image Matching

We incorporate our proposed smoothness regularization
in DGMC [2] for the 2D image keypoint matching task.

1https://github.com/nmwsharp/diffusion-net

SHREC’19 SMAL
SRFeat-S SRFeat-D SRFeat-S SRFeat-D

λ = 0.1 11.2 7.3 14.4 4.8
λ = 1 10.4 5.4 8.6 3.4
λ = 10 6.1 7.2 4.5 5.0
λ = 100 11.1 37.2 6.6 10.7

Table 4: Matching performance w.r.t. λ on the SHREC’19
and SMAL datasets (mean geodesic error ×100 on unit-area
shapes).

Feature FMap PMap Total
GeomFmaps 0.0226 0.0437 0.0215 0.0878
CL 0.0227 - 0.0794 0.1021
SRFeat-S 0.0227 - 0.0773 0.1000
SRFeat-D 0.0225 - 0.0419 0.0644

Table 5: Runtime (s) per shape pair averaged on SMAL.

Specifically, we build upon the publicly available code-
base2 of DGMC, which is trained with only a contrastive
loss, as mentioned in Sec. 3.1 of the main text. In the
pre-processing stage, each image is forwarded through a
pre-trained VGG16 network, and features of the annotated
image keypoints are then extracted on the relu4 2 and
relu5 1 feature maps through bilinear interpolation and
concatenated together. DGMC adopts SplineCNN, a graph
neural network, to extract 256-dimensional node-wise fea-
tures for matching. Delaunay triangulation is used to con-
struct a graph for the keypoints in each image. To incorpo-
rate our smoothness regularization in the training loss, we
reuse the triangulation result for the Laplacian matrix con-
struction, which is required in Eq. (6) and (8) of the main
text. We set the batch size to 512 and use the ADAM opti-
mizer with a learning rate of 0.001. The network is trained
for 15 epochs.

2https://github.com/rusty1s/
deep-graph-matching-consensus
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SHREC’19 SMAL
w/ FMReg [1] 8.5 6.0
w/ Eq. (8) 5.8 6.1

Table 6: Matching performance of GeomFmaps [1]
with different functional map computation schemes (mean
geodesic error ×100 on unit-area shapes).

B. Spectral Loss
In Eq. (8) of the main text, we propose to compute a

functional map directly from a learned soft point-wise map
within the network. In this section, we perform further in-
vestigation of Eq. (8) and compare it with the FMReg layer
proposed in GeomFmaps [1].

GeomFmaps computes a functional map by treating
learned features as probe functions and solving an energy
minimization problem in the spectral domain (see Sec. 4.4
of [1]), which is referred as the FMReg layer. This layer,
however, needs to solve multiple linear systems within the
network, and requires differentiating through the matrix in-
verse, and thus can be computationally demanding and nu-
merically unstable during training as observed in existing
literature [4, 1].

We also compared our proposal based on the definition
given in Eq. (8) of the main text, with the FMReg layer in-
troduced in [1]. For this, we directly replace the FMReg
layer in GeomFmaps with our Eq. (8) to compute the func-
tional map C, which is compared to the ground-truth Cgt
as the training loss. The rest of the GeomFmaps network is
kept the same.

We remark that GeomFmaps w/ Eq. (8) studied in this
additional experiment is a variant of the functional map ap-
proaches for shape correspondence, which is different from
the feature matching based methods SRFeat-S and SRFeat-
D in our main text. Specifically, GeomFmaps w/ Eq. (8)
does not use any contrastive learning losses, and requires
the Laplacian basis computation and the functional map es-
timation at test time.

In Tab. 6, we show the matching performance on the
SHREC’19 and SMAL datasets. We observe that Eq. (8)
improves GeomFmaps on SHREC’19 and has comparable
performance with the FMReg layer on SMAL. Note that
the performance of our SRFeat-S and SRFeat-D has been
reported in Tab. 1 of the main text. We further show the
runtime statistics in Tab. 7 and observe that Eq. (8) signif-
icantly speeds up the functional map computation by two
orders of magnitude (from 0.0437s to 0.0004s) and reduces
the overall runtime by more than a half.

C. More Results
In Tab. 8, we show the performance of SRFeat-S-D,

which combines CL with the spectral and Dirichlet en-

Feature FMap PMap Total
w/ FMReg [1] 0.0226 0.0437 0.0215 0.0878
w/ Eq. (8) 0.0226 0.0004 0.0193 0.0423

Table 7: Runtime (s) of GeomFmaps [1] with different func-
tional map computation schemes on SMAL.

ergy losses. We performed a hyperparameter search to set
weights for the spectral and Dirichlet energy losses, result-
ing in (0.1, 1) for SHREC’19, and (0.1, 0.1) for SMAL.
Observe that this variant slightly outperforms SRFeat-S but
is comparable to SRFeat-D, indicating that the Dirichlet en-
ergy regularization is sufficient for contrastive learning on
3D shapes. SRFeat-S-D requires more hyperparameter tun-
ing, which may be undesirable in practice.

Method SHREC’19 SMAL
SRFeat-S 6.1 4.5
SRFeat-D 5.4 3.4
SRFeat-S-D 5.3 3.5

Table 8: Matching performance of SRFeat-S-D (mean
geodesic error ×100 on unit-area shapes).

In Fig. 8, we present more qualitative results of non-rigid
shape matching on the SHREC’19 and SMAL datasets. We
note that the matching results are obtained without perform-
ing any post-refinement, which shows the original match-
ing quality of each method. While SRFeat may not be
completely free from correspondence outliers, the results
show that our smoothness regularization brings noticeable
improvement to the matching quality of CL.

In Fig. 9, we also present more qualitative results of the
2D image keypoint matching task on the PASCAL VOC
dataset, demonstrating the improvement of SRFeat over
DGMC.
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Figure 8: More qualitative results from the SHREC’19 and SMAL datasets without using any post-refinement. Correspon-
dence is visualized by color transfer.
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Figure 9: More qualitative results from the PASCAL VOC dataset. Ground-truth corresponding keypoints have the same
color.
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