SRFeat: Learning Locally Accurate and Globally Consistent Non-Rigid Shape Correspondence

Souhaib Attaiki Maks Ovsjanikov Lei Li

LIX, École Polytechnique, IP Paris

1. Motivation

- Task: find corresponding points between deformable shapes via NN search in the local feature space
- Challenge: contrastive learning results in correspondences lacking smoothness and consistency

4. Our Approach

- Inject geometric information into feature learning
- Maintain the simplicity of contrastive learning

2. Contrastive Learning

Feature similarity matrix $\Pi \in \mathbb{R}^{n_1 \times n_2}$:

$$\mathbf{\Pi}^{i,j} = rac{\exp\left(\mathbf{f}_1^i \cdot \mathbf{f}_2^j / au
ight)}{\sum_{k=1}^{n_2} \exp\left(\mathbf{f}_1^i \cdot \mathbf{f}_2^k / au
ight)}$$

- PointInfoNCE loss: $\mathcal{L}_{\mathrm{c}} = -\sum_{i} \log \left(\mathbf{\Pi}^{i,\mathrm{GT}(i)}\right)$
- Issues: ignore geometric structure of shapes and structural properties of the underlying map

3. Contributions

- Smoothness regularization for contrastive learning leading to more coherent correspondences
- A practical link between contrastive learning and spectral shape matching, through comparison of how they process computed correspondence matrices
- A novel method that extends spectral matching but avoids linear solves inside the network
- SOTA results on both 3D dense correspondence and 2D keypoint matching tasks

5. Smoothness Regularization

Dirichlet Energy Loss:

$$\mathcal{L}_{s} = \frac{1}{2d} \sum_{i} \mathcal{E}_{d}(\mathbf{G}_{1}^{i}) + \frac{1}{2d} \sum_{i} \mathcal{E}_{d}(\mathbf{G}_{2}^{i}) \qquad \mathcal{E}_{d}(g) = \int_{\mathcal{S}} \|\nabla g\|^{2} dA$$

Measuring how smooth feature functions are (columns of G_1, G_2)

Spectral Loss: $\mathcal{L}_{\mathrm{s}} = \|\mathbf{C} - \mathbf{C}_{\mathrm{gt}}\|^2$ $\mathbf{C} = \mathbf{\Phi}_1^{\dagger} \mathbf{\Pi} \mathbf{\Phi}_2$

Measuring global consistency in the reduced basis by converting the soft point-wise map T to a functional map)

Effect of smoothness regularization on learned local features

References:

- 1. S. Xie et al. PointContrast: Unsupervised pretraining for 3d point cloud understanding. ECCV 2020.
- 2. M. Ovsjanikov et al. Functional maps: a flexible representation of maps between shapes. TOG 2012.

6. Experiments

3D Shape Matching:

Human datasets: FAUST, SCAPE, SHREC'19 Animal dataset: SMAL

	Train - Test					
Method	F	S	$\overline{\mathbf{F} - \mathbf{S}}$	S - F	_S19	SMAL
SURFMNet	15.0	12.0	32.0	32.0	_	_
UnsupFMNet	10.0	16.0	29.0	22.0	-	_
NeuroMorph	8.5	29.9	28.5	18.2	-	_
DeepShells	<u>1.7</u>	2.5	5.4	2.7	21.1	12.6
FMNet	11.0	17.0	30.0	33.0	_	_
3D-CODED	2.5	31.0	31.0	33.0	_	_
HSN	3.3	3.5	25.4	16.7	-	_
ACSCNN	2.7	3.2	8.4	6.0	-	_
DPFM	2.1	2.3	2.7	<u>2.5</u>	6.6	6.3
GeomFmaps	2.6	2.9	<u>3.4</u>	3.1	8.5	6.0
CL	1.1	1.9	6.1	3.7	10.7	13.7
SRFeat-S	1.1	2.2	3.9	2.5	6.1	4.5
SRFeat-D	1.1	1.9	4.3	2.2	5.4	3.4

Image Keypoint Matching:

PASCAL VOC dataset w/ Berkeley keypoints

Method	Mean Hits@1 (%)
GMN	57.9
PCA-GM	63.8
DGMC	73.0
SRFeat-D	73.9
SRFeat-S	74.3

Acknowledgements:

Parts of this work were supported by the ERC Starting Grant No. 758800 (EXPROTEA) and the ANR AI Chair AIGRETTE

