
A. Limitations

In this section, we discuss the limitations of our ap-
proach. First, there is no formal guarantee that the random
view sampling algorithm covers each triangle. We mainly
used this choice to be compatible with previous work. Al-
ternatively, one could devise a greedy view selection algo-
rithm that ensures each triangle is selected once. Another
approach would be to use a set of uniformly distributed
viewpoints that are fixed for the complete dataset. Second,
we are not able to test other types of large language models
because the latest versions are not publicly available [99].
Third, GLIP prediction is not perfect. For example, it can
incorrectly detect parts that are semantically different but
still look similar (for instance, the front and the backpack
of an astronaut, see Figure 1).

B. SATR Pseudocode

In Algorithm 1, we show the pseudocode of our proposed
method (SATR).

C. Additional Ablation Studies

C.1. Changing the Number of Views

We investigate the effect of changing the number of input
rendered views on our proposed method SATR. In Table 3,
we report the mIoU performance on both the coarse and the
fine-grained FAUST benchmarks. Generally, increasing the
number of views results in better segmentation performance
in both benchmarks. However, the computation time in-
creases, and there are diminishing returns for adding a large
number of views.

C.2. Camera View-port Sampling Approach

We ablate using different sampling approaches for
choosing the camera view-ports. In Table 1, we compare
between sampling camera view-ports using the approach
described in [22] and doing uniform viewpoint sampling
using a range of equidistant elevation and azimuth angles.
We report the mIoU performance on both the coarse and
the fine-grained FAUST benchmarks. We observe that sam-
pling from a normal distribution (µ = 3.14, � = 4) results
in better performance in both benchmarks. The reason be-
hind this is having more control over the range of the eleva-
tion and azimuth angles can produce better views that cover
most of the input mesh and avoid sampling views where a
lot of occlusions may happen. More complex view selection
could be future work.

C.3. Coloring The Input Mesh

We ablate the effect of changing the color of the input
mesh on the performance of SATR. We run three experi-
ments by using four different colors for the input meshes;

Algorithm 1: Segmentation Assignment with
Topological Reweighting (SATR) in highlevel
pseudocode.

Input : Zero-shot 2D object detector D(x, t),
where x is an image and t is a text prompt.

Input : Shape surface as a mesh of faces F .
Input : Set of textual prompts T representing

semantic regions/classes.
Input : Number of views Nviews

Input : The q-ring neighborhood q.
Output: The predicted semantic label of each face

of the input mesh F .
Initialize face scores
S = zeros(F .faces.length, T .length),
Compute the pair-wise geodesic distance between

every pair of faces
G = computeFacePairwiseDistance(F)
Find the q-ring neighborhood for all the faces of

the mesh
Q = getFaceQNeighbors(F , q)
Render the mesh
V , Pixel2Face = renderMesh(F , Nviews)
for v in V do

for t in T do

Detect 2D Bounding Boxes for the given t

prompt
Bv,t = predictBoxes(v, t)
for bt,v in Bv,t do

Get the visible faces inside bt,v

ft,v = getVisibleFaces(bt,v , F ,
Pixel2Face)

Compute capital face
c = computeCapitalFace(ft,v , F)
Compute frequency of the visible faces
wfreq = faceFreq(ft,v , Pixel2Face)
Compute Gaussian Geodesic weights
wgeo = faceGeodesicWeights(c, ft,v)
Compute visibility smoothing weights
wvis = faceVisibilityWeights(ft,v , Q)
Update face scores
Sft,v,it += wgeo * wvis * wfreq

end

end

end

face label = argMax(S, axis=1)
Return face label;

grey, red, blue, and natural skin color. As shown in Table 2,
we find that using the gray color results in the best perfor-
mance compared to other colors.

Coarse-Grained
mIoU

Fine-Grained
mIoU

Uniform Sampling 81.58 43.76
Sampling using Normal Distribution [23] 82.46 46.01

Table 1: Ablation on using different view-port sampling methods
in our proposed method SATR on FAUST coarse and fine-grained
benchmarks. (with ten rendered views as input).

The backpack of an astronaut

Figure 1: GLIP model can incorrectly detect semantically different
parts that look similar. Since the parts of the astronaut suit look
similar, GLIP mistakenly predicts the astronaut’s chest as a part of
the backpack and doesn’t predict a tighter bounding box around
the backpack.

Coarse-Grained
mIoU

Fine-Grained
mIoU

Red 80.62 40.67
Blue 81.35 42.58
Skin color 82.22 44.58
Gray 82.46 46.01

Table 2: Ablation on changing the vertex colors of the input 3D
models to our proposed method SATR on FAUST coarse and fine-
grained benchmarks. (with ten rendered views as input).

C.4. Summation of Reweighting Factors

We replace the multiplication of both of the Gaussian
Geodesic and Visiblity Smoothing reweighting factors as
shown in Equation (12) with addition:

Views Coarse-Grained
mIoU

Fine-Grained
mIoU

5 53.99 25.96
10 82.46 24.3
15 80.48 43.40
20 82.41 45.20
30 84.06 47.87

40 84.26 47.67

Table 3: Ablation on using a different number of rendered views
as input to our proposed method SATR on FAUST coarse and fine-
grained benchmarks.

Backbone Coarse-mIoU Fine-mIoU

SATR-F GLIP [55] 81.16 41.96
SATR (add) GLIP [55] 82.75 44.90
SATR (mul) GLIP [55] 82.46 46.01

Table 4: Ablation on different ways of combining the reweighting
factors.

W⇤
m
[n, k] =

Lm,kX

`=1

W`

m
[n, k, `]⇥ s

n

m,`
⇥ (rm,k

`
+ vm,k[n]).

(13)
We show the mIoU performance on both FAUST coarse

and fine-grained benchmarks in Table 4. The addition of
the reweighting factors gave slight increase in performance
for the coarse benchmark while perform significantly worse
than multiplying the reweighting factors.

