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Fig. 1. There are many ways to coarsen a 52,301×52,301 sparse anisotropic Laplace matrix down to a sparse 500×500 matrix: simplify the mesh [Garland and
Heckbert 1997] and rediscretize; apply algebraic multigrid coarsening [Manteuffel et al. 2017]; or approximate using radial-basis functions [Nasikun et al.
2018]. We introduce a way to measure how well the coarse operator maintains the original operator’s eigenvectors (bottom row). The visualization shows
deviation from a diagonal matrix indicating poor eigenvector preservation. In response, we introduce an optimization to coarsen geometric operators while
preserving eigenvectors and maintaining sparsity and positive semi-definiteness.

We introduce a novel approach to measure the behavior of a geometric
operator before and after coarsening. By comparing eigenvectors of the input
operator and its coarsened counterpart, we can quantitatively and visually
analyze how well the spectral properties of the operator are maintained.
Using this measure, we show that standard mesh simplification and algebraic
coarsening techniques fail to maintain spectral properties. In response, we
introduce a novel approach for spectral coarsening. We show that it is possible
to significantly reduce the sampling density of an operator derived from a
3D shape without affecting the low-frequency eigenvectors. By marrying
techniques developed within the algebraic multigrid and the functional maps
literatures, we successfully coarsen a variety of isotropic and anisotropic
operators while maintaining sparsity and positive semi-definiteness. We
demonstrate the utility of this approach for applications including operator-
sensitive sampling, shape matching, and graph pooling for convolutional
neural networks.
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1 INTRODUCTION

Geometry processing relies heavily on building matrices to repre-
sent linear operators defined on geometric domains. While typically
sparse, these matrices are often too large to work with efficiently
when defined over high resolution representations. A common so-
lution is to simplify or coarsen the domain. However, matrices built
from coarse representations often do not behave the same way as
their fine counterparts leading to inaccurate results and artifacts
when resolution is restored. Quantifying and categorizing how this
behavior is different is not straightforward and most often coarsen-
ing is achieved through operator-oblivious remeshing. The common
appearance-based or geometric metrics employed by remeshers,
such as the classical quadratic error metric [Garland and Heck-
bert 1997] can have very little correlation to maintaining operator
behavior.
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Fig. 2. Our coarsening directly preserves eigenvectors so eigenvalues are
also implicitly preserved: eigenvalue plot of Fig. 1.

We propose a novel way to compare the spectral properties of
a discrete operator before and after coarsening, and to guide the
coarsening to preserve them. Our method is motivated by the re-
cent success of spectral methods in shape analysis and process-
ing tasks, such as shape comparison and non-rigid shape match-
ing, symmetry detection, and vector field design to name a few.
These methods exploit eigenfunctions of various operators, includ-
ing the Laplace-Beltrami operator, whose eigenfunctions can be
seen as a generalization of the Fourier basis to curved surfaces.
Thus, spectral methods expand the powerful tools from Fourier
analysis to more general domains such as shapes, represented as
triangle meshes in 3D. We propose to measure how well the eigen-
vectors (and by extension eigenvalues) of a matrix L ∈ Rn×n on

C

Φ

Φ

the high-resolution domain are main-
tained by its coarsened counterpart L̃ ∈
R
m×m (m < n) by computing a dense ma-

trix Ck×k , defined as the inner product
of the first k eigenvectors Φ ∈ Rn×k and
Φ̃ ∈ Rm×k of L and L̃ respectively:

C = Φ̃
⊤M̃PΦ, (1)

where M̃ ∈ Rm×m defines a mass-matrix on the coarse domain and
P ∈ Rm×n is a restriction operator from fine to coarse. The closer C
resembles the identity matrix the more the eigenvectors of the two
operators before and after coarsening are equivalent.
We show through a variety of examples that existing geometric

and algebraic coarseningmethods fail to varying degrees to preserve
the eigenvectors and the eigenvalues of common operators used in
geometry processing (see Fig. 1 and Fig. 2).

In response, we propose a novel coarsening method that achieves
much better preservation under this new metric. We present an op-
timization strategy to coarsen an input positive semi-definite matrix
in a way that better maintains its eigenvectors (see Fig. 1, right)
while preserving matrix sparsity and semi-definiteness. Our opti-
mization is designed for operators occurring in geometry processing
and computer graphics, but does not rely on access to a geometric
mesh: our input is the matrix L, and an area measure M on the fine
domain, allowing us to deal with non-uniform sampling. The output
coarsened operator L̃ and an area measure M̃ on the coarse domain
are defined for a subset of the input elements chosen carefully to
respect anisotropy and irregular mass distribution defined by the
input operator. The coarsened operator is optimized via a novel

formulation of coarsening as a sparse semi-definite programming
optimization based on the operator commutative diagram.

We demonstrate the effectiveness of our method at categorizing
the failure of existing methods to maintain eigenvectors on a num-
ber of different examples of geometric domains including triangle
meshes, volumetric tetrahedral meshes and point clouds. In direct
comparisons, we show examples of successful spectral coarsening
for isotropic and anisotropic operators. Finally, we provide evidence
that spectral coarsening can improve downstream applications such
as shape matching, graph pooling for graph convolutional neural
networks, and data-driven mesh sampling.

2 RELATED WORK

Mesh Simplification and Hierarchical Representation. The use of
multi-resolution shape representations based onmesh simplification
has been extensively studied in computer graphics, with most promi-
nent early examples including mesh decimation and optimization
approaches [Hoppe et al. 1993; Schroeder et al. 1992] and their mul-
tiresolution variants e.g., progressive meshes [Hoppe 1996; Popović
and Hoppe 1997] (see [Cignoni et al. 1998] for an overview and com-
parison of a wide range of mesh simplification methods). Among
these classical techniques, perhaps the best-known and most widely
used approach is based on the quadratic error metrics introduced in
[Garland and Heckbert 1997] and extended significantly in follow-
up works e.g., to incorporate texture and appearance attributes
[Garland and Heckbert 1998; Hoppe 1999] to name a few. Other,
more recent approaches have also included variational shape ap-
proximation [Cohen-Steiner et al. 2004] and wavelet-based methods
especially prominent in shape compression [Peyré and Mallat 2005;
Schroder 1996], as well as more flexible multi-resolution approaches
such as those based on hybrid meshes [Guskov et al. 2002] among
myriad others. Although mesh simplification is a very well-studied
problem, the vast majority of approximation techniques is geared
towards preservation of shape appearance most often formulated
via the preservation of local geometric features. Li et al. [2015] con-
duct a frequency-adaptive mesh simplification to better preserve the
acoustic transfer of a shape by appending a modal displacement as
an extra channel during progressive meshes. In Fig. 3, we show that
this method fails to preserve all low frequency eigenvectors (since
it is designed for a single frequency). Our measure helps to reveal
the accuracy of preserving spectral quantities, and to demonstrate
that existing techniques often fail to achieve this objective.

Numerical Coarsening in Simulation. Coarsening the geometry of
an elasticity simulationmesh without adjusting the material parame-
ters (e.g., Young’s modulus) leads to numerical stiffening. Kharevych
et al. [2009] recognize this and propose a method to independently
adjust the per-tetrahedron elasticity tensor of a coarse mesh to agree
with the six smallest deformation modes of a fine-mesh inhomoge-
neous material object (see Fig. 3 for comparison). Chen et al. [2015]
extend this idea via a data-driven lookup table. Chen et al. [2018]
consider numerical coarsening for regular-grid domains, where
matrix-valued basis functions on the coarse domain are optimized
to again agree with the six smallest deformation modes of a fine
mesh through a global quadratic optimization. To better capture
vibrations, Chen et al. [2017] coarsen regular-grids of homogeneous
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Fig. 3. As methods of Kharevych et al. [2009]; Kyng and Sachdeva [2016]; Li
et al. [2015] are not designed for preserving spectral properties, they only
preserve very low frequency eigenvectors (top-left corner of matrix images),
but fails for subsequent modes.

materials until their low frequency vibration modes exceeding a
Hausdorff distance threshold. The ratio of the first eigenvalue before
and after coarsening is then used to rescale the coarse materials
Young’s modulus. In contrast to these methods, our proposed op-
timization is not restricted to regular grids or limited by adjusting
physical parameters directly.

Algebraic Multigrid. Traditional multigrid methods coarsen the
mesh of the geometric domain recursively to create an efficient
iterative solver for large linear systems [Briggs et al. 2000]. For
isotropic operators, each geometric level smooths away error at the
corresponding frequency level [Burt and Adelson 1983]. Algebraic
multigrid (AMG) does not see or store geometric levels, but instead
defines a hierarchy of system matrices that attempt to smooth away
error according to the input matrix’s spectrum [Xu and Zikatanov
2017]. AMG has been successfully applied for anisotropic problems
such as cloth simulation [Tamstorf et al. 2015]. Without access to
underlying geometry, AMG methods treat the input sparse ma-
trix as a graph with edges corresponding to non-zeros and build a
coarser graph for each level by removing nodes and adding edges
according to an algebraic distance determined by the input matrix.
AMG like all multigrid hierarchies are typically measured according
to their solver convergence rates [Xu and Zikatanov 2017]. While
eigenvector preservation is beneficial to AMG, an efficient solver
must also avoid adding too many new edges during coarsening (i.e.,
[Kahl and Rottmann 2018; Livne and Brandt 2012]). Meanwhile,
to remain competitive to other blackbox solvers, AMG methods
also strive to achieve very fast hierarchy construction performance
[Xu and Zikatanov 2017]. Our analysis shows how state-of-the-art
AMG coarsening methods such as [Manteuffel et al. 2017] which
is designed for fast convergence fails to preserve eigenvectors and

eigenvalues (see Fig. 1 and Fig. 2). Our subsequent optimization
formulation in Section 3.1 and Section 3.2 is inspired by the łroot
nodež selection and Galerkin projection approaches found in the
AMG literature [Bell 2008; Manteuffel et al. 2017; Stuben 2000].

Spectrum Preservation. In contrast to geometry-based mesh sim-
plification very few methods have been proposed targeting preser-
vation of spectral properties. Öztireli and colleagues [Öztireli et al.
2010] introduced a technique for spectral sampling on surfaces. In a
similar spirit to our approach, their method aims to compute sam-
ples on a surface that can approximate the Laplacian spectrum of
the original shape. This method targets only isotropic sampling and
is not well-suited to more diverse operators such as the anisotropic
Laplace-Beltrami operator handled by our approach. More fun-
damentally, our goal is to construct a coarse representation that
preserves an entire operator, and allows, for example to compute
eigenfunctions and eigenvalues in the coarse domain, which is not
addressed by a purely sampling-based strategy. More recently, an
efficient approach for approximating the Laplace-Beltrami eigen-
functions has been introduced in [Nasikun et al. 2018], based on a
combination of fast Poisson sampling and an adapted coarsening
strategy. While very efficient, as we show below, this method un-
fortunately fails to preserve even medium frequencies, especially
in the presence of high-curvature shape features or more diverse,
including anisotropic Laplacian, operators.

We note briefly that spectrum preservation and optimization has
also been considered in the context of sound synthesis, including
[Bharaj et al. 2015], and more algebraically for efficient solutions of
Laplacian linear systems [Kyng and Sachdeva 2016]. In Fig. 3, we
show that the method of Kyng and Sachdeva [2016] only preserves
very low frequency eigenvectors. Our approach is geared towards
operators defined on non-uniform triangle meshes and does not
have limitations of the approach of [Kyng and Sachdeva 2016] which
only works on Laplacians where all weights are positive.

3 METHOD

The input to our method is a n-by-n sparse, positive semi-definite
matrix L ∈ Rn×n . We assume L is the Hessian of an energy derived
from a geometric domain with n vertices and the sparsity pattern is
determined by the connectivity of a mesh or local neighbor relation-
ship. For example, L may be the discrete cotangent Laplacian, the
Hessian of the discrete Dirichlet energy. However, we do not require
direct access to the geometric domain or its spatial embedding. We
also take as input a non-negative diagonal weighting or mass matrix
M ∈ Rn×n (i.e., defining the inner-product space of vectors from the
input domain). The main parameter of our method is the positive
numberm < n which determines the size of our coarsened output.
Our method outputs a sparse, positive semi-definite matrix L̃ ∈

R
m×m that attempts to maintain the low-frequency eigenvalues and

eigenvectors of the input matrix L (see Fig. 4).

Algorithm 1: Spectral Coarsening given L, M andm

P,K← combinatorial coarsening(L,M,m);
L̃, M̃← operator optimization(L,M,P,K);

We propose coarsening in two steps (see Algorithm 1). First we
treat the input matrix L as encoding a graph and select a subset of
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Fig. 4. When eigenvectors are equivalent (up to sign) before and after coarsening the operator, the matrix C (right) resembles the identity matrix.
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Fig. 6. We visualize the graph shortest path distance from the source point
(gray) to all the other points, where the strength of connections between
adjacent points is defined using different operator-dependent strength
measures. In an isotropic problem, our resulting łdistancež is more robust
to different element sizes and grows more uniformly in all directions (right).

m łrootž nodes, assigning all others to clusters based on a novel
graph-distance. This clustering step defines a restriction operator
(P in Eq. 1) and a cluster-assignment operator K that determines
the sparsity pattern of our output matrix L̃. In the second stage, we
optimize the non-zero values of L̃.

3.1 Combinatorial coarsening

Given an input operator L ∈ Rn×n and corresponding mass-matrix
M ∈ Rn×n , the goal of this stage is to construct two sparse binaryma-
trices K,P ∈ {0, 1}m×n (see Fig. 5). Acting as a cluster-assignment
operator, K has exactly one 1 per column, so that Ki j = 1 indi-
cates that element j on the input domain is assigned to element
i on the coarsened domain. Complementarily, acting as a restric-
tion or subset-selection operator, P has exactly one 1 per row and

Fig. 5. Blue dots and colored
regions indicate łroot nodesž
and clusters selected by P and
K respectively.

nomore than one 1 per column, so
that Pi j = 1 indicates that element
j on the input domain is selected
as element i in the coarsened do-
main to represent its correspond-
ing cluster. Following the termi-
nology from the algebraic multi-
grid literature, we refer to this se-
lected element as the łroot nodež
of the cluster [Manteuffel et al.
2017]. In our figures, we visual-
ize P by drawing large dots on the
selected nodes and K by different
color segments.

Consider the graph with n nodes implied by interpreting non-
zeros of L as undirected edges. Our node-clustering and root-node
selection should respect how quickly information at one node dif-
fuses to neighboring nodes according to L and how much mass or
weight is associated with each node according to M. Although a
variety of algebraic distances have been proposed [Chen and Safro
2011; Livne and Brandt 2012; Olson et al. 2010; Ruge and Stüben
1987], they are not directly applicable to our geometric tasks because
they are sensitive to different finite-element sizes (see Fig. 6).

According to this diffusion perspective, the edge-distance of the
edge between nodes i and j should be inversely correlated with
−Li j and positively correlated with (Mii +Mj j ). Given the units
of L andM in terms of powers of length p and q respectively (e.g.,
the discrete cotangent Laplacian for a triangle mesh has units p=0,
the barycentric mass matrix has units q=2), then we adjust these
correlations so that our edge-distance has units of length. Putting
these relations together and avoiding negative lengths due to posi-
tive off-diagonal entries in L, we define the edge-distance between
connected nodes as:

Di j = max

(
(Mii +Mj j )

(p+1)/q

−Li j
, 0

)
.

Isotropy Anisotropy

Fig. 7. Our coarsening is aware of
the anisotropy of the underlying op-
erator, resulting in a different set of
selected root nodes.

Compared to Euclidean or
geodesic distance, shortest-
path distances using this edge-
distancewill respect anisotropy
of L (see Fig. 7, Fig. 8). Com-
pared to state-of-the-art alge-
braic distances, our distance
will account for irregular mass
distribution, e.g., due to irreg-
ular meshing (see Fig. 6).
Given this (symmetric) ma-

trix of edge-distances, we compute the k-mediods clustering [Struyf
et al. 1997] of the graph nodes according to shortest path distances
(computed efficiently using the modified Bellman-Ford method and
Lloyd aggregation method of Bell [2008]). We initialize this iterative
optimization with a random set of k root nodes. Unlike k-means
where the mean of each cluster is not restricted to the set of input
points in space, k-mediods chooses the cluster root as the mediod-
node of the cluster (i.e., the node with minimal total distance to all
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Fig. 8. We visualize the graph shortest path distance from the source point
(gray) to all the other points. Our operator-dependent distance can handle
both isotropic and anisotropic problems, whereas standard geometry-based
measure (e.g. edge length) is limited to isotropic problems.
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Fig. 9. Coarsening with our operator-aware distance (left) results in a better
eigenfunction preservation compared to the farthest point sampling (middle)
and the random sampling (right) on an anisotropic operator.

other nodes in the cluster). All other nodes are then re-assigned to
their closest root. This process is iterated until convergence. Cluster
assignments and cluster roots are stored as K and P accordingly.
Comparing to the farthest point sampling and the random sampling,
our approach results in a better eigenfunction preservation image
for anisotropic operators (Fig. 9).
We construct a sparsity pattern for L̃ so that L̃i j may be non-

zero if the cluster j is in the three-ring neighborhood of cluster i as
determined by cluster-cluster adjacency. If we let SL ∈ {0, 1}

n×n be a
binarymatrix containing a 1 if and only if the corresponding element
of L is non-zero, then we can compute the łcluster adjacencyž matrix
Ã = KSLK

⊤ ∈ {0, 1}m×m so that Ãi j = 1 if and only if the clusters i
and j contain some elements u and v such that Luv , 0. Using this
adjacency matrix, we create a sparse restriction matrix with wider
connectivity SG = K⊤Ã ∈ {0, 1}n×m . Finally, our predetermined
sparsity pattern for L̃ is defined to be that of SL̃ = SG

⊤SLSG = Ã3 ∈
{0, 1}m×m . We found that using the cluster three-ring sparsity is a
reasonable trade-off between in-fill density and performance of the
optimized operator. Assuming the cluster graph is 2-manifold with
average valence 6, the three-ring sparsity implies that L̃ will have
37 non-zeros per row/column on average, independent tom and n.
In practice, our cluster graph is nearly 2-manifold. The L̃ in Fig. 5,
for instance, has approximately 39 non-zeros per row/column.

3.2 Operator optimization

Given a clustering, root node selection and the desired sparsity
pattern, our second step is to compute a coarsened matrix L̃ that
maintains the eigenvectors of the input matrix L as much as possible.
Since L and L̃ are of different sizes, their corresponding eigenvectors
are also of different lengths. To compare them in a meaningful way
we will use the functional map matrix C defined in Eq. 1 implied by

the restriction operator P (note that: prolongation from coarse to
fine is generally ill-defined). This also requires a mass-matrix on the
coarsened domain, which we compute by lumping cluster masses:
M̃ = KMK⊤. The first k eigenvectors for the input operator and
yet-unknown coarsened operator may be computed as solutions to
the generalized eigenvalue problems LΦ = ΛMΦ and L̃Φ̃ = Λ̃M̃Φ̃,
where Λ, Λ̃ are eigenvalue matrices.

Fig. 10. The optimized C should be
block diagonal when the operator
has algebraic multiplicity.

Knowing that the proxim-
ity of the functional map ma-
trix C to an identity matrix
encodes eigenvector preserva-
tion, it might be tempting to
try to enforce ∥C − I∥F di-
rectly. This however is prob-
lematic because it does not
handle sign flips or multiplic-
ity (see Fig. 10). More impor-
tantly, recall that in our setting C is not a free variable, but rather
a non-linear function (via eigen decomposition) of the unknown
sparse matrix L̃.
Instead, we propose to minimize the failure to realize the com-

mutative diagram of a functional map. Ideally, for any function on
the input domain f ∈ Rn applying the input operator M−1L and
then the restriction matrix P is equivalent to applying P then M̃−1L̃,

resulting in the same function f̃ ∈ Rm on the coarsened domain:

M−1L
f −−−−−−−−−→ •

P y y P

• −−−−−−−−−→ f̃

M̃−1L̃

(2)

This leads to a straightforward energy that minimizes the difference
between the two paths in the commutative diagram for all possible
functions f :

E (̃L) = ∥PM−1LI − M̃−1L̃PI∥2
M̃
, (3)

where I ∈ Rn×n is the identity matrix (included didactically for the
discussion that follows) and

∥X∥2
M̃
= tr(X⊤M̃X)

computes the Frobenius inner-product defined by M̃.
By using I as the spanning matrix, we treat all functions equally

in an L2 sense. Inspired by the functional maps literature, we can
instead compute this energy over only lower frequency functions
spanned by the first k eigenvectors Φ ∈ Rn×k of the operator L.
Since high frequency functions naturally cannot live on a coarsened

I  

domain, this parameter k al-
lows the optimization to focus
on functions that matter. Conse-
quently, preservation of low fre-
quency eigenvectors dramatically
improves (see inset).
Substituting Φ for I in Eq. 3, we now consider minimizing this

reduced energy Ek over all possible sparse positive semi-definite
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Fig. 11. Dropping the PSD constraint leads to a simple quadratic optimiza-
tion problem which can be solved directly, but it produces a non-PSD L̃ that
contains negative eigenvalues.

(PSD) matrices L̃:

minimize
L̃�SL̃

1

2
∥PM−1LΦ − M̃−1L̃PΦ∥2

M̃︸                            ︷︷                            ︸
Ek (̃L)

(4)

subject to L̃ is positive semi-definite (5)

and L̃PΦ0 = 0 (6)

where we use X � Y to denote that X has the same sparsity pat-
tern as Y. The final linear-equality constraint in Eq. 6 ensures that
the eigen-vectors Φ0 corresponding to zero eigenvalues are exactly
preserved (PLΦ0 = PMΦ00 = 0). Note that while it might seem
that Eq. 4 is only meant to preserve the eigenvectors, a straight-
forward calculation (See Appendix C) shows that it promotes the
preservation of eigenvalues as well.
This optimization problem is convex [Boyd and Vandenberghe

2004], but the sparsity constraint makes it challenging to solve effi-
ciently. Most efficient semi-definite programming (SDP) solvers (e.g.,
Mosek, cvxopt, Gurobi) only implement dense PSD constraints.
The academic community has studied SDPs over sparse matrices,
yet solutions are not immediately applicable (e.g., those based on
chordal sparsity [Vandenberghe and Andersen 2015; Zheng et al.
2017]) or practically efficient (e.g., [Andersen et al. 2010]). Even
projecting a sparse matrix X on to the set of PSD matrices with the
same sparsity pattern is a difficult sub-problem (the so-called sparse
matrix nearness problem, e.g., [Sun and Vandenberghe 2015]), so
that proximal methods such as ADMM lose their attractiveness.
If we drop the PSD constraint, the result is a simple quadratic

optimization with linear constraints and can be solved directly.
While this produces solutions with very low objective values Ek ,
the eigenvector preservation is sporadic and negative eigenvalues
appear (see Fig. 11). Conversely, attempting to replace the PSD
constraint with the stricter but more amenable diagonal dominance
linear inequality constraint (i.e., L̃ii ≥

∑
j,i L̃ji ) produces a worse

objective value and poor eigenvector preservation.
Instead, we propose introducing an auxiliary sparse matrix vari-

able G ∈ Rn×m and restricting the coarsened operator to be created
by using G as an interpolation operator: L̃ := G⊤LG. Substituting
this into Eq. 4, we optimize

minimize
G�SG

1

2
∥PM−1LΦ − M̃−1G⊤LGPΦ∥2

M̃︸                                    ︷︷                                    ︸
Ek (G)

, (7)

subject to GPΦ0 = Φ0

where the sparsity of L̃ is maintained by requiring sparsity of G.
The null-space constraint remains linear because GPΦ0 = Φ0 ⇒

G⊤LGPΦ0 = 0 implies that L̃ contains the null-space of L. The con-
verse will not necessarily be true, but is unlikely to happen because
this would represent inefficient minimization of the objective. In
practice, we never found that spurious null-spaces occurred. While
we get to remove the PSD constraint (L ≽ 0 implies G⊤LG ≽ 0), the
price we have paid is that the energy is no longer quadratic in the
unknowns, but quartic.

Therefore in lieu of convex programming, we optimize this energy
over the non-zeros of G using a gradient-based algorithm with a
fixed step size γ . Specifically, we use nadam [Dozat 2016] optimizer
which is a variant of gradient descent that combines momentum and
Nesterov’s acceleration. For completeness, we provide the sparse
matrix-valued gradient ∂Ek/∂G in Appendix A. The sparse linear
equality constraints are handled with the orthogonal projection
in Appendix B). We summarize our optimization in pseudocode
Algorithm 2. We stop the optimization if it stalls (i.e., does not
decrease the objective after 10 iterations) and use a fixed step size
γ = 0.02. This rather straightforward application of a gradient-
based optimization to maintaining the commutative diagram in
Eq. 2 performs quite well for a variety of domains and operators.

Algorithm 2: Operator optimization using nadam

G← K⊤; // initialization

while not stalled do
∂Ek/∂G← sparse gradient (G);
∆G← nadam(∂Ek/∂G);
G← G − γ ∆G;
G← orthogonal projection (G,Φ0); // see Appendix B

4 EVALUATION & VALIDATION

100 200

Fig. 12. We optimize for the first
100 eigenfunctions and visualize the
200×200 functional map, demonstrat-
ing a graceful generalization beyond
the optimized eigenfunctions.

Our input is a matrix L which
can be derived from a vari-
ety of geometric data types.
In Fig. 13 we show that our
method can preserve the prop-
erty of the Laplace operators
defined on triangle meshes
[Desbrun et al. 1999; Mac-
Neal 1949; Pinkall and Polth-
ier 1993], point clouds [Belkin
et al. 2009], graphs, and tetra-
hedral meshes [Sharf et al.
2007]. We also evaluate our
method on a variety of operators, including the offset surface Lapla-
cian [Corman et al. 2017], the Hessian of the Ricci energy [Jin et al.
2008], anisotropic Laplacian [Andreux et al. 2014], and the intrinsic
Delaunay Laplacian [Fisher et al. 2006] (see Fig. 14).

We further evaluate how the coarsening generalizes beyond the
optimized eigenfunctions. In Fig. 12, we coarsen the shape using the
first 100 eigenfunctions and visualize the 200×200 functional map
image. This shows a strong diagonal for the upper 100×100 block and
a slowly blurring off-diagonal for the bottom block, demonstrating
a graceful generalization beyond the optimized eigenfunctions.
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Triangle mesh

38K → 0.5K
Point cloud

22K → 0.4K
Graph

10K → 0.6K
Tet. mesh

7K → 0.5K

Fig. 13. Our algebraic formulation is directly applicable to different data
types, such as triangle meshes, point clouds, graphs, and tetrahedral meshes.

Aniso. Laplace

27K → 0.4K
Offset surface
20K → 0.6K

Ricci energy
12K → 0.5K 

Intrinsic Delaunay
26K → 0.5K 

Fig. 14. Our method preserves the eigenfunctions of the offset surface
Laplacian, the Hessian of the Ricci energy, the anisotropic Laplace, and the
the intrinsic Delaunay Laplacian.

more noise

Fig. 15. Our coarsening takes the operator as the input, thus the output
quality is robust to noise and sharp geometric features.

Our algebraic approach takes the operator as the input, instead of
the mesh, thus the output quality is robust to noise or sharp features
(see Fig. 15). In addition, we can apply our method recursively to
the output operator to construct a multilevel hierarchy (see Fig. 16).

21K vertices 1K vertices 0.3K vertices

Fig. 16. We apply our approach recursively to construct a multilevel hierar-
chy: from 21,000 rows through 1,000 rows to finally 300 rows.

Ours
Garland & 

Heckbert 1997

Manteuffel 
et al. 2017

Nasikun 

et al. 2018

Fig. 17. We simplify the cotangent Laplacian from n = 30, 000 tom = 500.
Our coarsening preserve the first 200 eigenfunctions better than the QSlim
[Garland and Heckbert 1997], the root-node algebraic multigrid [Manteuffel
et al. 2017], and the fast approximation [Nasikun et al. 2018].

4.1 Comparisons

Existing coarsening methods are usually not designed for preserv-
ing the spectral property of operators. Geometry-based mesh dec-
imation (i.e., QSlim [Garland and Heckbert 1997]) is formulated
to preserve the appearance of the geometry, and results in poor
performance in preserving the operator (see Fig. 1). As an iterative
solver, algebraic multigrid, i.e., root-node method [Manteuffel et al.
2017], optimizes the convergence rate and does not preserve the
spectral properties either. Recently, Nasikun et al. [2018] propose
approximating the isotropic Laplacian based on constructing locally
supported basis functions. However, this approach falls short in pre-
serving the spectral properties of shapes with high-curvature thin
structures and anisotropic operators (see Fig. 17, Fig. 18). In contrast,
our proposed method can effectively preserve the eigenfunctions
for both isotropic and anisotropic operators.

In addition, a simple derivation (Appendix C) can show that min-
imizing the proposed energy implies eigenvalue preservation (see
Fig. 2 and Fig. 19).
In Fig. 20, we show that our method handles anisotropy in the

input operator better than existing methods. This example also

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.
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Ours
Garland & 

Heckbert 1997

Manteuffel 
et al. 2017

Nasikun 

et al. 2018

Fig. 18. We simplify the anisotropic Laplacian [Andreux et al. 2014] (with
parameter 70) from n = 25, 000 tom = 600. Our approach can preserve
eigenfunctions of anisotropic operators better than the existing approaches.

0

1

2

3

Ours

Ground truth eigenvalues

Manteuffel 
et al. 2017

Nasikun 

et al. 2018

Garland & 

Heckbert 1997

index sorted by magnitude

eigenvalue (x103)

Fig. 19. We compare the performance of preserving eigenvalues with dif-
ferent simplification methods. As optimizing our proposed energy implies
eigenvalue preservation, we show that the eigenvalues of the simplified
operator is well-aligned with the original eigenvalues.

demonstrates how our method gracefully degrades as anisotropy
increases. Extreme anisotropy (far right column) eventually causes
our method to struggle to maintain eigenvectors.

4.2 Implementation

In general, let k be the number of eigenvectors/eigenvalues in use,
we recommend to use the number of root nodes m > k × 2. In
Fig. 21 we show that ifm is too small, the degrees of freedom are
insufficient to capture the eigenfunctions with higher frequencies.

Our serial C++ implementation is built on top of libigl [Jacobson
et al. 2018] and spectra [Qiu 2018]. We test our implementation on
a Linux workstation with an Intel Xeon 3.5GHz CPU, 64GB of RAM,
and an NVIDIA GeForce GTX 1080 GPU. We evaluate our runtime
using the mesh from Fig. 4 in three different cases: (1) varying the
size of input operators n, (2) varying the size of output operatorsm,
and (3) varying the number of eigenvectors in use k . All experiments

m
o

re
 a

n
is

o
tr

o
p

ic

OursGarland & 

Heckbert 1997

Manteuffel 
et al. 2017

Nasikun 

et al. 2018

Fig. 20. We increase the anisotropy parameter of [Andreux et al. 2014]
(60, 120, 180) while simplifying an operator from 21,000 rows down to 500.
Our approach handles anisotropy better than existing approaches but still
struggles to preserve extreme anisotropic operators.

m = k x 1.2 m = k x 1.4 m = k x 1.6

m = k x 1.8 m = k x 2.0 m = k x 2.2

Fig. 21. Let k be the number of eigenvectors we want to preserve, experi-
mentally we observed thatm > k × 2 leads to desired results.

converge in 100-300 iterations. We report our runtime in Fig. 22. We
obtain 3D shapes mainly from Thingi10K [Zhou and Jacobson 2016]
and clean them with the method of [Hu et al. 2018].

4.3 Difference-Driven Coarsening

We also validate our combinatorial coarsening by applying it to the
shape difference operator [Rustamov et al. 2013] which provides an
informative representation of how two shapes differ from each other.
As a positive definite operator it fits naturally into our framework.
Moreover, since the difference is captured via functional maps, it
does not require two shapes to have the same triangulation. We
therefore take a pair of shapes with a known functional map be-
tween them, compute the shape difference operator and apply our
combinatorial coarsening, while trying to best preserve this com-
puted operator. Intuitively, we expect the samples to be informed by
the shape difference and thus capture the areas of distortion between
the shapes (see Appendix D for more detail). As shown in Fig. 23,
our coarsening indeed leads to samples in areas where the intrinsic
distortion happens, thus validating the ability of our approach to
capture and reveal the characteristics of the input operator.

We can further take the element-wise maximum from a collection
of shape difference operators to obtain a data-driven coarsening
informed by many shape differences (see Fig. 24).
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Fig. 22. Our runtime shows that our approach is more suitable for aggressive
coarsening (middle). For large input meshes and many eigenvectors in use
(top, bottom), computing eigendecomposition is the bottleneck.

shape difference operator

resultreference deformed

Fig. 23. Given a reference shape R and its deformed version D, we combine
the shape difference operator with our coarsening to compute a set of
samples that capture the areas of highest distortion between the shapes.

4.4 Efficient Shape Correspondence

A key problem in shape analysis is computing correspondences
between pairs of non-rigid shapes. In this application we show how
our coarsening can significantly speed up existing shape matching
methods while also leading to comparable or even higher accuracy.
For this we use a recent iterative method based on the notion of
Product Manifold Filter (PMF), which has shown excellent results
in different shape matching applications [Vestner et al. 2017]. This
method, however, suffers from high computational complexity, since
it is based on solving a linear assignment problem, O(n3), at each
iteration. Moreover, it requires the pair of shapes to have the same
number of vertices. As a result, in practice before applying PMF

coarsening resultdeformed shape collection

reference 

shape diff.

shape diff.

sh
ap

e d
iff.

Fig. 24. By combining the shape difference operators from the reference
shape R to a collection of deformed shapes D, algebraic coarsening can
simplify a mesh based on the łunionž of all the deformations.

Fig. 25. Efficient matching computes the map CN,M between the original
shapes by (1) applying our proposed coarsening to the shape pair and obtain
C
N,Ñ

, C
M,M̃

, (2) compute shape correspondences C
Ñ,M̃

in the reduced

space, and (3) solve a linear system based on the commutative diagram.

shapes are typically subsampled to a coarser resolution and the
result is then propagated back to the original meshes. For example
in [Litany et al. 2017], the authors used the standard QSlim [Garland
and Heckbert 1997] to simplify the meshes before matching them
using PMF. Unfortunately, since standard appearance-based simpli-
fication methods can severely distort the spectral properties this can
cause problems for spectral methods such as [Vestner et al. 2017]
both during matching between coarse domains and while propagat-
ing back to the dense ones. Instead our spectral-based coarsening,
while not resulting in a mesh provides all the necessary informa-
tion to apply a spectral technique via the eigen-pairs of the coarse
operator, and moreover provides an accurate way to propagate the
information back to the original shapes.
More concretely, we aim to find correspondences between the

coarsened shapes Ñ , M̃ and to propagate the result back to the
original domains N ,M by following a commutative diagram (see
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1:10 • Hsueh-Ti Derek Liu, Alec Jacobson, and Maks Ovsjanikov

Original

Ours

QSlim

Fig. 26. Using our coarsening (top) to infer functionalmaps between the orig-
inal pair from the coarse pair introduces less error than using the appearance-
based mesh simplification (bottom), QSlim [Garland and Heckbert 1997].

Fig. 25). When all correspondences are encoded as functional maps
this diagam can be written in matrix form as:

C
M,M̃

CN,M = C
Ñ,M̃

C
N, Ñ
, (8)

where CX,Y denotes the functional map from X to Y. Using Eq. 8,
the functional mapCN,M can be computed by solving a simple least
squares problem, via a single linear solve. Our main observation is
that if the original function space is preserved during the coarsening,
less error will be introduced when moving across domains.

We tested this approach by evaluating a combination of our coars-
ening with [Vestner et al. 2017] and compared it to several baselines
on a challenging non-rigid non-isometric dataset containing shapes
from the SHREC 2007 contest [Giorgi et al. 2007], and evaluated the
results using the landmarks and evaluation protocol from [Kim et al.
2011] (please see the details on both the exact parameters and the
evaluation in the Appendix). Figure 26 shows the accuracy of sev-
eral methods, both that directly operate on the dense meshes [Kim
et al. 2011; Nogneng and Ovsjanikov 2017] as well as using kernel
matching [Vestner et al. 2017] with QSlim and with our coarsening.
The results in Figure 26 show that our approach produces maps with
comparable quality or superior quality to existing methods on these
non-isometric shape pairs, and results in significant improvement
compared to coarsening the shapes with QSlim. At the same time,
in Table 1 we report the runtime of different methods, which shows
that our approach leads to a significant speed-up compared to ex-
isting techniques, and enables an efficient and accurate PMF-based
matching method (see Fig. 27) with significantly speedup.

4.5 Graph Pooling

Convolutional neural networks [LeCun et al. 1998] have led to
breakthroughs in image, video, and sound recognition tasks. The
success of CNNs has inspired a growth of interest in generalizing
CNNs to graphs and curved surfaces [Bronstein et al. 2017]. The
fundamental components of a graph CNN are the pooling and the
convolution. Our root node representation P,K defines a way of
performing pooling on graphs. Meanwhile, our output L̃ facilitates

Nogneng et al. 

2017 + ICP

Kim et al.

2011

Vestner et al.

2017 + QSlim

100

80

60

40

20

0

SHREC nonisometric

humans (141 pairs)

100

80

60

40

20

0

SHREC nonisometric

 fourlegs (153 pairs)

geodesic error

Nogneng 

et al. 2017

Vestner et al.

2017 + Ours

0 0.1 0.2 0.3 0 0.1 0.2 0.3

% correspondences % correspondences

geodesic error

Fig. 27. Our efficient shape correspondence with kernel matching [Vestner
et al. 2017] achieves comparable matching quality on many non-isometric
shape pairs from SHREC [Giorgi et al. 2007] dataset with methods that
directly operator on dense meshes [Kim et al. 2011; Nogneng and Ovsjanikov
2017].

graph convolution on the coarsened graph due to the convolution
theorem [Arfken and Weber 1999].

To evaluate the performance of graph pooling, we construct sev-
eral mesh EMNIST datasets where each mesh EMNIST digit is stored
as a real-value function on a triangle mesh. Each mesh EMNIST
dataset is constructed by overlaying a trianglemeshwith the original
EMNIST letters [Cohen et al. 2017]. We compare our graph pooling
with the graph pooling IN [Defferrard et al. 2016] by evaluating
the classification performance. For the sake of fair comparisons, we
use the same graph Laplacian, the same architecture, and the smae
hyperparameters. The only difference is the graph pooling module.
In addition to EMNIST, we evaluate the performance on the fashion-
MNIST dataset [Xiao et al. 2017] under the same settings. In Fig. 28,
we show that our graph pooling results in better training and testing
performance. We provide implementation details in Appendix F.

5 LIMITATIONS & FUTURE WORK

Reconstructing a valid mesh from our output coarsened operator
would enable more downstream applications. Incorporating a fast
eigen-approximation or removing the use of eigen decomposition
would further scale the spectral coarsening. Moreover, exploring
sparse SDP methods (e.g. [Sun and Vandenberghe 2015]) could im-
prove our operator optimization. Jointly optimizing the sparsity
and the operator entries may lead to even better solutions. Further
restricting the sparsity pattern of the coarsened operator while main-
taining the performance would aid to the construction of a deeper

Table 1. We report the total time, pre-computation time + runtime, for
computing a 60-by-60 functional map on a shape pair with 14,000 vertices
each. Our pre-computation time will be amortized by the number of pairs
because we apply coarsening on each shape independently, and the number
of combinations is quadratic in the number of shapes. Our runtime is orders
of magnitude faster because we only need to perform shape matching in
the coarsened domain (i.e., 300 vertices).

[Nogneng 17]+ICP [Nogneng 17] [Kim 11] [Vestner 17]+ours

32.4 sec 4.6 sec 90.6 sec 10.8+0.3 sec
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Our training loss Our validation loss

[Defferrard et al. 2016] training loss [Defferrard et al. 2016] validation loss
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Fig. 28. Graph pooling using our coarsening performs better than the pool-
ing presented in [Defferrard et al. 2016] on classifying the mesh EMNIST
(top row) and the mesh fashion-MNIST (bottom row) datasets.

multilevel representation, which could aid in developing a hierar-
chical graph representation for graph neural networks. A scalable
coarsening with a deeper multilevel representation could promote a
multigrid solver for geometry processing applications. Generalizing
to quaternions would extend the realm of our coarsening to the
fields that deal with quaternionic operators.
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A DERIVATIVE WITH RESPECT TO SPARSE G

To use a gradient-based solver in Algorithm 2 to solve the opti-
mization problem in Eq. 7 we need derivatives with respect to the
non-zeros inG (the sparsity of SG). We start with the dense gradient:

∂Ek
∂G
=

∂

∂G

1

2
∥PM−1LΦ − M̃−1G⊤LGPΦ∥2

M̃
.

We start the derivation by introducing two constant variables A,B
to simplify the expression

∂Ek
∂G
=

∂

∂G

1

2
∥A − M̃−1G⊤LGB∥2

M̃

A = PM−1LΦ, B = PΦ.

Using the fact that L,M,Mc are symmetric matrices and the rules
in matrix trace derivative, we expand the equation as follows.

∂Ek
∂G
=

∂

∂G

1

2
∥A − M̃−1G⊤LGB∥2

M̃

=

∂

∂G

1

2
tr

(
(A⊤ − B⊤G⊤LGM̃−1)M̃(A − M̃−1G⊤LGB)

)

= −
∂

∂G

(
tr

(
B⊤G⊤LGA

)
+

1

2
tr

(
B⊤G⊤LGM̃−1G⊤LGB

) )

= − (LGAB⊤ + LGBA⊤)

+ (LGM̃−1G⊤LGBB⊤ + LGBB⊤G⊤LGM̃−1)

= LG(−AB⊤ − BA⊤ + M̃−1G⊤LGBB⊤ + BB⊤G⊤LGM̃−1)

Computing the ∂Ek/∂G subject to the sparsity SG can be naively
achieved by first computing the dense gradient ∂Ek/∂G and then
project to the sparsity constraint through an element-wise product
with the sparsity SG. However, the naive computation would waste
a large amount of computational resources on computing gradient
values that do not satisfy the sparsity. We incorporate the sparsity
and compute gradients only for the non-zero entries as

(
∂Ek
∂G

)
i j
= Yi∗Z∗j , i, j ∈ SG

Y = LG

Z = −AB⊤ − BA⊤ + M̃−1G⊤LGBB⊤ + BB⊤G⊤LGM̃−1,

where Yi∗, Z∗j denote the ith row of Y and the jth column of Z .

B SPARSE ORTHOGONAL PROJECTION

Let g ∈ Rz be the vector of non-zeros in G, so that vec(G) = Zg,
where Z ∈ {0, 1}mn×z scatter matrix.

Given some G1 that does not satisfy our constraints, we would
like to find its closest projection onto the matrices that do satisfy
the constraints. In other words, we aim at solving:

minimize
G�SG

∥G − G1∥

subject to GPΦ0 − Φ0 = 0.

Using properties of the vectorization and the Kronecker product,
we can now write this in terms of vectorization:

minimize
g

∥g − g1∥

subject to ((PΦ0)
⊤ ⊗ idm )Zg − vec(Φ0) = 0.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.



Spectral Coarsening of Geometric Operators • 1:13

whose solution is given as:

g = g1 − A
⊤(AA⊤)−1b

A = ((PΦ0)
⊤ ⊗ idm )Z

b = ((PΦ0)
⊤ ⊗ idm )Zg1 − vec(Φ0).

This can be simplified to an element-wise division when Φ0 is a
single vector.

C EIGENVALUE PRESERVATION

Minimizing the commutative energy Eq. 4 implies

PM−1LΦi = M̃−1L̃PΦi . (9)

As Φi comes from solving the generalized eigenvalue problem, for
every Φi we must have: LΦi = λiMΦi . Therefore, Eq. 9 implies
λiPM−1Φi = M̃−1L̃PΦi , which means that PΦi must be an eigen-
vector of M̃−1L̃ corresponding to the same eigenvalue λi .

D MODIFIED SHAPE DIFFERENCE

Rustamov et al. [2013] capture geometric distortions by tracking
the inner products of real-valued functions induced by transporting
these functions from one shape to another one via a functional
map [Ovsjanikov et al. 2012]. This formulation allows us to compare
shapes with different triangulations and encode the shape difference
between two shapes using a single matrix. Given a functional map
C between a reference shape R and a deformed shape D, the area-
based shape difference operator A can be written as ([Rustamov
et al. 2013] option 2)

AR,D = C⊤C,

where C is the functional map from functions on R to functions
on D. The operator AR,D encodes the difference between R and
D. Its eigenvectors corresponding to eigenvalues larger than one
encode area-expanding regions; its eigenvectors corresponding to
eigenvalues smaller than one encode area-shrinking regions.

Motivated by the goal of producing denser samples in the parts un-
dergoing shape changes, no matter the area is expanding or shrink-
ing, our modified shape difference operator Ã has the form

ÃR,D = (id − AR,D )
⊤(id − AR,D ).

This formulation treats area expanding and shrinking equally, the
eigenvectors of eigenvalues larger than zero capture where the
shapes differ.

Note that this Ã is a size k-by-k matrix where k is the number of
bases in use. We map Ã back to the original domain by

Ã
orig
R,D

= ΦR ÃR,DΦ
⊤
R .

Although the Ã
orig
R,D

is dense and lots of components do not corre-

spond to any edge in the triangle mesh, the non-zero components
corresponding to actual edges contain information induced by the
operator. Therefore by extracting the inverse of the off-diagonal

components of Ã
orig
R,D

that correspond to actual edges as the −Li j ,

we can obtain a coarsening result induced by shape differences.

E EFFICIENT SHAPE CORRESPONDENCE

We obtain dense functional maps from coarse ones by solving

C
M,M̃

CN,M = C
Ñ,M̃

C
N, Ñ
, (10)

where CN,M ,CM,M̃
,C
Ñ,M̃

are functional maps represented in

the Laplace basis. C
Ñ,M̃

is the functional map of functions stored

in the hat basis. To distinguish C
Ñ,M̃

from others, we use T
Ñ,M̃

to represent the map in the hat basis. Eq. 10 can be re-written as

Φ
M̃
C
M,M̃

CN,M = T
Ñ,M̃

Φ
Ñ
C
N, Ñ
,

where Φ are eigenvectors of the Laplace-Beltrami operator. Then we
can solve the dense map by, for example, the MATLAB backslash.

CN,M = (ΦM̃C
M,M̃

) \ (T
Ñ,M̃

Φ
Ñ
C
N, Ñ
),

Due to limited computational power, we often use truncated eigen-
vectors and functional maps. To avoid the truncation error destroys
the map inference, we use rectangular wide functional maps for both
C
M,M̃

,C
N, Ñ

to obtain a smaller squared CN,M . For instance, the

experiments in Fig. 27 use size 120-by-200 for both C
M,M̃

,C
N, Ñ

,

and we only take the top left 120-by-120 block of CN,M in use.
To compute C

Ñ,M̃
(or T

Ñ,M̃
), we normalize the shape to have

surface area 2,500 for numerical reasons, coarsen the shapes down
to 500 vertices, and use the kernel matching [Vestner et al. 2017]
for finding bijective correspondences. We use α = 0.01 (the same
notation as [Vestner et al. 2017]) to weight the pointwise descriptor,
specifically the wave kernel signature [Aubry et al. 2011]; we use
time parameter 0.01 × surface area for the heat kernel pairwise de-
scriptors; we use 7 landmarks for shape pairs in the SHREC dataset.

F GRAPH POOLING IMPLEMENTATION DETAIL

We use the LeNet-5 network architecture, the same as the one used
in [Defferrard et al. 2016], to test our graph pooling on the mesh
EMNIST [Cohen et al. 2017] and mesh fashion-MNIST [Xiao et al.
2017] datasets. Specifically, the network has 32, 64 feature maps
at the two convolutional layers respectively, and a fully connected
layer attached after the second convolutional layer with size 512.
We use dropout probability 0.5, regularization weight 5e-4, initial
learning rate 0.05, learning rate decay 0.95, batch size 100, and train
for 150 epochs using SGD optimizer with momentum 0.9. The graph
filters have the support of 25, and each average pooling reduces the
mesh size to roughly 1/8 of the size before pooling.
Our mesh is generated by the Poisson disk sampling followed

by the Delaunay triangulation and a planar flipping optimization
implemented in MeshLab [Cignoni et al. 2008]. We also perform
local midpoint upsampling to construct meshes with non-uniform
discretizations. Then EMNIST letters are łpastedž to the triangle
mesh using linear interpolation.
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