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Figure 1. Similar patch embedding. Each row displays colored patches that are mapped to the same codebook vector.

1. Rotation-Invariant embedding

Figure 1 displays example patches represented by the
same codebook vector. Observe that similarly-colored
patches are geometrically close when discarding rota-
tions/reflections. These examples help to illustrate geomet-
ric and rotation patterns that are compactly represented us-
ing our canonicalized codebook.

To further demonstrate the rotation-invariance property,
we propose to randomly select N different local surface
patches from test shapes. For each patch, we generate M
rotated point cloud patches by (1) randomly sampling 128
surface points, and (2) applying a random rotation. Then we
feed each obtained point cloud patch to both our TFN [3]
backbone and the PointNet [2] backbone, in order to com-
pute patch embedding. Figure 2 provides a t-sne [1] visual-
ization of the obtained embeddings using each of the back-
bones. Observe that TFN [3] backbone manages to recog-
nize clusters of patches associated with the same intrinsic
geometry, while the PointNet [2] backbone ignores the up-
to-rotation similarity, leading to unstructured embeddings.

2. Codebook generalization power across
shapes and categories

We analyze the contribution of each codebook vector across
different shapes and categories. To this end, Figure 3 shows,
for each codebook index, the number of test shapes (3a) and
the number of categories (3b) to which it contributes.

Figure 3a shows that all codebook vectors are leveraged
to represent test shapes. The index associated with the high-
est occurrence inherently corresponds to empty region that
occurs in all shapes. The remaining vectors occur in at least
136 shapes among the 7791 test shapes.

Furthermore, Figure 3b shows that our model not only
grasps local similarities across different shapes but also
across different categories. Observe that all codebook vec-
tors contribute to at least 10 categories among the learn-
ing 13 categories. This particularly proves that our region-
based local encoder is category agnostic, allowing to effi-
ciently embed different categories to the same latent space.

3. Impact of codebook size
We re-train ShapeFormer-8 [4] and our method using code-
book size K = 256. We recall that we set K = 512 and
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(a) PointNet [2] backbone. (b) TFN [3] backbone.

Figure 2. t-sne [1] visualization of rotated patches embeddings. We consider N=10 patches, colored each differently, and M=50 random
rotations for each patch.

(a) For each codebook vector index, we provide the number
of shapes in which it occurs.

(b) For each codebook vector index, we provide the number
of categories in which it occurs.

Figure 3. Number of shapes and categories to which contribute each codebook vector index. For clarity, we sort codebook indices according
to the coordinate values for each plot.

Method K=512 K=256
ShapeFormer-8[4] 0.195 0.210
Ours 0.120 0.122

Table 1. Quantitative results for shape auto-encoding across differ-
ent codebook sizes K. Our approach achieves better results thanks
to the compact embedding. CD is multiplied by 102.

K = 4096 in Table 1 from the main paper based on base-
lines settings, for a fair comparison.

Quantitative evaluations in Table 1 show that our ap-
proach maintains its superiority in terms of reconstruction
quality and accuracy. Besides, in terms of CD for instance,
our method entails smaller performance drop of ↓1.6% than
baseline ↓7.7% when reducing codebook size. This obser-
vation particularly supports the compact representation en-
abled by our model.

4. Additional comments on shape auto-
encoding experiments in Section 4.1 from
the main paper

Ablation study interpretation. Even when removing the
rotation invariance, ours-PN outperforms ShapeFormer-
8 [4]. We recall that both methods encode local regions
using PointNet [2]-like backbones, and predict deep im-
plicit functions. We hence attribute the superiority of our
approach to the design of our decoder architecture that, in
contrast to SF-8 decoder, is tailored to promote the shar-
ing of knowledge across the different local representations.
While this decoder design is important to recover the local
orientations and produce smooth and high-quality surfaces,
it however inherits limitations of the global-based design, in
particular, the limited generalization power when producing
shapes that belong to unseen categories or that undergo a
global rotation (unaligned).
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Figure 4. Qualitative results for shape auto-encoding. Our method allows higher detailed reconstructions.

Additional qualitative results. In this section, we collect
additional visual results that were not included in the main
manuscript.

Figure 4 compares the shape reconstruction quality of
baseline ShapeFormer-16 [4] with RIVQ-VAE-16 while
emphasizing the superiority of our method.

Training settings. Our model consists of 30M parame-
ters and is trained for about 5 days using 3 Quadro RTX
8000.
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