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Introduction

% Objective: Build an efficient and versatile non-rigid shape matching technique.

% Motivation: Existing methods are poor at modelling finer-details and require abundant
training data.

% Solution: Learn a coarser representation with limited supervision while approximating
a continuous deformation field function.

Approach

Results: Non-Rigid Shape Matching and Registration

Related Works

« 3D-CODED [1] learns point-wise deformation field and cannot faithfully model finer-
details.

« TransMatch [2] uses transformer to pairwise deformation and needs abundant data to
train.

« Neuromorph [3] applies first-order regularization but can only model low-res meshes.

Three main steps:
» Fix a template and sample nodes near the shape volume.
» Learn deformation parameters at nodes using an auto-encoder.

» Extend and apply the deformation field over entire shape.
Nodes over template

Encoder D Decoder
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Learnt deformation parameters

Input shape

Training and Inference
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Background: Meshfree Methods

« Construct a continuous approximation of a function u(x) based on observation at points in space (nodes)
K
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* Where <I>,L() is the shape function which produces smooth approximation near the node
Node

®;(x) = p’ (x)[M(x)] " w; (x)p (x5)

- p(+) is a polynomial basis, M is the moment matrix and the compact weighting function w;(-) is given by
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0, otherwise

* Gradient of deformation field is computed w.r.t the shape function and not Uu;
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Ablation Study

We examine the efficacy of different regularization applied to train our network.
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 Training: Our objective is a combination of supervision and regularization.
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Supervision Regularization

Enet — P\l »Ccor

« Lcoris the correspondence loss dense or key-point based.
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« L1 is the regularization to promote volume preserving deformation fields
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o Larap is to promote As-Rigid-As-PossibIe (ARAP) deformation fields
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- L 7 is the constraint applied to intermediate shapes to promote plausible latent deformation space
S| S|
Ly = Z Larap (dec ((1 — a)z; + azp)) + Z Lyor (dec ((1 — a)z; + az;))
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* Inference:

1. Deform the given pair of shapes independently and optionally enhance the reconstruction.

2. Find correspondence through nearest neighbour search.

Nearest Neighbour

» Matching: Qualitative and quantitative results on SCAPE-N and SHREC'19 dataset.
» Our method outperforms baselines with an order of magnitude fewer training data.

Source Dif-Fmap [4] 3D-CODED [1] Ours

_____
Spectral GeoFMap 11.2 27.7
Diff-Fmap 1.0 15.1 26.0

Pair-wise

CorrNet3D 15.0 9.6 38.0
Template 3D-CODED 23.0 10.3 18.7
Based  TransMatch 1.0 6.1 17.1
Ours 0.1 4.8 6.6

» Shape Registration: SHREC’20 dataset with physically-based deformation

SHREC'20 Physically Based
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Qualitative results on shapes from the ShapeNet dataset
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1. Introduced a powerful reduced representation of deformation fields based on mesh-
free approximation.

2. Direct analytical expression for the derivatives opens the door to apply first order
regularizations effectively.

3. Versatile and shows state-of-the-art performance in down-stream tasks
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