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Introduction

v Objective: Build an efficient and versatile non-rigid shape matching technique.

v Motivation: Existing methods are poor at modelling finer-details and require abundant 
training data.

v Solution: Learn a coarser representation with limited supervision while approximating 
a continuous deformation field function.

Related Works
• 3D-CODED [1] learns point-wise deformation field and cannot faithfully model finer-

details.
• TransMatch [2] uses transformer to pairwise deformation and needs abundant data to 

train.
• Neuromorph [3] applies first-order regularization but can only model low-res meshes.
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Background: Meshfree Methods

• Construct a continuous approximation of a function         based on observation at points in space (nodes)

• Where is the shape function which produces smooth approximation near the node 

• is a polynomial basis, M is the moment matrix and the compact weighting function         is given by

• Gradient of deformation field is computed w.r.t the shape function and not
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Approach
Three main steps:

Ø Fix a template and sample nodes near the shape volume.

Ø Learn deformation parameters at nodes using an auto-encoder.

Ø Extend and apply the deformation field over entire shape. 
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Training and Inference
• Training: Our objective is a combination of supervision and regularization.

• is the correspondence loss dense or key-point based. 

• is the regularization to promote volume preserving deformation fields

• is to promote As-Rigid-As-Possible (ARAP) deformation fields

• is the constraint applied to intermediate shapes to promote plausible latent deformation space

• Inference: 
1. Deform the given pair of shapes independently and optionally enhance the reconstruction.
2. Find correspondence through nearest neighbour search.

Supervision Regularization

Ablation Study
We examine the efficacy of different regularization applied to train our network. 

Results: Non-Rigid Shape Matching and Registration

Ø Matching: Qualitative and quantitative results on SCAPE-N and SHREC’19 dataset.
Ø Our method outperforms baselines with an order of magnitude fewer training data.

Ø Shape Registration: SHREC’20 dataset with physically-based deformation
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Unsupervised Shape Segmentation
Qualitative results on shapes from the ShapeNet dataset
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Conclusion

1. Introduced a powerful reduced representation of deformation fields based on mesh-
free approximation.

2. Direct analytical expression for the derivatives opens the door to apply first order 
regularizations effectively.

3. Versatile and shows state-of-the-art performance in down-stream tasks
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Type Method #Tr Data SHREC’19 SCAPE
Spectral GeoFMap 1.7 11.2 27.7

Pair-wise
Diff-Fmap 1.0 15.1 26.0

CorrNet3D 15.0 9.6 38.0
Template 

Based
3D-CODED 23.0 10.3 18.7
TransMatch 1.0 6.1 17.1

Ours 0.1 4.8 6.6

Source 3D-CODED [1] TransMatch [2] Ours


