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Abstract

In this work we present a novel approach for computing correspondences between
non-rigid objects, by exploiting a reduced representation of deformation fields.
Different from existing works that represent deformation fields by training a general-
purpose neural network, we advocate for an approximation based on mesh-free
methods. By letting the network learn deformation parameters at a sparse set
of positions in space (nodes), we reconstruct the continuous deformation field
in a closed-form with guaranteed smoothness. With this reduction in degrees of
freedom, we show significant improvement in terms of data-efficiency thus enabling
limited supervision. Furthermore, our approximation provides direct access to
first-order derivatives of deformation fields, which facilitates enforcing desirable
regularization effectively. Our resulting model has high expressive power and is
able to capture complex deformations. We illustrate its effectiveness through state-
of-the-art results across multiple deformable shape matching benchmarks. Our
code and data are publicly available at: https://github.com/Sentient07/
DeformationBasis.

1 Introduction

Shape correspondence is a central problem in computer vision and computer graphics as it facilitates
many downstream tasks, such as tracking [1], texture transfer [2] and statistical modeling [3] to name
a few. Due to its ubiquitous applicability, a wide range of techniques have been developed over the
past several years [4]. While early approaches relied on axiomatic modeling, recent methods follow
data-driven techniques based on different input signals [5, 6, 7, 8] within a shape collection.

A key question in this context is the choice of representation used to model the non-rigid shape
matching problem. Approaches based on intrinsic or pose invariant representations have established
a gold standard in the context where surfaces are well-defined [9, 10, 11]. Such methods, however,
strongly rely on the presence of clean shapes and struggle when acquisition comes from noisy and
non-uniform discretization [12]. In contrast, extrinsic techniques which directly operate on Euclidean
space (R3) show strong resilience to artifacts.

Unfortunately, this robustness of extrinsic methods often comes at the cost of relying on significant
amounts of annotated training data [7, 5]. The main limiting factor arises in the representation of
the deformation fields. The standard approach is to use general-purpose MLPs to learn deformation
fields that can fit an arbitrary shape deformation [13, 14, 5]. However, given the fact that MLPs are
general-purpose networks, they require significant amounts of training data to learn both coarse and
fine details [5].
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Figure 1: Examples showing generalization of our deformation field representation. Our approach
allows to compute correspondences across a wide range of shape categories: (a) human articulation,
(b) physically-based deformation from real-world scans, (c) shapes undergoing topological changes,
and (d) shapes represented via implicit functions.

To overcome this limitation, we propose to learn a coarse representation of deformation parameters
at fixed positions in space called “nodes”. By learning a reduced representation of deformation fields,
intuitively, we restrict the learning process to global patterns of the input signal. Then, to recover
finer details, we reconstruct the continuous deformation field function in closed-form using a class of
mesh-free approximation techniques [15]. This allows us to scale our approach to arbitrary resolution
with guaranteed smoothness and across different object classes as shown in Figure 1.

Apart from being theoretically grounded and simple in practice, our reduced representation has
two key advantages. First, it is significantly more data-efficient and can learn to capture complex
deformations given only a small number of examples. Secondly, it is more amenable to regularization,
since it provides explicit access to first-order derivatives of the deformation field in closed form. This
is especially useful in imposing geometric priors such us local rigidity and volume preservation.

Our contributions can be summarized as follows: (a) We propose to learn a compact representation
of deformation parameters, that is data-efficient, resolution agnostic, and facilitates regularization
through direct access to deformation gradients (b) We show an efficient way of incorporating desirable
regularization to promote a well-structured deformation space. (c) Through extensive experiments
across real-world and synthetic datasets, we demonstrate the generalization ability of our method
over different down-stream applications such as non-rigid shape matching, registration, unsupervised
part segmentation and interpolation.

2 Related Works

2.1 Non-rigid shape Correspondence and Registration

Shape correspondence is a very well-studied area of computer vision and computer graphics and
we refer interested readers to the recent survey [4] for a comprehensive overview. Notable ax-
iomatic approaches in this category are based on the functional maps paradigm [9, 16, 17, 18], that
aims to compute a near-isometric mapping by estimating a linear transformation between func-
tions represented in a reduced basis. This framework has been successfully adapted by learning
techniques [6, 19, 20, 7, 10] which demonstrate near-perfect accuracy [11] on several shape corre-
spondence benchmarks. However, these approaches can be prone to errors in the presence of noisy
point clouds or significant acquisition artefacts. Although registration-based techniques [21, 22, 23]
present a relatively more robust option, they are often based on human-centric priors or require
significant training data.

2.2 Template-based and Template-free Methods

Deforming a template shape to match a target geometry is a long-standing and well studied
problem [24, 25, 26]. Such a template can be a polygonal mesh [27, 28], possibly parame-
terised [29, 30, 31] or an unordered point-set [32, 33, 34, 35, 36] or implicitly defined through
zero-level set of a Neural Field [13, 14, 37]. In the recent years, learning based model-free defor-
mation techniques [32, 33, 23] have emerged as a viable option for registration and correspondence
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tasks given copious amount of training data [32, 38]. Among them, the closest to our approach is
3D-CODED [32] which learns deformation fields through point-wise MLPs. However, since this
approach fits a general-purpose MLP and treats each point on the shape equally likely, it requires
abundant training data to achieve optimal performance.

2.3 Deformation Field Representation and Shape Interpolation

Deformation between a pair of shapes can be represented as a simple displacement field at every
vertex. However, such a representation can be unnecessarily complex, and costly to optimize. As a
result, several alternatives have been proposed. The most prominent ways to parameterize the space
of deformations include handle-based [39, 40, 41, 42] or cage-based [43, 44, 45, 46] representations
(see also [47, 48, 49] for an overview). More recently, a common approach is to construct a reduced
representation via a learned latent embedding [50, 51, 52, 53].

Deformation Field regularization Several geometric constraints have been proposed with the
aim of preserving desirable properties of the shape by the deformation field, including imposing
elasticity [54, 55, 56] and volume preservation [57, 58, 40, 59, 60]. Recently, these constraints have
been successfully adapted by data-driven methods [61, 51, 62, 37, 63] and more relevantly through the
differential of the map [51, 63, 63]. Distinct from such approaches, our approximation via mesh-free
method enables evaluating this map differential at fixed points in a closed-form, which significantly
simplifies the deformation field regularization without additional computational overhead.

Shape Interpolation Shape interpolation refers to time-parameterized deformation, where a source
shape is continuously deformed to a target shape. Our work is related to efforts which aim to enforce
intermediate shapes to preserve certain intrinsic properties [52, 53, 61, 64, 65, 51]. Among them
closest to our approach is LIMP [52] which disentangles the latent space based on style and pose
to preserve geodesic distance. In contrast, our approach does not require such a priori information,
which can be costly in terms of annotation efforts.

2.4 Reduced representations and Approximations

In this work we use mesh-free function approximation method [66, 67, 15], to approximate deforma-
tion fields. Mesh-free methods have been successfully adapted in Smoothed Particle Hydrodynamics
(SPH) modeling [68, 69], image processing [39], animation [40, 70, 71] and more recently in a
data-driven framework [41]. Differently from [41], instead of learning the weights of the least
squares function, we instead learn deformation values at nodes and demonstrate our method to be
applicable in wide-range of downstream tasks. Alternatively, Eisenberger et al. [60] have proposed to
use a compact representation of deformation fields using the first k eigenfunctions of the Laplace
Beltrami Operator (LBO). While their approach provides volume preserving deformation, it does
not facilitate other regularizations such as as-rigid-as-possible deformation fields without requiring
correspondence at inference time [72].

3 Motivation, Background and Notation

3.1 Motivation:

Parametric models such as SMPL [29] have been tremendously useful over the recent years in
digitizing and processing human models. This success can largely be attributed to their expressive
power, allowing to generate a wide range of styles and poses using a small fixed set of deformation
parameters. While this efficacy with such a compact representation is remarkable, it also raises an
inspiring question: what is the optimal amount of learnable parameters necessary to represent general
deformations? Today, general-purpose MLPs form the conventional way of representing deformation
fields due to their simplicity and potential of being universal functional approximators [73, 74].
Unfortunately, the generic power of MLPs also comes at a cost of copious training efforts [32, 23].
Furthermore, representing a deformation field using a neural network makes access to certain
quantities such Jacobian matrices of deformation fields cumbersome. For these reason, we propose
to learn a reduced set of deformation parameters from which we approximate the deformation field
function using a mesh-free method.
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3.2 Mesh-free Approximation

Mesh-free methods are a class of approximation techniques which constructs a continuous function
based on independent, potentially sparse and irregular observations. Assume that our domain
of interest R3 is equipped with K fixed points qi ∈ R3 along with some observations ui at qi

and a choice of a polynomial basis p(·). We refer to fixed points qi as “nodes” (or, alternatively,
“deformation nodes”). Our main goal is to construct a continuous approximation of some real-valued
function u(.) in some subdomain Ω ⊂ R3 of interest. We let x ∈ Ω to be an arbitrary point in our
region of interest. The key idea behind this approximation is to use a local weighted least-squares
fitting (also referred to as Moving Least Squares) approach [15]. Specifically, we first build a
compactly supported weighting function wi(x) in the neighborhood of qi, via:

wi(x) =


(
1− ||x− qi||22

ri

)3

, if ||x− qi||22 ≤ ri

0, otherwise
(1)

The compactness of this weighting function is useful in preserving the local characteristics of
approximation. From this, a Shape Function Φi associated with each node i, is constructed as:

Φi(x) = pT (x)[M(x)]−1wi(x)p (qi) . (2)

Here M(x) is the Moment Matrix associated with the approximation, and defined as:

M(x) =

K∑
i=1

wi(x)p (qi) p
T (qi)

The shape function Φi is a continuous function that describes how each node qi influences the
approximation of u(.) across points x ∈ Ω. Jointly the the set of Φi’s enable the reconstruction of
arbitrary functions up to nth order consistency [67], where, n is the order of the polynomial p(·).
Specifically, a smooth local approximation of u(x) is given as:

u(x) =

K∑
i=1

Φi(x)ui (3)

As the construction of Φ involves computing M−1 (c.f Eq. (2)), it is a sufficient condition for each
point x to be compactly supported by 4 non-planar nodes qi for M to be non-singular. It is important
to note that Eq. (3) is approximating and not interpolating, i.e ui ̸= u(qi). For instance, owing to the
compact nature of w(x), it is possible that u(qi) is undefined if qi /∈ Ω. For this reason, we sample
the nodes a priori to have a well-supported domain Ω ⊆ R3 where u(x) is well-defined.

Furthermore, an important advantage of using mesh-free approximations comes from an exact analyt-
ical expression for the gradient function of u(x). To the scope of our current discussion, considering
u(x) to be the approximation of deformation field function, the Jacobian of this deformation field
only depends on evaluation point and is independent of observed deformation parameters ui ,

J = ∇x,y,zu(x) =

K∑
i=1

[
∂Φi(x)

∂x
,
∂Φi(x)

∂y
,
∂Φi(x)

∂z

]T
ui (4)

This nice property helps us characterize the deformation fields with desired first-order regularization
in an efficient manner. We refer interested readers to [67, 66] for a detailed summary.

3.3 Notation:

As our training set, we consider a collection of shapes {S1 . . .SN} with ground truth correspondences
ΠSlSj

between them. Shapes can be represented as triangular meshes Sj := {V, E} or simply
unordered sets of points (point clouds) Sj := {V}. We pick one shape from the collection as a
template T , and let [T ] be the volume enclosed by the boundary ∂T . We refer to Q ∈ RK×3 as

4



Encoder
PointNet

z Decoder
MLP

Point Cloud
or a Mesh

Learnt
Deformation Parameters

Meshfree approximation
Equation 5

Target Mapping

Figure 2: Overview of our approach. First, we learn the deformation parameters at nodes using an
Auto-Encoder. Then, we use mesh-free approximation to obtain a continuous deformation mapping.

nodal positions, which are K fixed points in space sampled from the template volume [T ]. We let
D(·) : R3 → R3 be the deformation mapping, which, intuitively maps points in the deformation
volume to points on target shapes. We refer to Uj as the nodal deformation parameters corresponding
to the jth shape and analogously define Dj(·). Each node qi ∈ Q has a support radius ri and
associated deformation parameter ui. We use lower-case notation ui,j to refer to the value of the
deformation field at node qi corresponding to shape j. We denote x ∈ Ω ⊂ R3 as points in
space which are supported by at least four non-planar nodes. We refer to Uj(x) as the continuous
approximation of the deformation field, constructed from deformation parameters Uj using Eq. (3).
We re-iterate that ui,j ̸= Uj(Qi). The relation between a deformation field and a deformation
mapping is given by Dj(x) := x+Uj(x). For the sake of consistency, we index nodes using i, shape
collection using j, l and points within shape using k.

4 Method: Learning Nodal Deformation-Field

Overview. Our network is based on a PointNet [75] auto-encoder as shown in Figure 2. Our
network Fθ(·) predicts nodal deformation parameters Uj for each training shape Sj , i.e Uj = Fθ(Sj)
where Uj ∈ RK×3. As mentioned before, the nodes Q are fixed a priori. From the predicted Uj , we
can compute the shape-specific deformation mapping Dj(x) and its Jacobian Jj , via:

Dj(x) = x+

K∑
i=1

Φi(x)ui,j

Jj = I+∇x,y,zUj(x)

(5)

Where, ∇x,y,zUj(x) is given in Equation 4.

4.1 Training

Intuitively, we would like to train a network so that Sj ≈ {Dj(x)|x ∈ T }, subject to appropriate
regularization. Although Dj(x) can be approximated at an arbitrary x, which is supported by four
non-planar nodes, we restrict ourselves to x ∈ T for the ease of learning. As Fθ(·) represents an
auto-encoder, it can be decomposed as Fθ(Sj) = Dec(Enc(Sj)) = Dec(Zj) where Zj denotes
the latent embedding. Leveraging this fact, we provide a novel way to promote plausible latent
deformation spaces Zj by enforcing first-order constraints over the intermediate shapes as well. The
overall optimization objective of our network is given as:

Lnet = λ1Lcor + λ2Lvol + λ3Larap + λ4LZ (6)

For the unsupervised case, we replace Lcor with LCD which denotes the Chamfer’s distance.

Correspondence Loss Given a set of C of corresponding points {xl,xk}, where xl ∈ T , xk ∈ Sj

our correspondence loss is given as

Lcor =

N∑
j=1

|C|∑
(xk,xl)

∥∥∥Dj (xl)− xj
k

∥∥∥2
2

(7)
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Where xj
k denotes the kth point in jth shape.

Volume Preserving Field A deformation field is volume preserving iff its Jacobian has unit
determinant over the entire shape. Consequently, our local volume preservation regularization is
given as follows:

Lvol =

N∑
j=1

K∑
i=1

|det(Jj(qi))− 1|22 (8)

We empirically observe poor convergence when this objective is enforced over the entire shape due to
its stringent nature. This is because not all deformations are strictly volume preserving. Thus, we
restrict this regularization only at nodes.

As Rigid As Possible (ARAP) Deformation Since rigid motions preserve pairwise distances, a
deformation field associated with such a transformation is characterized by an orthonormal Jacobian
matrix. Thus, in order to promote locally rigid deformation field at the deformation nodes, we define
our ARAP regularization as:

Larap =

N∑
j=1

K∑
i=1

∥∥JTj (qi) Jj (qi)− I
∥∥2
F

(9)

Structuring Latent Deformation Space A well-known advantage of an auto-encoder architecture
is the construction of the latent space, where each shape has an embedding Zj ∈ RD. Then, a
parameterized path in this latent space between two shapes Zl,j(α) = αZl +(1−α)Zj continuously
deforms Sj to Sl with rate of change controlled by α. This allows constructing a sequence of shapes,
often referred to as interpolated shapes. Since each Dec(Zj) = Uj , we can further require our
network Fθ to produce a plausible deformation between each pair of training shapes. To that end,
we introduce our latent smoothness loss as follows:

LZ =

|S|∑
l ̸=j

Larap (dec((1− α)zj + αzl)) +

|S|∑
l ̸=j

Lvol (dec((1− α)zj + αzl)) (10)

Where Larap,Lvol are defined in Eqs. (8), (9) and α ∈ (0, 1) are sampled randomly.

4.2 Inference

At test-time, given a pair of unseen shapes (X ,Y) we follow a three-step procedure to obtain the
correspondence ΠXY . First, we separately reconstruct (DX ,DY) by deforming the fixed template T .
Second, we enhance the respective reconstructions by optimizing the latent vector Z independently
for shapes (X ,Y). The objective for this optimization is to minimize the bi-directional Chamfer
Distance [32] while also enforcing first-order constraints as follows:

Z = argmin
Z

Λ1LCD + Λ2Larap + Λ3Lvol. (11)

As DX is the reconstruction of X , the correspondence between DX ,X can be computed via a simple
nearest neighbor search in 3D (analogously for Y). Since DX ,DY are deformed versions of a template
they enjoy a natural correspondence (by vertex ordering). Finally, the correspondence between (X ,Y)
is a composition of two nearest neighbour searches ΠXY == (NN(DX ,X ),NN(DY ,Y)).

4.3 Extending sparse to dense Correspondence

An added advantage of our representation is the ability to retrieve dense shape correspondence
between a shape pair, given a few sparse key-point correspondences (xl,yk),∀xl ∈ X ,∀yk ∈ Y .
First, we estimate the deformation parameter ui at the nodes by solving an optimization:
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Source [12] [32] [23] Ours GT

Figure 3: Color-coded correspondences on the SCAPE (PC+N) dataset. “Twist” is a challenging
articulation as a wrong deformation can lead to large geodesic error (see Cheese-Pull effect in [76],
Figure 11). We hypothesize that our approach, which learns a “global” sense of the articulation, does
not suffer from such artefacts since the fine (local) details are computed in closed form.

ui = argmin
ui

λ1

∑
∀(xl,yk)

∥DX (xl)− yk∥22 + λ2

∥∥JTX JX − I
∥∥2
F
+ λ3|det(JX )− 1|22 (12)

Then, a dense mapping can be computed by approximating the deformation field (c.f Equation 5).

4.4 Implementation details

Analytical Gradients and Timing advantages We leverage the advantage of inexpensive access
to Jacobians as mentioned in Equation 4. Because our evaluation points are known a priori, due to the
use of a fixed template T , the matrix J can be pre-computed and re-used at training and evaluation.
In practice, we observe a 10× speed-up at training time when enforcing our first-order constraints
and a 350× speed-up incorporating the latent constraints (c.f. Eqn 10). We provide more timing
details in the supplementary.

Node Sampling: Since the deformation field at a point is determined by the nodes within the radius,
it is important to limit the influence of a node which is close in a Euclidean sense but geodesically
far. For instance, it is counter-intuitive to have a node in the trunk of the human influencing the
deformation of a point in the arm. Bearing this in mind, our node sampling strategy is divided
into three main steps. First, we construct a dense sampling of points in the volume and around the
boundary of the template ∂T . Second, we use rejection sampling to exclude a node that exerts its
influence in semantically different regions [29]. Finally, we perform Farthest Point Sampling (FPS)
until each surface point is covered by 4 non-planar nodes. We emphasize that this step is performed
only on the template shape and using SMPL [29] segments is one of many possible ways to perform
segmentation. An in-depth ablation study is provided in the supplementary material.

5 Experiments

The reduced representation for deformation field which we have discussed so far is conducive
to produce naturally smooth deformation while significantly reducing the amount of supervision
needed to facilitate learning. We empirically show the efficacy of our proposed representation
of deformation fields across four main tasks, namely Non-rigid 3D shape correspondence, Shape
registration, Unsupervised part segmentation and Shape interpolation.

5.1 Shape Correspondence

We consider three challenging benchmarks, namely, SHREC’19, FAUST (PC), SCAPE (PC+N).
SHREC’19 [77] is a standardised benchmark consisting of 430 evaluation pairs with significant
variations in mesh resolution and connectivity. FAUST (PC) denotes a more recent Non-Isometric
Point Cloud variant [12] of the FAUST dataset consisting of 1000 points with large variance in
point sampling density. Third, we evaluate on a variant of the recent SCAPE-Remesh dataset [78]
consisting of 20 shapes of the same human in 20 distinct poses. We further augment the challenge
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Method Correspondence Error

Type Name #Tr data SHREC’19 FAUST(NI) SCAPE(PC+N)

Spectral GeoFMap [7] 1.7 11.2 20.1 27.7

Pair-wise Diff-FMap [12] 1.0 15.1 5.4 26.0
CorrNet3D [8] 15.0 9.6 25.9 38.0

Template based
3D-CODED [5] 23.0 10.3 7.0 18.7
TransMatch [23] 1.0 6.1 6.5 17.1
Ours 0.1 4.8 5.3 6.6

Table 1: We report correspondence error as geodesic distortion (in cm) scaled by square root of shape
area. #Tr data denotes number of training shapes scaled by 10−4.

Src [5] [82] Ours

Figure 4: Quantitative and qualitative results on SHREC’20. Our approach predicts smooth corre-
spondences across highly-granular surface-level deformation.

by adding random Gaussian noise and refer to as SCAPE (PC+N). We evaluate correspondence
error following the Princeton benchmark protocol [79]. We train our method on a subset of 1000
SURREAL shapes [80] for 1000 epochs with data-augmentation along Y-axis.

Baselines We compare our method against data-driven correspondence methods broadly classified
into Spectral, Pairwise and Template based. We use GeoFMap [7] with the more robust feature
extractor Diffusion-Net [11] as our spectral baseline, Diff-FMaps [12] and CorrNet3D [8] as our pair-
wise baseline. For our template based baselines, we use 3D-CODED [32] and TransMatch [32]. For
the evaluation of baselines on our proposed SCAPE (PC+N), we use the author-provided pre-trained
models, and apply consistent pre-processing to the input shapes across all methods.

Discussion Our approach consistently outperforms baselines as summarised in Table 1. While our
quantitative correspondence results are persuasive, it is remarkable to note that our method requires
an order of magnitude less training data in comparison to competing methods. This supports our
premise that characterizing typical deformations requires far fewer parameters than what is leveraged
by existing data-driven methods. We show qualitative correspondence results through color transfer
for a challenging pair with “twisted” motion in Figure 3.

5.2 Shape Registration

Shape registration is a special case of correspondence, where our goal is to find an optimal deformation
between the scan and a fixed template. For this, we consider the recent SHREC’20 benchmark [81],
consisting of 11 partial scans of stuffed toy rabbits to be registered to a single scan. This benchmark
is particularly challenging due to granulated surface deformation, scanning artefacts, and limited data
and supervision.

Experiment We split this dataset into 7 training shapes and 4 shapes for evaluation. Shapes in our
test set are made of “chickpea” material, which exhibits the largest magnitude of granular surface de-
formation. We compare our method with 4 baselines namely, FARM [21], BCICP [78]+ZoomOut [83],
3D-CODED [32] and TransMatch [23]. Since the two data-driven baslines are not designed for
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Plane Table

CD
(x1e4)

IoU
(%)

CD
(x1e4)

IoU
(%)

DIT [14] 24.6 69.1 26.7 68.9

DIF [13] 15.0 78.0 11.2 79.3

Ours
(w/o Con) 0.5 88.8 2.6 88.9

Ours 0.6 89.3 3.0 90.0 Source DIT DIF Ours (w/o Con) Ours

Figure 5: Ours (w/o Con) is a variant of our approach without any deformation constraints. Both of
our variants show a significant improvement over baseline that models volumetric deformation fields.
Qualitative result demonstrates color coded segmentation transfer across significant shape variability.

training with key-point supervision, we use Equation 12 to generate dense-ground truth for training.
In fairness, we report two variants of our method trained - one trained with key-point and the other
with dense supervision denoted as “Ours” and “Ours++” respectively. We stress that this additional
supervision is used only at training time while we maintain the test set to be fully-blind. We summa-
rize our quantitative and qualitative results in Figure 4. It is remarkable that our approach outperforms
axiomatic and competing data-driven baselines by at least a two-fold margin. Importantly, despite
our network sharing the same encoder [75] as 3D-CODED [32], there is a striking difference in
performance. We attribute this to our well-regularized deformation space.

5.3 Unsupervised Segmentation Transfer

In this section, we demonstrate the generalization ability of our approach to model deformation
between shapes with considerable topological differences. To that end, we consider the task of
part-level segmentation over point clouds consisting of table and plane categories from ShapeNet [84]
dataset. Apart from topological differences and large structural variance, the absence of ground
truth annotations exacerbates the challenge. In this setting, we compare our method with two Deep
Implicit networks, namely DIF-Net [13] and DIT [14], which model a volumetric deformation field
between a learned template and training shapes. Our choice of baseline endows us with a fair ground
of comparison between the two representations of the deformation field - MLP-based and ours.

Experiment and Discussion We train our approach using the unsupervised loss mentioned in
Section 4.1 over 1000 objects sampled at random from each category. We consider 190 evaluation
pairs per-category from the prescribed validation set and measure the segmentation accuracy by the
IoU metric [84]. In addition, we also measure the bi-directional Chamfer’s distance of reconstructed
geometries. We summarize our quantitative observation along with a qualitative example in Figure 5.
We remark that while deformation fields between aforementioned categories are not strictly volume-
preserving, we still observe a noticeable improvement over the baseline. This is because our
deformation priors help in structuring the space of deformations, which explicitly avoids degeneracy
such as collapsing shape parts. This remark is corroborated by a lower (preferred) Chamfer distance
while there is a decline in the accuracy when no regularization is applied.

5.4 Shape Interpolation

A notable characteristic of a well-structured latent space is the ability to produce plausible intermedi-
ate shapes given a source and a target. This task is commonly referred to as shape interpolation. Since
there exists no canonical path, interpolation sequences are gauged by the extent to which intrinsic met-
rics are preserved, in particular isometric distortion [85]. For this setting, we consider the FAUST [3]
dataset, where, we train our method on the first 80 shapes and evaluate over the last 20 shape pairs. We
compare our method against four baselines namely 3D-CODED [5], NeuroMorph [61], LIMP [52]
and ShapeFlow [51]. Since LIMP employs a fixed-size decoder and NeuroMorph uses a separate
interpolation module involving an explicit computation of correspondence matrix, both of these
approaches are limited by shape resolution. On the other hand, our approach is resolution agnostic
and outperforms the baselines by a discernible margin as summarized in Figure 6. This improvement
over the baseline is due to the incorporation of our latent deformation priors in a computationally
feasible manner, which we will be justified through an extensive ablation study in the supplementary.
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Source Target

Ours

ShapeFlow

Figure 6: Quantitative and qualitative comparison of interpolation. While ShapeFlow [51] enforces
volume preservation prior, its latent deformation space are not distortion-free. By better structuring
the latent-space (c.f Eqn 10), our sampled intermediate shapes are near distortion-free.

Additional Results

In addition to the results shown above, we also present qualitative correspondence results between
neural implicit fields and real-world data in the supplementary. More specifically, in Section 5 of
the supplementary, we show qualitative interpolation and correspondence results between implicitly
defined surfaces. Then, in Section 6.1 of supplementary, we show qualitative correspondence results
in the form of texture transfer between pair of shapes from the CMU-Panoptic dataset [86] consisting
of point clouds acquired from from Kinect RGB-D sensor. Finally, in Section 6.2, we also show
the versatility of our representation in modelling deformation field between shapes that have more
freedom regarding such as meshes of the human heart [87].

6 Conclusion, Limitations and Future Work

We presented an effective representation of deformation fields, which allows learning a reduced
set of shape-specific deformation parameters while constructing the continuous deformation field
using mesh-free approximation. A key observation behind our method is that in many settings, the
space of realistic deformations is well-constrained and expressed with a small set of parameters. To
that end, we demonstrated that our approach can achieve significant improvement upon existing
baselines across challenging downstream applications and remarkably reduce the dependence on
training data. Moreover, this representation also endowed us with access to first-order derivatives in
closed form, thereby facilitating the use of strong first-order regularization. Our approach still has
some limitations and leads to possible exciting future work. Firstly, while our approach produces a
smooth deformation field in principle, there is no guarantee of bijectivity or invertability. Second,
instead of fixed nodal positions, optimizing with respect to our approximation function would also be
an interesting direction to study.
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