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Abstract

We present a novel method for the morphometric analysis of series of 3D shapes,

and demonstrate its relevance for the detection and quantification of two

craniofacial anomalies: trigonocephaly and metopic ridges, using CT‐scans of young

children. Our approach is fully automatic, and does not rely on manual landmark

placement and annotations. Our approach furthermore allows to differentiate shape

classes, enabling successful differential diagnosis between trigonocephaly and

metopic ridges, two related conditions characterized by triangular foreheads. These

results were obtained using recent developments in automatic nonrigid 3D

shape correspondence methods and specifically spectral approaches based on the

functional map framework. Our method can capture local changes in geometric

structure, in contrast to methods based, for instance, on global shape descriptors. As

such, our approach allows to perform automatic shape classification and provides

visual feedback on shape regions associated with different classes of deformations.

The flexibility and generality of our approach paves the way for the application of

spectral methods in quantitative medicine.
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1 | INTRODUCTION

Trigonocephaly is a puzzling congenital craniofacial malformation

secondary to a premature fusion of the metopic suture, located

between the two frontal bones. Trigonocephaly is characterized by a

triangular, keel‐shaped forehead, biparietal widening, and hypotelor-

ism (Kolar & Salter, 1997). Interestingly, the usual theories on

craniofacial growth are of little help to understand the mechanisms

leading to this malformation, and there is currently no clear

explanation accounting for the striking increase in its prevalence in

the last three decades (van der Meulen et al. 2009). Trigonocephaly

requires surgical correction before 1 year of age for esthetic and

functional imperatives. In this context, early and reliable diagnosis is

key in the management of trigonocephaly (Mathijssen & Working

Group Guideline Craniosynostosis, 2021).

Numerous anthropometric measurements have been proposed in

the literature to help diagnose this condition (Calandrelli et al., 2020;

Kellogg et al., 2012), and also to differentiate trigonocephaly from

metopic ridges, a minor anomaly due to an excessive ossification of

the metopic suture, without orbital deformation or biparietal

widening, that does not generally require surgical correction.

Quantifying morphological differences between trigonocephaly and

metopic ridges can be hard to perform reliably. Instead, distinguishing

between these two conditions is typically performed using purely
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subjective, qualitative analysis. Furthermore, even though the

differences between these two conditions are three‐dimensional,

most of the metrics proposed in the literature to differentiate them

are twodimensional (Birgfeld et al., 2019, 2013), and few are three‐

dimensional (Cho et al., 2016).

The quantification of three‐dimensional shapes requires the use of

specific statistical approaches such as geometric morphometrics

(Bookstein, 1997; Gunz & Mitteroecker, 2013; Klingenberg, 2002).

These approaches are now commonly used in biomedical sciences, to

better describe phenotypes, study growth, and evaluate treatment

outcomes (Rutland et al., 2021). Usual morphometric approaches rely

on the placement of landmarks, and subsequent analysis of their

variability using rigid and nonrigid registration (Adams et al., 2004;

Bookstein, 1982, 1997, 2019; Klingenberg, 2016; Slice, 2007; Webster

& Sheets, 2010). This procedure presents many indisputable advantages

including the preservation of homology of anatomical regions through-

out data sets encompassing great interspecific variation (Gillet

et al., 2019; Mallet et al., 2019; Palci & Lee, 2019), or along different

developmental stages (Fabre et al., 2020; O'Higgins & Jones, 1998;

Watanabe & Slice, 2014). Although intraoperator biases related to the

manual placement of reference points exist, they have been extensively

studied (Arnqvist & Mårtensson, 1998; von Cramon‐Taubadel et al.,

2007; Daboul et al., 2018; Wärmländer et al., 2019), allowing for their

detailed quantification. However, interoperator biases are still more

difficult to assess, and this could be important in the era of big data.

Also, classical geometric morphometrics may face some other limitation

like missing data and/or topological discrepancies. Several attempts of

applying landmark‐free approaches to shape assessment have been

recently proposed in the literature (Biasotti et al., 2016; Sahillioğlu, 2020;

Toussaint et al., 2021). Among all 3D shape assessment methods with or

without landmarks, spectral techniques (Ovsjanikov et al., 2012, 2017),

originally developed for computer graphics, have rarely been applied to

the medical field to date.

Unlike standard geometric approaches, spectral shape analysis

goes beyond the 3D geometry of a surface and analyzes functions

defined on the shapes, which comes with a rich and flexible

mathematical framework. In particular, functional maps (Ovsjanikov

et al., 2012) and their numerous extensions (Huang et al., 2020; Melzi

et al., 2019) allow to compute highly accurate dense point‐to‐point

correspondences, and can be adapted to a wide range of settings and

deformation models (Ren et al., 2021).

Notable previous works (Kitchell et al., 2018; Klein et al., 2017;

Niethammer et al., 2007; Nitzken et al., 2014; Shishegar et al., 2021)

have used partly outdated spectral methods for medical data analysis,

and especially the so‐called shape DNA descriptors (Reuter

et al., 2009). These methods typically relied on restricted deformation

models such as near‐isometries, and, importantly, only enabled global

shape comparison, by associating a single descriptor vector to each

shape. Unfortunately, as we demonstrate below, this is insufficient to

reliably distinguish subtle differences that might exist across different

shape categories.

In contrast, functional maps provide a general and flexible

framework that has proven capable of efficiently obtaining accurate

fully‐automatic landmark‐free local correspondences between shapes,

leading to state‐of‐the‐art results even in challenging settings like

partiality (Attaiki et al., 2021; Rodolà et al., 2017) or non‐isometry

(Dyke et al., 2020; Ren et al., 2018). Unlike global shape embeddings,

local correspondences enable more accurate analysis of shape

collections, highlighting precise regions associated with shape

changes, and even building task‐specific deformation models.

Furthermore, spectral methods can be used to refine noisy initial

correspondences obtained through rigid alignment, as we demon-

strate in this paper.

In this work we leveraged these recent state‐of‐the‐art fully

automatic shape correspondence methods, which we adapted to fit

within a morphometric analysis pipeline to study morphological

differences between trigonocephaly, metopic ridges, and controls.

Our results pave the way for the use of this new set of methods in

quantitative medicine.

2 | MATERIALS AND METHODS

2.1 | Overview

We used a template‐based morphometric analysis framework, where

deformations between the template and each shape were defined

using dense vertex‐to‐vertex correspondences—that is assigning a

point on the target shape for each point on the template. Both the

correspondences and the template were obtained automatically using

a landmarks‐free approach by adapting recent developments in the

functional map framework (Huang et al., 2020; Melzi et al., 2019).

The proposed pipeline is fast, fully automatic, flexible as it can handle

different types of deformations, and provides visual feedback on

zones undergoing the most important shape modifications.

Our work, briefly described on Algorithm 1, builds on a variety of

recent works (Huang et al., 2019, 2020), for which we here only

provide a detailed description of the necessary modifications. We

refer the interested reader to the original publications for a complete

description of the methods. A complete implementation of our

approach, that can be used by other researchers is available at

https://github.com/RobinMagnet/Morpho_FMaps.

2.2 | Data

This study relies on the reuse of retrospective data acquired during

standard patient care and complies to MR‐004 (CNIL1818709X,

2018‐155, #110, 03.05.2018). All patients were informed of the

reuse of their personal data for this specific study. Our data set

included all patients with non‐syndromic trigonocephaly that

benefited from fronto‐orbital advancement at Necker—Enfants

Malades Hospital (Assistance Publique‐Hôpitaux de Paris), at the

National Reference Center for Craniosynostoses and Craniofacial

Malformations (CRMR CRANIOST; Filière Maladies Rares TeteCou)

from 2004 to 2019 with an available digital preoperative CT‐scan. In
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addition, all patients diagnosed with metopic ridges managed in the

same center during the same period, with an available digital CT‐scan,

were also included. For metopic ridges, all scans were performed for

diagnostic purposes before patients were sent to our center,

radiological examination being of little use in this condition in the

vast majority of cases. This cohort of patients with metopic ridges

thus corresponded to a specific subset of patients that raised

diagnostic questions with trigonocephaly, and was interesting in the

context of the assessment of a classification method. The final

differential diagnosis between trigonocephaly and metopic ridges

was based on the expert opinion of the craniofacial surgeons of the

National Reference Center. Control age‐matched patients were

included, with available digital CT‐scans performed in the emergency

department of the same hospital (for acute headache, soft‐tissue

infections, epilepsy, or trauma). All control CT‐scans were assessed

by two independent reviewers (craniofacial surgeon and pediatric

radiologist), to ensure that only scans without skull fractures,

craniofacial anomalies, structural abnormalities, and of sufficient

quality for 3D reconstruction were included. Age and gender were

noted for all patients. The data set consisted in N = 155 CT‐scans of

skulls including nt = 85 patients with trigonocephaly (mean age:

219.3 ± 81.4 days), nm = 27 patients with a metopic ridge (mean age:

379.25 ± 224.7 days), and nc = 43 control patients (mean age:

218.7 ± 107.8 days). The detailed age distribution for each group is

provided in the supplementary material. The scans were segmented

using 3D Slicer (Fedorov et al., 2012), and skulls were exported as 3D

surface objects. The surface objects generated from segmentation

masks consisted in watertight meshes composed of an inner and an

outer surface (Figure 1). Due to the segmentation process which

forced watertightness, scan quality, and variation in ossification

across patients, several skulls presented multiple either natural or

artificial surface interruptions (especially around the orbital cavity

and on the anterior skull base) connecting the two layers of the

surface at unusual places. This generated both severe topological

dissimilarities between the surfaces due to the addition of several

holes, and highly nonisometric transformations that distorted

geodesic distances between inner and outer surfaces (Figure 2).

While addressing these changes can pose challenges for certain

shape analysis approaches, using the functional map framework

proved effective in mitigating this issue. In particular, while

Section 2.4 showed a small adaptation to double‐surface for

initialization, we did not adapt the method to avoid or explicitly

handle topological challenges present in the data.

Each scan in the collection was remeshed to reach roughly

40,000 triangles, then normalized and centered, and isolated

components were automatically removed. The eigenfunctions of

the Laplace−Beltrami operator, introduced in Section 2.3, were

precomputed separately for each shape.

2.3 | Functional maps

We based our approach on the Consistent ZoomOut algorithm

(Huang et al., 2020), a landmark‐free method, which allows to refine

noisy initial correspondences in a collection of shapes using

functional maps.

Functional maps were introduced by Ovsjanikov et al. (2012) as

an efficient and adjustable way to perform shape correspondence.

While standard shape matching methods directly optimized for

pointwise correspondences between two surfaces, functional maps

considered instead transferring real‐valued functions across shape

pairs (Figure 3).

More precisely, the key idea of functional maps consisted in

encoding functions using a basis on each shape and then

representing correspondences as linear operators across basis

functions of different shapes. These linear operators could be

encoded as compact matrices (functional maps), that intuitively

allowed to “translate” across different bases. Crucially the size of

these functional maps was independent of the number of vertices

on each shape, and only depended on the chosen basis size. In

practice, the standard choice was to use the eigenfunctions of the

Laplace−Beltrami operator as the functional basis on each shape

(Figure 4), as they presented a natural generalization of Fourier

analysis to general domains. In practice, this meant that the

standard functional maps pipeline (Ovsjanikov et al., 2017) con-

sisted in first computing K ≈ 50−100 basis functions on each shape,

optimizing for a K × K functional map matrix, and then converting

this matrix to a dense point‐to‐point correspondence. As greater

values of K corresponded to more precise point‐wise maps, most

recent algorithms (Huang et al., 2020; Melzi et al., 2019; Ren

et al., 2021) iteratively refined an initial small‐sized (blurry)

functional map into a bigger one.

Functional maps have also been used to establish correspon-

dences within shape collections (Huang et al., 2020), which can lead to
F IGURE 1 Visualization of the inner and outer surfaces of a mesh
in horizontal section.
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more accurate results, by exploiting collection‐wise consistency

constraints. In particular, functional map networks (FMN) consider

collections of shapes S( )i i
N
=1, related to each other with functional

correspondences, encoded as K × K matrices, which together define a

graph of correspondences (Huang et al., 2019, 2020; Nguyen

et al., 2011). Using an initial FMN, the Consistent ZoomOut algorithm

(Huang et al., 2020) allows to establish consistent maps across any

shape pair, by constructing a virtual template referred to as a “limit

shape.” The limit shape is a purely algebraic construct (intuitively it

corresponds to a space where functions from all shapes get averaged

out) and does not have a concrete geometric structure. However,

Consistent ZoomOut allows to build functional maps between this

limit shape and every shape in the collection, leading to accurate

correspondences between arbitrary shape pairs, even those not

present in the original FMN.

2.4 | Computing correspondences

Consistent ZoomOut (Huang et al., 2020) requires initial corre-

spondences to build the network. These initial correspondences

can be very approximate as they are later refined by the algorithm.

In this work, we relied on a rigid alignment of the surfaces, which

was made possible as all skulls were roughly facing the same

direction due to the acquisition process. Note that our method

tolerated noisy initial maps and no manually placed anatomical

landmarks were required.

Specifically, initial maps between a pair of shapes S1 and S2 were

computed as follows. We first applied an iterative closest point (ICP)

algorithm (Besl & McKay, 1992) for approximate rigid alignment.

Using this initialization, each vertex y ∈ S2 was then associated to the

nearest vertex x = T(y)∈ S1 with a coherent normal, that is,

F IGURE 2 The data set included highly nonisometric deformations (top and middle row) as well as topological dissimilarities around the
orbital cavity (bottom row).
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↦
∈  

y x x y= argmin || − ||
x S n n

i
, , >0

2

i xi y1

. This procedure ensured that even if

the alignment was not clinically relevant, the inner and outer surfaces

(described in Section 2.2) were differentiated as schematically explained

in Figure 5. In Figure 5, without normal consistency, point x1, which lied

on the outer surface of S1, was mapped to point y2 on the inner surface of

S2, and x2 was also mapped to y2. The obtained correspondences T could

then be transformed into a functional map C of size K×K. Note that

these initial maps were of poor quality as they relied on an ICP alignment,

which may have poorly aligned clinically relevant areas of the skull.

Furthermore, the normal consistency procedure could have failed in

zones with high curvature. We thus refined them using Consistent

ZoomOut before performing downstream analysis tasks.

We have significantly improved the speed of both the

initialization and refinement steps by using only small subset

of 2000 randomly chosen pairs out of the approximately

12,000 possibilities. The initial functional correspondences were

of size K × K, with K = 50, and using a spectral upsampling step of

kstep = 5, these maps were refined until dimension 100 was

reached. The refined network then provided correspondences

between any two shapes in the collection, even if the two shapes

were not directly connected by an edge inside the network. These

correspondences were of high quality and significantly improved

those obtained by simple ICP alignment, and were then used for

our subsequent morphometric analysis.

F IGURE 3 Comparison of point‐based and functional correspondences. Top: A point on one shape was transferred to another shape using a
vertex‐to‐vertex map T. Bottom: A function was transferred using a functional map C. The image below the arrow is a representation of the
entries of the functional map matrix. Note that these two transfers do not require T or C to be ground truth maps.

F IGURE 4 Examples of low frequency (i.e., slowly varying) eigenfunctions of the Laplace−Beltrami operator.
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2.5 | Deformation analysis

2.5.1 | Unsupervised analysis

As we sought to perform template‐based morphometric analysis but

only had access to a “limit shape” (Huang et al., 2019) that did not

correspond to any known geometry, we designed a method to

extract an actual shape from the collection that was the most

intrinsically similar to the limit shape. We defined the intrinsic

dissimilarity between shape i and the limit shape as ||D I||−c
i

H
( ) 2

0
1 where

Dc
i( ) was the conformal characteristic shape difference (Huang

et al., 2019; Rustamov et al., 2013), a K × K matrix which captures

the differences between the limit shape and shape i, I was the

identity matrix, and || ||
H
2

0
1 the norm in the Sobolev space

(Rustamov et al., 2013). The shape that minimized this dissimilarity

metric was called T, and can be conceived as a median shape of the

collection. Note that correspondences between T and each shape in

the collection were then available thanks to the FMN, mentioned

above.

Using shapeT, acting as a template, we generated for each shape

Si a vertex‐wise deformation field d(i) deforming T into Si. This

deformation was defined by first rigidly aligning the two shapes using

the computed correspondences and then using the vertex‐wise

displacement in 3D provided by the same correspondences. We

further smoothed the deformation fields following the approach from

(Eisenberger, Lahner, & Cremers, 2020; Eisenberger, Toker, et al.,

2020), projecting d(i) into the truncated Laplacian basis using Kd

eigenvectors, with Kd = 100.

Using deformation fields as embeddings for shapes, we

performed a principal component analysis (PCA) to extract principal

components D( )j j
p
=1
pca, which we here called principal deformations.

Note that projecting the deformation fields into these components

provided a new reduced embedding ∈d̃
i p( )

pca for each shape Si.

Principal deformations can be thought of as deformations of the

templateT to 3, and could be visualized by applying deformation tDj

to the templateT for various values of ∈t . Note that we informally

referred to as a positive (resp. negative) deformation the visualization

of tDj with t > 0 (resp. t < 0). This visualization provided a qualitative

feedback in addition to the standard projection on the first

components.

2.5.2 | Supervised analysis

The procedure up to the current point was fully unsupervised in the

sense that no manual intervention or labels were used. To validate

the previous analysis, we trained a logistic regression model to

predict to which group a skull belonged, using only d( ̃ )
i
i

N( )
=1 as input.

This step demonstrated that the fully unsupervised analysis

generated a meaningful representation for each shape. For each

class, the logistic regression learned a vector β so that a high value of

 d β̃ ,
i( )

2 meant that  d β̃ ,
i( )

2 was predicted to belong to the given

class. For visualization purposes, we built the reference deforma-

tion D β β D( ) = ∑ j
p

j j=1
pca which corresponded to the “canonical” defor-

mation of the template associated with the given class. That is,

deformations of the template which aligned the most with D β( ) were

predicted to be part of the given class, and thus the deformationD β( )

provided a visual representation of how the classification decision for

each class is made.

We performed a PCA and computed logistic regression models

using the first ppca = 10 components. We fitted five types of logistic

regressions: (1) trigonocephaly versus controls (C‐T), (2) (controls +

metopic ridges) versus trigonocephaly ([C +M]‐T), (3) controls versus

metopic ridges versus trigonocephaly (C‐M‐T), and (4) metopic ridges

versus trigonocephaly (M‐T) (5) metopic ridges versus controls (C‐M).

We evaluate these regressions using a fivefold cross validation,

weighting samples to compensate for the nonuniform distribution of

labels.

We compared our results to another fully unsupervised baseline,

by applying a similar logistic regression to the standard Shape‐DNA

descriptor (Reuter et al., 2009). This global shape descriptor embeds

the shape as the list of the first Kdna normalized eigenvalue of its

Laplace−Beltrami operator. We tested several values of Kdna, and

obtained best results using 100 eigenvalues.

F IGURE 5 Local significance of the normal consistency scheme
for inner and outer surfaces.
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3 | RESULTS

3.1 | FMN

The refined networks allowed us to obtain per‐vertex correspon-

dences between any pair of shapes (Figure 6) within the collection,

which improved upon those obtained by the initial ICP alignment. In

Figure 6, we visualized the computed point‐to‐point correspon-

dences. Specifically, we first associated color (r, g, b) values based on

the (x, y, z) coordinates of each point on the leftmost shape. We then

transferred these color values using the computed correspondences

onto the rightmost shape. Thus, points with same (r, g, b) values are

seen as corresponding. Note the overall smoothness of the

transferred colors. This was a nontrivial task, and obtaining visually

satisfying correspondences was a necessary condition for quality.

3.2 | Extrinsic analysis

3.2.1 | Unsupervised analysis

To perform our analysis, we first extracted the implicit template T

(Figure 7, top), which can be deformed smoothly into any shape in the

collection using the network (Figure 8). Finally, adding the average

deformation to the template allowed the correction of its geometry

(Figure 7, bottom). This correction step was performed for

F IGURE 6 Visualization of computed correspondences between two random pairs of shapes in the collection. Top: correspondence
between two nearly isometric scans. bottom: correspondences between highly nonisometric scans. Vertices on the left are given RGB colors
depending on their XYZ coordinates, and corresponding vertices between left and right are given the same color.
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F IGURE 7 Top: Surrogate template chosen as the closest to the limit shape. Bottom: Corrected template by applying the average
deformation to the template.

F IGURE 8 Example of the computed deformation between the template and a shape from the data set.
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visualization purposes only, as the PCA used in our quantitative

analysis automatically factored this average deformation out.

3.2.2 | Logistic regressions

We provide average true positive rates (TPR) of the five types of

logistic regressions on the validation set in Table 1. For comparison,

we added results of performing similar regressions using the standard

Shape‐DNA descriptor (Reuter et al., 2009) as input.

The principal components of the PCA carried deformations of

the template and were referred to as principal deformations

(Section 2.5). The cumulative variances explained by the principal

components were displayed in Figure 9, while Figure 10 showed

the projection of the data set on the fourth and seventh

components, which displayed more separation than the first two.

The theoretical deformation associated with the positive and

negative values of each of the first two principal components were

displayed in Figure 11. As explained in Section 2.5, the logistic

regression learned for each class a representative deformation of

the template to classify each skull which enables us to generate a

“typical” skull for each cohort, built by exaggerating the represent-

ative deformation. In Figure 12, we displayed such “typical” skulls

for each class next to the template.

3.2.3 | Computational efficiency

After preprocessing, refining the FMN made of 155 scans took

40min, the main bottleneck lying in the eigendecomposition of a

large sparse matrix. Note that this can be improved by reducing the

number of provided initial correspondences. The downstream

analysis takes a few minutes to compute.

4 | DISCUSSION

We showed (Table 1) that a landmark‐free approach, based on state‐of‐

the‐art spectral analysis tools, can reliably distinguish trigonocephaly from

normal skulls and skulls with metopic ridges. The specific diagnosis of

metopic ridges was not straightforward, especially compared to the

control cohort, but the clinical relevance of our results consisted in the

fact that ridges were separated from trigonocephaly, which is the main

practical issue when managing patients with “triangular foreheads.” In

contrast, the Shape‐DNA based approach failed to make reliable

predictions on the validation set. This is because the distinctions between

different classes (and, in particular trigonocephaly and metopic ridges)

pertains to local geometrical characteristics. Thus, a method, based on a

global shape descriptor, such as the Shape‐DNA, is unable to reliably

extract the signal necessary for such a distinction. We identified two

primary factors contributing to incorrect classification in our experimental

setup. First, cases where the surfaces exhibited significant issues, such as

substantial missing or additional parts, were found to lead to

misclassification (Figure 13). Second, incorrect correspondences between

surfaces resulted in outliers in the deformations, and this issue was

observed to be influenced by mesh quality, particularly in the orbital

cavity region.

We also showed that our method could produce a clear representa-

tion of the classification outcomes (Figure 12). Notably, we observed

that trigonocephaly was detected when associated to pronounced

TABLE 1 Average true positive rates (TPR) after cross‐validation
for multiple logistic regression objectives, differentiating control
against trigonocephaly (C‐T), control and metopic crests together
against trigonocephaly ([C +M]‐T), and eventually control against
metopic crests against trigonocephaly (C‐MT).

Methods C‐T (C +M)‐T C‐M‐T M‐T C‐M

Shape‐DNA 66.0% 64.4% 46.5% 69.2% 53.3%

Ours 92.9% 91.1% 76.4% 85.3% 72.2%

F IGURE 9 Cumulative explained variance ratio of the PCA.
PCA, principal component analysis.

F IGURE 10 Projection of the data set on the fourth and seventh
principal components.
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deformations in both the forehead and the orbit regions. In contrast, the

deformation associated with metopic ridges lied between the one for the

control group and for the trigonocephaly group, with a relatively minimal

impact on orbital morphology, consistent with expectations from usual

clinical observations. Nevertheless, it is important to be cautious when

analyzing such visualizations, as they only indicated the overall direction in

which each deformation was projected. Indeed, following Figure 12, the

model seemed to heavily rely on age as a distinguishing factor. However,

we demonstrated in the supplementary material that this feature did not

offer a reliable signal.

We also highlight that our method directly ran on raw surfaces

without specific manual processing such as closing holes or

F IGURE 11 Visualization of the first principal deformations Dj for j = 1,2. For each component the leftmost and rightmost shapes displayed
the two opposite deformations. The color indicated the norm of the displacement Dj at each vertex.

F IGURE 12 “Typical” skull for each class, as detected by the logistic regression. The deformation was exaggerated for visualization purposes.
Note that these skulls don't represent actual patient but the deformations on which each embedding is projected.
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smoothing, and did not require any manual intervention such as

annotated regions or landmarks. While this results in several

challenges for many approaches, the efficiency of our method in

this scenario hints at its potential generality. These lower require-

ments, associated to a rather simple underlying statistical model

justified that the TPR for our classifications were lower than similar

works using this additional information.

While spectral methods have already been applied to biomedical

data (Kitchell et al., 2018; Klein et al., 2017; Melzi et al., 2016;

Niethammer et al., 2007; Nitzken et al., 2014; Shishegar et al., 2021),

the pipeline proposed here is the first attempt to leverage the recent

functional maps‐based methods for fully automatic dense point‐to‐

point correspondence computation, to a clinical question. Landmark‐

free approaches in general are highly relevant in morphometrics,

especially in a clinical context where simple and objective tools have

to be provided to medical practitioners. Spectral approaches seem

promising in designing shape‐based diagnostic tools for craniofacial

surgeons, with the possibility to easily extend the data set without

major computational costs and to include multiple diagnostic

categories as illustrated here. Regarding the diagnosis of trigonoce-

phaly, methods based on 3D data proposed in the literature are still

scarce (Bhalodia et al., 2020; Bloch et al. n.d.; Schaufelberger

et al., 2022), and spectral approaches could be an interesting

alternative for designing diagnostic tools, assessing growth in

temporal series, and for evaluating results of medical or surgical

treatments.

More broadly, this pipeline also appears interesting as it

provides a general framework bringing together functional maps

and morphometrics. It leverages first the flexibility and generality

of spectral methods, allowing to work at high calculation speeds

and processing entire collections efficiently, on data sets

involving a great variety of shapes undergoing potentially major

deformations. Our approach furthermore offers clear visual

feedback of the results, highlighting the main zones of deforma-

tions across cohorts and enabling direct classification of diagnos-

tic, overcoming the burden of designing a template or manually

specifying landmarks or keypoints. Finally, as minimal information

about skulls themselves was used, namely the rough pre‐

alignment and the normal consistency scheme, the complete

pipeline can easily be adapted to new collections of shapes with

little adjustment.

5 | CONCLUSION

In this work, we applied recent spectral shape matching develop-

ments to the detection of trigonocephaly in young children. Our

method is fully automatic, and especially does not require manual

placement on landmarks on CT scans, and can be generalized to other

diseases. Results clearly outperform standard spectral methods as

they detect local deformations of the skulls, which motivates the use

of such new methods to morphometric analysis.

Algorithm 1. General pipeline for our algorithm

Require: Input: Collection of shapes

1: Compute initial correspondences (Section 2.4)

2: Refine correspondences (Section 2.4)

3: Extract a template and deformations (Section 2.5)

4: Perform deformation analysis (Section 2.5)

F IGURE 13 Example of misclassification due to a large missing part. This patient was predicted to be a normal skull while it belongs to the
metopic group.
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