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LIX, École Polytechnique
maks@lix.polytechnique.fr

Abstract

This document brings additional details on the spectral
properties of Shape Difference Operators, among which a
proof of the Theorem stated in the main paper. Additional
qualitative and quantitative results are also given, compar-
ing with more baselines for completeness.

1. Spectral Properties of Shape Difference Op-
erators

1.1. Theoretical properties

Notations. Given two discrete shapes M and N , we note
their respective Laplacian LM =

(
AM)−1

WM (resp.
LN =

(
AN )−1

WN ) with A being a diagonal matrix filled
with per-vertex areas, and W the stiffness matrix (e.g. the
standard cotangent weight matrix [7]).

The discrete L2(S) inner product on shape S is defined
as

⟨f, g⟩L2(S) = f⊤ASg (1)

and the discrete H1
0 (S) inner product as

⟨f, g⟩H1
0 (S) = ⟨f, LSg⟩L2(S) = f⊤WSg (2)

Theorem 1 assumes the area-matrices AM and AN to be
positive definite, which means no vertex has a 0 area. The
assumption for a semi definite stiffness matrices however
means the kernel of W only consists in the space of constant
functions on the shape, which is the 0-set of the H1

0 norm.

Proposition 1. Under the assumptions of Theorem 1, the
area-based shape difference operator is positive definite.

Proof. The area-based shape difference operator V is de-
fined implicitly via

⟨f, V g⟩L2(M) = ⟨Ff, Fg⟩L2(N ) ∀f, g ∈ L2(M) (3)

Our discretized version of the L2 inner product defines
a positive-definite form since we suppose the area matrix A

to be non-degenerate. V is therefore self-adjoint operator
with respect to the L2 inner product.

Therefore, given f ∈ L2(M),

⟨f, V f⟩L2(M) = ∥Ff∥2L2(N ) ≥ 0 (4)

where the last inequality is an equality if and only if f =
0 in L2(M) since the functional map F is supposed to be
non-degenerate.

V is therefore self-adjoint positive-definite, and the spec-
tral theorem states its eigenvalues are real and positive.

Proposition 2. Under the assumptions of Theorem 1, the
conformal-based shape difference operator is positive semi-
definite.

Proof. The conformal-based shape difference operator R is
defined implicitly via

⟨f,Rg⟩H1
0 (M) = ⟨Ff, Fg⟩H1

0 (N ) ∀f, g ∈ H1
0 (M) (5)

Given non-degenerate matrices A and W , the H1
0 inner

product is positive definite (on H1
0 ), and

⟨f,Rf⟩H1
0 (M) = ∥Ff∥2H1

0 (N ) ≥ 0 (6)

for f ∈ H1
0 (M) with equality if and only if f = 0 in

H1
0 (M) since F is supposed to be non-degenerate.
R is therefore self-adjoint positive definite on H1

0 , and
the spectral theorem states its eigenvalues are real and pos-
itive.

In practice, since operator R is extended to the entire L2

space by setting it to 0 for constants, the operator is only
positive semidefinite.

Proof of Theorem 1.

Proof. Under the assumption of Theorem 1, propositions 1
and 2 apply from which the result follows.



1.2. Practical Computation

In practice, given two discrete shapes M and N with
a low dimensional functional map C ∈ RkN×kM between
them, the shape difference operators are computed in the
spectral basis using the following formulas [9] :

V = C⊤C (7)

R =
(
∆M)†

C⊤∆NC (8)

where ∆M and ∆N are diagonal matrices of the first kM
(resp. kN ) eigenvalues of the Laplace-Beltrami operator on
M (resp. N ).

The area-based shape difference operator V being sym-
metric as shown by equation (7), its eigendecomposition
is easily computed, while the eigen-decomposition of the
conformal-based shape difference operator R is obtained
by solving a generalized eigenvalue problem

(
C⊤∆NC

)
Ψ = ∆MΨΛ (9)

where C⊤∆NC and ∆M are both symmetric and positive
semi-definite.

1.3. Algebraic structure

In this section, we provide some insight on the discus-
sion in section 4.1 of the main manuscript, namely about
the claim that the spectrum of shape difference operators is
better expressed using the log-scale.

By definition the shape difference operators between iso-
metric shapes are identity operators, and all functions are
preserved by these operators. Therefore the absence of
deformations leads to 1 eigenvalues or 0 log-eigenvalues.
More generally if a function f on M only takes non-zeros
values on zones undergoing no deformation (regarding the
one between M and N ), then it will be preserved by the
shape difference operator DM,N , which means it becomes
a eigenvectors with a 1 eigenvalue.

It is straightforward to see the non-zero eigenvalues of
DN ,M are the inverse of those from DM,N , which makes
the log-eigenvalues opposite of each other.

The somewhat more complex case lies in the com-
position of shape difference operators. While for three
shapes M,P,N the equality DM,N = DM,PDP,N al-
ways holds, there is in general no simple relationship be-
tween the eigenvalues of each term. One scenario where
the eigenvalues of the composition of the two operators are
the product of the individual ones happens when one can
find common eigenvectors for the two composed operators.
This is known as codiagonalization of matrices and is only
possible when the two operators commute.

2. Parameters

2.1. Optimization Objective

The optimization objective described in section 4.4 of
the main manuscript consists in 5 different terms. Given a
functional maps C ∈ RkN×kM , we discuss here the influ-
ence of each term in order to bring some intuition on how
the hyperparemeters can be tuned.

The first term Ed(C) = ∥CA − B∥2 simply enforces
descriptor preservation with respect to the L2 norm on the
target shape N , where descriptors are the columns of matri-
ces A and B.

The second term Edc(C) was introduced in [5] in order
to improve the descriptor preservation via the introduction
of new operators built from individual descriptor functions.

The third term El(C) corresponds to commutativity of
the functional map with the two Laplace Beltrami opera-
tors, which enforces the functional map to represent a near-
isometric map.

The fourth and fifth terms Ec(C) and Ea(C) introduced
in [10], simply seek to preserve the action of the respec-
tively conformal and area shape difference operators under
the functional map.

2.2. Hyperparameters

DWKS. When computing DWKS descriptor, one has to
chose a set of energy values (e1, . . . , ep) as well as a scale
parameter σ. We advocate using moderate energy values
to ignore extreme shape difference eigenvalues often cre-
ated by noise in the functional correspondences. Using
e1 = − log 3 and ep = log 3 has led to satisfying results
on our side. The σ parameter describes how far an eigen-
vector will be spread on the energy-scale. To our knowledge
there is no provably efficient procedure to fit this parameter
for standard WKS descriptors [1], which is why we settle
for a constant parameter across our experiments.

Optimization. Using the previous section, the optimiza-
tion parameters are tuned so that the descriptors are well
preserved as well as the action of the shape difference op-
erators. Note that in our experiments using partial shapes,
the near-isometric assumption doesn’t hold which justifies
the absence of the laplacian commutativity term in our ex-
periments. Furthermore, because the DFAust collections
contains many holes and cuts, we found it beneficial to set
µa = 0 and therefore ignore the area shape difference oper-
ators.

Projection to low dimension When projecting the com-
puted pointwise map into a low-dimension functional map,
we ignore the fraction α of vertices which are the hardest to
match (as defined by the descriptor distance). This is due to



Figure 1. Results on the cats and lions dataset. Left mesh shows the base shape of the collection of complete cats. Right meshes display
the computed pointwise maps in the case of a collection of partial cats (top row) and partial lions (bottom row).

Figure 2. Visualization of the Synthetic faces dataset.

the fact shape difference operators and therefore DWKS de-
scriptors can detect some intrinsic distortion near cuts and
holes (usually due to noisy intra-collection maps). This ex-
plains why this parameter is set to a high value 20% when
using partial shapes instead of the 5% for complete shapes.

Refinement. In the case of partial shape, we adapt the
ZoomOut algorithm with step size

(
1, ⌊ 1

λ⌋
)

with λ the ap-
proximate ratio of area between the complete shape and the
partial one, which eventually leads to a rectangular func-
tional map.

3. Synthetic faces dataset

In the main manuscript, we refer to a synthetic faces
dataset [9] shown on Figure 2, on which we compare our
pipeline with the standard baseline [3] as well as the usual
functional map pipeline [5] using WKS descriptors.

On this dataset, we show that our pipeline can ignore the
area-based shape difference operators and still obtain great
results unlike the pipeline from [3] as seen on Figure 3.

Figure 3. Results on the Synthetic Faces dataset. Top row shows
pointwise maps after refinement when ignoring the area shape dif-
ference operators. Bottom row show the accuracy curves for this
setting (left) and when using both type shape difference operators
(right). Notice the stability of our method.

4. Comparison with partial spectral matching
methods

The most direct competitor to our method is [3] ex-
tending the pipeline from [10], which leverages on intra-
collection maps to compute cross-collection correspon-
dences. We presented extensive comparisons with this ap-
proach in the main manuscript. However since these cor-
respondences are only computed between the base shapes
of each collection, any matching pipeline could be applied
to this problem without using information given by the col-
lections. Namely the standard functional correspondence
computation problem [6] is known to be very efficient to
compute correspondences between near-isometric shapes,
and specific derivations have been obtained in [8, 4] in the



Figure 4. Visualization of the Cats and Lions dataset. The two
bottom shapes are matched together using the deformations shown
above them.

Figure 5. Quantitative results associated to results on Figure 1. Top
graph displays accuracy results for the experiment matching a par-
tial cat to a complete cat, bottom one those for the experiment
marching a partial lion to a complete cat.

challenging scenario of partial matching.
In the following we present more quantitative and qual-

itative results on the two datasets presented in our paper,
comparing to additional baselines [6, 8, 4].

Cats and Lions. We first focus on the Sumner dataset
consisting in similar meshes of cats and lions as seen on
Figure 4. Additionally to the experiment presented in the
paper, we apply the same pipeline trying to match a collec-

Figure 6. Visualization of the three collections corresponding to
the jumping motion. The biggest shape represents the base shape
of the collection and the smaller ones the used deformations.

tion of half-cat to the collection of complete cats. Qualita-
tive results are displayed on Figure 1. Quantitative results
associated to these two experiments are displayed on Fig-
ure 5 where the top graphs shows results in the case of a
partial cat matched to a complete cat, and the bottom one
those in the case of a partial lion matched to a complete cat.
Note that in the first case, where the partial shape is exactly
isometric to a subset of the complete shape, partial match-
ing methods [8, 4] obtain excellent results, whereas perfor-
mance drops very significantly in the second experiment in
the case of near-isometry. Furthermore, the standard func-
tional shape matching pipeline [6] fails to disambiguate left
and right symmetry in both cases, and results from [3] are
unable to obtain meaningful results. Our method however
performs quite well in both cases, displaying an efficient
use of common deformations to match vertices and disam-
biguate symmetries. We used the same parameters for both
experiments, using the recommended values of [8, 4].

DFaust. We also compared our method to the same base-
lines on the DFaust [2] dataset. Note that since the dataset
consists of pointclouds without normals, we replace the
SHOT [11] descriptors in [4] by standard WKS descrip-
tors [1], and remove comparison to [8] which requires in-
formation about faces.

Our datasets consists in scans of 3 individuals in two dif-



Figure 7. Examples of results on the DFaust dataset for the jumping motion. Left mesh shows the base shape of the first individual. Right
meshes display the computed pointwise maps in the case of a collection of partial cats (top row) and partial lions (bottom row).

Figure 8. Results on the DFaust dataset. Each line show results for a given motion, and each column results for a given individual.

ferent motions, namely jumping on one leg and running on
spot, which results in 6 collections of point clouds. Given a
motion we match the related collection of the first individ-
ual, which consists in full scans, with the similar collections
of the second and third individual, which consist in scans of
the lower half of their bodies as shown on Figure 6.

Qualitative result using the second individual and the
jumping motion are shown on Figure 7. Accuracy evalu-
ations in all 4 cases are given on Figure 8, where the first
line displays results when matching respectively the second
(left) and third (right) individual to the first one using the

jumping motion, and the second line similar results but us-
ing the running motion. We remark again on Figure 7 that
the standard functional map method [6] is unable to dis-
ambiguate left and right, and that in this case both partial
matching [4] and the collection based method [3] can’t to
produce meaningful correspondences. On the other hand,
our method clearly disambiguates the left-right symmetry,
and strongly benefits from the ZoomOut refinement steps.
This claim is reinforced by the accuracy results given on
Figure 8, which show that our method significantly outper-
forms existing baselines.
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