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1. Supplementary Material

We compile the results and discussions that were not ac-
commodated in the main manuscript due to page con-
straints. Specifically, Section 1.1 provides details on the
implementation aspects of our pipeline. Section 1.2 eluci-
dates our motivation for unsupervised feature learning on
the TRUCK dataset and offers additional reconstruction re-
sults. Section 1.3 provides additional generative results.
Section 1.4 introduces an ablation study concerning the
components of our pipeline. Finally, Section 1.5 delves into
our interpretation of pooling in 2D and surface meshes, and
it formulates and provides proof for the Lemma mentioned
in Section 4.1 of the main text.

1.1. Implementation Details

For our experiments concerning the extraction of point-to-
point maps in Section 4.2 of the main text, we use a func-
tional map of size k = 30. Concerning the feature extractor
DiffusionNet [9], we use the default segmentation configu-
ration provided by the authors1. After extracting the first set
of functional maps, we refine them using ZoomOut [7] us-
ing 30 iterations, from k = 30 to k = 120. For the Laplace-
Beltrami computation, we use the cotangent discretization
scheme [8].

Concerning our autoencoder architecture in Section 4.3
of the main text, we use the same segmentation configu-
ration of DiffusionNet for both the encoder and decoder.
When using true point-to-point maps as supervision, we do
not apply dropout inside the DiffusionNet blocks. We chose
F , the number of features output by the DiffusionNet layer
in the encoder, and k2, the dimensions of the CCLB, for

(⋆) denotes equal contribution
1https://github.com/nmwsharp/diffusion-net

all the shape collections in a way, such that the embedding
dimension is approximately k2 × F = 1024.

In all our experiments, we train our networks using
Adam optimizer [5] with an initial learning rate of 0.001.
For the autoencoder training losses in Section 4.4 of the
main text, we use λ = 10. Concerning the reconstruction
loss, due to the large size of the matrices DS and DX , the
shapes X and ΠS are resampled to 20000 vertices if they
are larger than it, only during the loss computation.

1.2. TRUCK shape collection and additional recon-
struction results

In a car crash simulation, the different car components are
generally represented by surface meshes, which makes our
method applicable to this kind of data. From simulation run
to simulation run, the car model parameters are modified to
achieve multiple design goals, e.g. crash safety, weight, or
performance. Depending on the chosen model and simu-
lation parameters, the car model often deforms in different
patterns. Since the simulations nowadays contain detailed
information for up to two hundred time steps and more than
ten million nodes, their analysis is challenging and gener-
ally assisted by dimension reduction methods. One goal is
the detection of clusters corresponding to different defor-
mation patterns in the components’ embeddings. We visu-
alize our 2D embedding of two components that deform in
32 simulations over time in Figure 5 in the main text. This
way, relations between model parameters and the deforma-
tion behavior are discovered more easily, and the analysis
of car crash simulations is accelerated [2, 3]. We provide
reconstruction results from the supervised experiment of a
car component from the TRUCK dataset in Figure 1, which
manifests two different deformation patterns over time, that
are visible in the embedding space in Figure 5.

In the supplementary, we add an additional experi-
ment on the SCAPE dataset [1] in the supervised “un-
known poses” experiment on FAUST by using 10 additional
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Figure 1. Reconstructions of a car component, which deforms
in two different patterns (first and second row), from the TRUCK
dataset. Vertex-wise error is highlighted.
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Figure 2. Left: Euclidean errors between the reconstructed and
original meshes of FAUST and SCAPE datasets. Right: Recon-
structed meshes from SCAPE dataset. Vertex-wise error is high-
lighted.

SCAPE shapes only for testing. We consider the most di-
verse SCAPE shapes and provide Euclidean errors as well
as reconstruction results in Figure 2.

1.3. Additional Generative Experiments

We provide additional generated shapes by combining two
positions and transferring a pose from one to another indi-
vidual.
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Figure 3. Combining two positions of FAUST test shapes (upper
row) and transferring the pose from a female to a male individual.

1.4. Ablation Study

To validate our pipeline’s components, we performed an ab-
lation study.

First, we wanted to examine the role of spectral pool-
ing and the reconstruction loss. It’s important to note
that the reconstruction loss can’t be used by itself since
it’s rotation-invariant. For this experiment, we utilized the
FAUST dataset in an interpolation setting, mirroring Sec-
tion 5.2.1. We carried out four experiments: the first one
employed our complete pipeline with supervised maps; the
second used unsupervised maps; the third operated with un-
supervised maps but omitted the reconstruction loss; and the
fourth involved supervised maps without the spectral pool-
ing (instead, we opted for global pooling as presented in
Table 1 of the main text, following the approach of previous
studies like [6]). The outcomes are presented in Table 1.
They indicate that each component is crucial for achieving
the best results. Notably, the spectral mesh pooling’s con-
tribution to the combined embedding space is significant;
using just global pooling leads to a marked drop in perfor-
mance.

Setting FAUST dataset

w/o limit shape 16.7
w/o reconstruction loss 4.3
with unsupervised maps 2.0
with supervised maps 0.7

Table 1. Ablation study on the component of our pipeline.

Secondly, we study the impact of the size of the projec-
tion on the limit shape k2. To do this, we use the GALLOP
dataset in a supervised setting similar to Section 5.2.1. We
keep the size of the embedding space fixed (equal to 1024),
which is determined by k2, the size of the limit shape mul-
tiplied by the feature dimensions F of the encoder. We in-
crease k2 monotonically from k2 = 1 to k2 = 70, while
adapting the feature dimension F accordingly. The results
are summarized in Figure 4, which shows that the higher
the dimension k2 of the limit shape, the better the perfor-
mance, corresponding to a bigger pooling in the spectral
space. However, it can also be seen that performance starts
to deteriorate with bigger k2. This is explained by the fact
that we keep the dimension k2 ×F of the embedding space
fixed, and hence fewer features are extracted with higher k2,
which is not sufficient for encoding and high-quality decod-
ing.

1.5. Motivation: Pooling in 2D as a projection to a
common basis and Lemma 1

In Section 4.1 of the main text, we introduced a new spec-
tral mesh pooling operator. This operator reduces the di-



Figure 4. Impact of k2, the size of the limit shape. If k2 = 1 this
corresponds to global average pooling; see Section 1.5.

mensionality of the meshes, enabling us to manage meshes
with varying connectivity and represent them in a unified
low-dimensional embedding space.

In the case of classical representation learning for 2D im-
ages with convolutional networks, one has a fixed-size grid
and, in fact, all samples are in 1-to-1 correspondence. The
convolutional filters with stride 1 calculate vertex-wise fea-
tures, then pooling summarizes many vertex-wise features,
going from n pixels to k. This is done symmetrically for
all the images and the features from different samples are
comparable to each other because of the 1-to-1 correspon-
dence. Let us consider the canonical basis for images of
size n = 4× 4, and the pooling size k = 2× 2, in this case:(

1 0
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is a common basis for all the images with 2 × 2 pixels.
The projection vector from n pixels towards one of low-
dimensional basis has ones in the corresponding corner. For
the first common basis, it is
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1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 ,

displayed in the shape of the image. Therefore, pooling in
2D can also be interpreted as a projection from n dimen-
sions to a set of common basis functions in k dimensions.
This projection reduces the dimensionality of the data while
the dimensionality of the pixel-wise features stays the same.
Because of the 1-to-1 correspondence, all the images are de-
scribed in the same basis. A similar pooling operator can-
not be constructed for meshes with different mesh connec-
tivities. We can only obtain point-to-point maps between
the shapes that allow the projection of a function from one
shape to another.

To solve the pooling for meshes, we propose to adapt the
CCLB method (initially developed for deformation detec-
tion) and introduce a novel intrinsic spectral mesh pooling.
We project vertex-wise features that are calculated for ev-
ery shape separately to the common CCLB basis, reducing
the dimension from the number of vertices to the size of the
limit shape. We calculate the limit shape basis CCLB as de-
scribed in section 3.4. It has dimension k2 and uses eigen-
decompositions of the Laplacians of size k1 ≥ k2. It will
be the common basis for the low-dimensional embedding
space. For the spectral unpooling, we project the features
from the limit shape basis back to the vertex representation.

If the dimensionality of the CCLB is 1 (k1 = k2 = 1),
the projection of the shape features into the CCLB corre-
sponds to a global ± mean pooling for all the shapes in the
collection. Furthermore, the inverse of this operation dupli-
cates the average feature into the shape’s vertices, similar to
upsampling in the 2D case. Also, the sign of the resulting
global mean pooling function from all shapes in the shape
collection to the CCLB is the same, which makes the dif-
ferent low-dimensional representations comparable to each
other. We formally state this observation in the following
lemma.

Lemma 1. If k1 = k2 = 1, there are only two possible
solutions for the projection Ỹ †

i Φ
†
i from the vertex-wise fea-

tures to the CCLB for all shapes Si, i = 1, 2, . . . and the
projection from the CCLB to a template shape ΦtỸt. Either

Ỹ †
i Φ

†
ixi = mean(xi) ∀i and ΦtỸt = 1nt

(1)

or

Ỹ †
i Φ

†
ixi = −mean(xi) ∀i and ΦtỸt = −1nt

(2)

with mean : Rni×d → Rd is the vertex-wise average func-
tion, and 1nt

is the column-vector with only ones in Rnt ,
and nt being the number of vertices of the template shape.

Proof. At first, we proof that Ỹ †
i Φ

†
ixi = ±mean(xi) for a

fixed i. If k1 = k2 = 1 we have

Φi = ±1ni
(3)

being the eigenvector corresponding to the smallest eigen-
value Λi = 0, because the sum of all values in each row of
the Laplacian Li is 1. Therefore,

Φ†
ixi =

1

ni
ΦT

i xi = ±mean(xi). (4)

The functional map

Cij = ΦT
j Φi ∈ R1×1 (5)

is 1 or -1, projecting only constant functions from shape j
to shape i. It holds Cij = Cji. If k1 = 1, the optimization



problem to compute the Consistent Latent Basis (CLB)

min
Y

∥CijYi - Yj∥ s.t.
∑
i

Y T
i Yi = I (6)

has the solutions:

if Cij = Cji = 1 ⇒ Yi = Yj ∈ {−1, 1}
else Cij = Cji = −1 ⇒ Yi = −Yj ∈ {−1, 1}.

(7)

Since Λi = 0, the matrix E in algorithm 1 from [4] is 0.
Therefore, the possible solutions for its eigenvector U are
-1 and 1. For the calculation of the CCLB, this leads to

Ỹi = YiU ∈ {1,−1}. (8)

The inverse holds
Ỹ †
i = Ỹi. (9)

From (4) and (9) follows

Ỹ †
i Φ

†
ixi = ±mean(xi) (10)

and all entries of the matrix have the same sign.
In a second step, we prove by contradiction that the non-

zero entries of the matrix products Ỹ †
i Φ

†
i have the same sign

for all i = 1, 2, . . . .
Assume that the sign of Ỹ †

i Φ
†
i is different from the sign of

Ỹ †
j Φ

†
j for i ̸= j. Without loss of generality, assume the

sign of Ỹ †
i Φ

†
i to be positive. Therefore, the sign of Ỹ †

i is
the same as the sign of Φ†

i . Then, either Ỹ †
j or Φ†

j has a
different sign.
If Ỹ †

j = −Ỹ †
i , then Yj = −Yi and therefore Cij = Cji =

−1 because Yi and Yj solve (6). From (5) follows that Φj

and Φi have different signs, which is a contradiction to Φ†
i

having the same sign as Φ†
j .

If in the other case Φ†
i has a different sign than Φ†

j , Cij =
Cji = −1 because of (5). It follows Yi = −Yj , which is a
contradiction to Ỹ †

j having the same sign as Ỹ †
i .

Finally, the entries of the matrix product ΦtỸt, which
projects the features from the CCLB representation to the
template shape, have the same sign as Ỹ †

i Φ
†
i .
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