
Spatially and Spectrally Consistent Deep Functional Maps

Mingze Sun1 Shiwei Mao1 Puhua Jiang1, 2 Maks Ovsjanikov3 Ruqi Huang1*

1Tsinghua Shenzhen International Graduate School, China
2Peng Cheng Laboratory, China
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Abstract

Cycle consistency has long been exploited as a pow-
erful prior for jointly optimizing maps within a collec-
tion of shapes. In this paper, we investigate its utility
in the approaches of Deep Functional Maps, which are
considered state-of-the-art in non-rigid shape matching.
We first justify that under certain conditions, the learned
maps, when represented in the spectral domain, are al-
ready cycle consistent. Furthermore, we identify the dis-
crepancy that spectrally consistent maps are not necessar-
ily spatially, or point-wise, consistent. In light of this, we
present a novel design of unsupervised Deep Functional
Maps, which effectively enforces the harmony of learned
maps under the spectral and the point-wise representa-
tion. By taking advantage of cycle consistency, our frame-
work produces state-of-the-art results in mapping shapes
even under significant distortions. Beyond that, by in-
dependently estimating maps in both spectral and spatial
domains, our method naturally alleviates over-fitting in
network training, yielding superior generalization perfor-
mance and accuracy within an array of challenging tests
for both near-isometric and non-isometric datasets. Codes
are available at https://github.com/rqhuang88/Spatially-
and-Spectrally-Consistent-Deep-Functional-Maps.

1. Introduction

Non-rigid shape matching is a fundamental task in shape
analysis, playing a pivotal role in a wide spectrum of appli-
cations including texture transfer [1], volume parameteriza-
tion [31], statistical shape analysis [2, 6], to name a few. In
order to establish correspondences between shapes under-
going non-rigid deformations, early approaches [46, 4, 47]
focus on designing hand-crafted features by exploiting ge-
ometric invariance. Nowadays, data-driven techniques have
been widely adopted to learn features in a more flexible
way, leading to significant improvements regarding accu-
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Figure 1. We train unsupervised non-rigid shape matching
pipelines on the challenging non-isometric dataset DT4D-H,
which involves 8 categories of humanoid shapes undergoing sig-
nificant distortions. Correspondences are visualized by texture
transfer. Our method (bottom row) outperforms the state-of-the-
art, AttentiveFMaps [28] (middle row) and UDMSM [9] (top row),
by a large margin.

racy, efficiency, and robustness [10].
A noticeable trend among the learning-based shape

matching approaches is based on the formalism of Deep
Functional Maps (DFM), pioneered by the FMNet [30].
Functional maps [37], as a spectral map representation, al-
lows to encode maps into compact matrices and to express
desirable map priors (e.g., area-preservation, isometry, bi-
jectivity) in simple algebraic forms. In particular, by learn-
ing features that optimize functional map priors, several un-
supervised DFM frameworks [19, 43, 18, 13, 9, 28] have
been proposed and, remarkably, achieve even comparable
results with respect to the supervised counterparts. On the
other hand, while the majority of DFM works focus on ex-
ploring local, pairwise-level map priors, there is relatively
less attention (with the exception of [9]) paid to the problem
of injecting global map priors into DFM pipelines.

As a global map prior, cycle consistency has long
been used as a powerful regularizer for jointly optimizing
maps among shapes, both under point-wise [22] and func-
tional [21, 24] map representation. In this paper, we exploit
the utility of cycle consistency within DFM frameworks and
propose a novel two-branch unsupervised DFM framework,
which promotes cycle consistency in both spectral and spa-
tial domains. We first re-examine the generic DFM frame-
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work and outline a theoretical condition, based on the resid-
uals of a linear solver used in functional map estimation,
that guarantees spectrally cycle consistency in DFM over
training shapes. Then we identify the discrepancy that spec-
trally consistent maps are not necessarily spatially, or point-
wise, consistent. In light of this, we leverage our theoreti-
cal insight to construct a latent shape in DFM and employ
this construction to formulate a novel two-branch design of
unsupervised DFM. We align each shape’s spectral embed-
ding, represented as the eigenbasis of the Laplace-Beltrami
operator, to a canonical space given by the constructed uni-
versal latent shape. We then compute point-wise maps in
this canonical embedding domain, which promotes consis-
tency across computed point-wise maps. In the end, the
point-wise maps are converted to functional maps, which
are expected to agree with the ones from the original spec-
tral branch. Overall, our two-branch DFM takes advantage
of the justified spectrally cycle consistency and further en-
hances it to spatially cycle consistent.

We conduct extensive experiments on several non-rigid
shape matching benchmarks, and demonstrate that our
method achieves superior performance over existing meth-
ods, especially in the presence of significant distortions
among shapes (see, e.g., Fig. 1). We also observe that
our method, by enforcing the harmony of spatial and spec-
tral map representations, reduces over-fitting during train-
ing, which leads to remarkable generalization performance
within an array of challenging tests. Finally, our two-branch
design can be easily plugged into any existing DFM frame-
work, and we show evidence that it achieves significant
performance gains upon both recent and early DFM ap-
proaches [43] with marginal computational burden.

To summarize, our main contributions are as follows: (1)
We perform theoretical analysis on spectrally cycle consis-
tency of DFM frameworks; (2) We formulate a simple yet
effective two-branch design of unsupervised DFM based
on our theoretical justification, which introduces spatially
cycle consistency. (3) We prove the effectiveness of our
method through an array of challenging non-rigid shape
matching tasks, demonstrating improvements upon existing
methods in terms of accuracy, consistency, and generaliza-
tion performance.

2. Related Work
Functional Maps Our method is built upon functional map
representation, introduced in [37] and then significantly ex-
tended in follow-up works (see, e.g., [38]). The key idea
is to encode shape correspondences as transformations be-
tween the respective spectral embeddings, which are rep-
resented by compact matrices by using reduced eigenbasis.
The functional maps pipeline has been further improved in
accuracy, efficiency, and robustness by many recent works
including [26, 21, 8, 42, 36].

Deep Functional Maps In contrast to axiomatic ap-
proaches that use hand-crafted features [46, 4], the deep
functional maps approach, pioneered by FMNet [30], aims
to learn the optimal features from data. FMNet contributes
several key designs of DFM: (1) it leverages Siamese net-
work to conduct learning in a set of shape pairs; (2) it ad-
vocates refining the input descriptors with non-linear trans-
formations. FMNet is then supervised by labeled maps to
learn optimal features.

Instead of learning from labeled maps, unsupervised ap-
proaches [19, 43] demonstrate that it is sufficient to learn
from geometric map priors. More recently, with the devel-
opment of robust mesh feature extractors [44], more frame-
works [9, 28, 11, 3] are proposed to learn directly from ge-
ometry, yielding state-of-the-art performance.
Cycle Consistency Cycle consistency has long been used as
a strong prior for joint map optimization among a collection
of shapes. Axiomatic approaches detect and eliminate in-
consistent cycles using consistency constraints [25, 52, 35,
51, 18], as well as associate cycle consistency with low-rank
properties of matrices encoding map networks [22, 50, 27].
Related to the latter, the matrix nature of the functional
maps enables convenient access to map composition, which
naturally bridges the functional map framework and con-
sistent map refinement techniques [49, 21, 23, 45]. Some
recent learning-based approach [20] also incorporate cycle
consistency in the pipeline. It is worth noting, though, the
above works all utilize cycle consistency as a prior for test-
time optimization, which depends on test shape collection
and initial maps. Contrastingly, our approach exploits cy-
cle consistency during training to boost feature learning and
poses no constraint on a test.

From this viewpoint, UDMSM [9] is perhaps the most
relevant work to ours, as both construct a latent shape dur-
ing training to inject cycle consistency. The key difference
between their work and ours, though, is how the latent shape
is constructed. In [9], the authors propose to construct a uni-
versal shape in the learned feature space and establish point-
wise maps from real shapes to the universal one by train-
ing a classifier. As shown in Sec.5, though this construc-
tion leads to great performance on matching near-isometric
shapes, it suffers from large shape variability in mapping
non-isometric ones. On the other hand, we leverage spec-
tral information in estimating point-wise maps. As a result,
our approach benefits from more direct usage of intrinsic
geometric information encoded in the spectral embedding,
yielding better generalization performance.
Dual Map Representations Thanks to the inherent con-
nection and efficient conversion between point-wise and
functional maps, it has long been observed that jointly esti-
mating both map representations can improve the mapping
quality. For instance, in the original work [37], the authors
have already proposed to apply an ICP-like technique on



functional maps. More recent advances take advantage of
the multi-scale properties of the eigenbasis of the Laplace-
Beltrami operator. In the works [34, 24, 13, 15], conver-
sions are done between spatial domain and a series of spec-
tral domains spanned by eigenfunctions of increasing di-
mensions. This idea has also been incorporated into DFM.
In AttentiveFMaps [28], the authors propose to fuse func-
tional maps of different dimensions by converting them into
the common spatial domain. This fusion technique in turn
allows training an attention network to dynamically choose
the optimal spectral resolution.

The above methods enforce consistency across map rep-
resentations by iterative projections, which is computa-
tionally heavy. By exploiting our theoretical insight on
the spectral cycle consistency of DFM, we only introduce
a marginal computational overhead to a standard DFM
trained on a single spectral resolution. Our method is much
lighter and simpler but also shows superior performance in
accuracy and generalization.

3. Cycle Consistency of Deep Functional Maps
In this section, we first briefly review the general deep

functional maps pipeline. Then we present a theoretical
analysis of its cycle consistency.

3.1. Deep Functional Maps

We assume to be given a pair of deformable shapes S1

and S2, which are discretized as triangular meshes of n1

and n2 vertices, respectively. The generic deep functional
map pipeline introduced in [30] learns a map that spectrally
aligns the shapes through the following four steps:

1. Compute the leading k eigenfunctions of the Laplace-
Beltrami operator on each shape, which can be treated
as a high-dimensional spectral embedding of the re-
spective shape. The eigenfunctions are stored as ma-
trices Φi ∈ Rni×k, i = 1, 2.

2. Instantiate a feature extractor network, FΘ, where Θ
denotes the set of learnable parameters. By feeding
forward shapes through FΘ, descriptors are obtained
and expected to be approximately preserved by the un-
derlying map. In general, we denote Gi = FΘ(Si) ∈
Rni×d, i = 1, 2, where d is the predefined number of
descriptors. They are then projected onto the eigenba-
sis above, resulting in a couple of coefficient matrices
Ai = Φ†

iGi ∈ Rk×d, i = 1, 2.
3. Estimate the optimal functional map, C∗, by solving

the following linear system:

C∗ = argminCEdesc(C) + Ereg(C), (1)

where Edesc(C) = ∥CA1 − A2∥2, and Ereg(C) is
the regularization term promoting structural properties

Figure 2. Overview of our two-branch DFM network. The part
colored in black corresponds to a standard DFM, we introduce
a novel branch, colored in red, that estimates maps from spatial
perspective, our loss function is defined as Eqn.6. Φi,Φ

†
i indicate

projection of the regarding features into the spatial and spectral
domain, respectively. See more details in Section 4.2.

of C, e.g., enforcing C to be commutative with the
Laplace-Beltrami operators and to be orthogonal. In
particular, we let Etotal(C) = Edesc(C) +Ereg(C).

4. Convert the estimated functional map C to a point-
wise map by conducting nearest neighbor search be-
tween the rows of Φ1C and that of Φ2.

The feature extractor is then trained on a set of train-
ing shape pairs, which typically enumerates all pairs from
some given training set. The sub-optimization problem in
Step (3) is generally decomposed into two parts to circum-
vent using an iterative solver. Namely, a closed-form so-
lution is obtained either by a least-square estimation w.r.t
Edesc(C) [30], or by solving a sequence of linear systems
involving Laplacian commutativity as well [11]. Both cor-
respond to the FMreg layer shown in Fig. 2. The rest of
Ereg(C) is then set as the structural loss, corresponding to
L(C) in Fig. 2.

3.2. Cycle Consistency

We start by giving a formal definition of cycle con-
sistency. We assume to be given a collection of shapes
S = {Si}ni=1 and a set of maps T = {Tij}i,j∈[1..n]. We
call T cycle consistent if for any shape Si, and any closed
path (i, i1, i2, · · · , ik, i), the map composition along this
path Tii = Tiki◦· · ·Ti1i2 ◦Tii1 is an identity map on Si. We
can similarly define cycle consistency on functional maps,
the only difference is that map composition is given by ma-
trix multiplication and we require the final functional map
Cii to be an identity matrix.

We suppose that deep functional maps are trained on
S with respect to all possible pairs. Then the global en-
ergy is given by Etotal(C) =

∑
i,j ∥CijAi − Aj∥2 +∑

i,j Ereg(Cij), where C = {Cij}i,j∈[1..n] is the set of
functional maps among training shapes.

Proposition 1 If Etotal(C) = 0, then for any shape Si, and
any path (i, i1, i2, · · · , ik, i), the map composition Cii is
cycle consistent within the functional space spanned by the
columns of Ai, i.e., CiiAi = Ai.



As a consequence of Prop. 1, when Ai ∈ Rk×d is of
full row rank, then C = {Cij}i,j∈[1..n] is cycle consistent.
In practice, we generally set d > k. Moreover, during net-
work training, Cij is computed via pseudo-inverse, which
implicitly assumes the full-rankness of Ai,Aj . We refer
readers to the empirical validation in Section 4.2.

We defer the proof of Prop. 1 to Supp. Material. In fact,
a similar claim has been formulated and proven in [49] (see
Sec.3.1 therein), but in the context of map refinement via
promoting cycle consistency.

Though being technically similar, the theoretical argu-
ment of [49] and that of ours have fundamentally different
implications. More specifically, the former justifies a test-
time optimization algorithm, which is used to promote cy-
cle consistency of maps among a fixed test shape collection.
While the latter suggests that spectrally cycle consistency
has been ensured and further leveraged to enhance the uni-
versal feature extractor (independent of the test data) dur-
ing training in any DFM framework following the generic
pipeline presented in Sec. 3.1.

4. Two-branch Deep Functional Maps
It has long been recognized, both theoretically and em-

pirically, that optimizing purely in the spectral domain is
not sufficient. As a toy example, a trivial solution attain-
ing global optima can be constructed as follows: Suppose
that we have learned a feature extractor FΘ, which returns
the respective eigenbasis transformed by a universal A0.
That is, Gi = ΦiA0,∀i, which implies Ai = Φ†

iGi =
A0,∀i. Then we have Cij ≡ Ik, which exactly satisfies
Edesc(Cij) = Ereg(Cij) = 0,∀i, j. However, it probably
induces poor point-wise maps.

In fact, in [37] the authors have proposed to use an ICP-
like technique to encourage the estimated functional maps
to be induced by some point-wise maps. In [34], the au-
thors propose a spectral upsampling method for map refine-
ment, which essentially converts maps back and forth be-
tween spectral and spatial domains. Moreover, the follow-
ing lemma from [34] sheds light on the necessity of taking
both spectral and spatial representations into consideration.

Lemma 1 Given a pair of shapes S1, S2 each having non-
repeating Laplacian eigenvalues, which are the same. A
point-wise map T : S1 → S2 is an isometry if and only if the
corresponding functional map C in the complete Laplacian
basis is both diagonal and orthonormal.

The above lemma suggests that apart from promoting the
structural properties of functional maps, it is also critical to
enforce them to be associated with certain point-wise maps,
or termed as properness of functional maps in [40].

Finally, we remark that some recent DFM advances
also promote the properness of the resulting spectral maps.

For instance, AttentiveFMaps [28] follows the spirit of
ZoomOut [34] and explicitly performs a conversion be-
tween spectral and spatial map representations across dif-
ferent dimensions of eigenbasis; UDMSM [9] constructs
explicitly a universal shape in the feature space, and enforce
the spectral map estimation to be consistent with the spatial
maps induced via the universal shape.

4.1. Two-branch Map Estimation

In this part, we leverage our observation made in Prop. 1
and propose a novel, simple yet effective design of unsuper-
vised deep functional maps, which introduces a new branch
that independently estimates maps from spatial perspective.

Our key insight is that, once cycle consistency is valid
and Ai is of full row rank, Ai can be seen as a functional
map from a universal latent shape, S0, to Si. This perspec-
tive has been explored in several prior works [49, 23, 24],
we provide the following details to be self-contained. The
above assumption implies Cij = AjA

†
i . Then Cij can be

interpreted as a functional map composition from Si to S0,
followed by a map from S0 to Sj . On the other hand, one
can align the spectral embeddings of Sj to that of Si by sim-
ply transforming the former by Cij . Indeed, we convert Cij

into the point-wise map by the nearest neighbor searching
between the rows of ΦjCij and that of Φi. From this point
of view, denoting the virtual spectral embedding of the la-
tent shape by Φ0, ΦiAi can be then treated as the spectral
embedding of Si aligned to that of S0. Therefore, given a
pair of shapes Si, Sj , since we have aligned their eigenbasis
to the canonical frame defined by the virtual spectral em-
bedding Φ0, we can align the spectral embedding of Si to
Φ0 by computing ΦiAi. Once all the spectral embeddings
are aligned to the canonical embedding domain regarding
Φ0, we can compute the soft point-wise map between Si

and Sj by nearest neighbor searching between the rows of
ΦiAi and those of ΦjAj .

Based on the above derivation, given the learned features
projected in the spectral domain, Ai,Aj , and a pair of in-
dices p ∈ [1..ni], q ∈ [1..nj ], we can compute point-wise
maps. Firstly we compute residual:

δqp = ∥Φi[p]Ai −Φj [q]Aj∥2, (2)

where Φi[p] denotes the p-th row of Φi, and similarly we
define Φj [q]. The soft point-wise map Π ∈ Rnj×ni is then
given by:

Π(q, p) =
exp(−αδqp)∑
p′ exp(−αδqp′)

. (3)

Note that by construction, each row of Π is non-negative
and sums up to 1, forming a probability distribution. The
parameter α controls the entropy of each distribution – the
smaller/larger α is, the fuzzier/sharper the distribution is.



Figure 3. We train our two-branch DFM and a vanilla single-
branch version on DT4D-H and monitor spectrally and spatially
cycle consistency along the training.

Instead of manually tuning the optimal α, we propose a
learning scheme that dynamically controls α over training,
which is inspired by curriculum learning [5]. We defer the
respective details to Section 4.3.

We convert the soft point-wise map to a functional map
by

C2 = Φ†
jΠΦi. (4)

In the end, we enforce C2 to be consistent with C1, the
intermediate output from the FMreg layer.

To summarize, thanks to the spectrally cycle consistency
we identify in Sec. 3.2, we are allowed to construct a spec-
tral latent shape and induce spatial maps via it. By enforc-
ing the spatial estimations to be consistent with the spectral
ones, we obtain a spatially and spectrally consistent deep
functional maps framework.

4.2. Network Design

As shown in Fig. 2, our two-branch network is built upon
a standard DFM framework. In the following, we denote by
C1 and C2 the estimated functional maps from the original
FMreg layer and our novel branch, respectively.

Specifically, we use DiffusionNet [44] as our feature ex-
tractor. And WKS [4] descriptors are fed into it as initial-
ization of learned features. We borrow the FMreg layer
from [12]. It takes both Edesc(C) and commutativity with
the Laplace-Beltrami operator into consideration, where the
latter is given as:

Llap =
∥∥C1Λ1 − Λ2C1

∥∥2, (5)

where Λ1 and Λ2 are diagonal matrices of the Laplace-
Beltrami eigenvalues on the two shapes.

The estimation of C2 has been described in detail in Sec-
tion 4.1. In the end, we formulate the training loss as:

L(C1,C2) = ∥CT
1 C1 − I∥2 + ∥C1 −C2∥2, (6)

where the first term promotes the orthogonality of C1, while
the second term promotes the consistency between the func-
tional maps estimated from different branches.

Finally, we remark that by combining the FMreg layer
and L(C1,C2), we have incorporated every factor in
Lemma 1 into our design.

Conceptual Validation In this part, we train a network
on DT4D-H dataset (see Section 5.1 for details) with our
two-branch network, and a single-branch variant with-
out our spatial map estimation branch. We monitor and
plot the following quantities along training: (1) Aver-
age spectral cycle consistency over sampled triplets, i.e.,
1
M

∑
(i,j,k) ∥CkiCjkCij − I∥2/∥I∥2; (2) Average spatial

cycle consistency over sampled triplets, i.e., the mean Eu-
clidean deviation from composed maps Tki ◦ Tjk ◦ Tij to
identity map on Si. Here n = 80 is the number of training
shapes, and M = 1000 is the number of sampled triplets.
The behavior of the blue curves after 4500 iterations ver-
ifies our argument that spectrally cycle consistency does
not imply spatially cycle consistency. On the other hand,
by introducing our two-branch design, the discrepancy is
well compensated and evidently better cycle consistencies
in both spatial and spectral domains are achieved.

4.3. Updating Scheme of α in Eqn. (3)

The soft point-map conversion (Eqn. 3) has been applied
in several prior works [30, 28], which all set α to be a man-
ually selected constant. Ideally, we expect Π in Eqn. (3) to
be close to a permutation matrix, i.e., each row forms a bi-
nary vector. This seems to suggest a preference for a large
α. Unfortunately, it would severely hinder network train-
ing, since the learned features and maps are of low quality
in the early stage. On the other hand, a small α can allevi-
ate such difficulty but falls short of fully pushing functional
maps to be proper. As demonstrated in Section 5.5, neither
small nor large α produces satisfying results.

Based upon the above analysis, we propose a novel up-
dating scheme, which is inspired by curriculum learning [5].
Namely, we initiate a small α at the beginning of network
training and increase it by a constant step size for every
fixed number of epochs. As shown in Table 1, 2, 3, our
scheme does not rely on hyper-parameter tuning but also
achieves state-of-the-art results.

4.4. Implementation Details

We implement our network with PyTorch [39]. We use
four DiffusionNet blocks [44] as feature backbone and bor-
row the functional map block with Laplacian regularizer
from [12]. The dimension of the Laplace-Beltrami eigen-
basis is set to 50. WKS [4] descriptors are used as the input
signal to our network. The dimensions of the input and the
output descriptors are both set to 128. During training, the
value of the learning rate is set to 2e-4 with ADAM opti-
mizer. In all experiments, we train our method for 10,000
iterations with a batch size of 1. Following the learning



strategy in Section 4.3, we initialize α to 1 and increase it
by 5 per epoch. As indicated in Eqn. (6), We weigh equally
the orthogonality loss with respect to C1 and the residual
between C1 and C2. More implementation details are pro-
vided in the Supp. Material.

5. Experimental Results

In this section, we conduct an extensive set of experi-
ments of non-rigid shape matching on various datasets in-
cluding humanoids and animals. We test on both near-
isometric and non-isometric shape pairs. Our method is
compared to a set of competitive baselines including ax-
iomatic, supervised, weakly-supervised, and unsupervised
learning methods. We emphasize that in this section, all the
maps from the learning-based pipelines are directly inferred
from the trained models, without any post-processing pro-
cedure. We evaluate the matching results in terms of a mean
geodesic error on shapes normalized to unit area. Finally,
our point-wise maps are all inferred by converting the out-
put functional maps, as all the other DFM frameworks.

5.1. Datasets

FAUST r: The remeshed version [41] of FAUST dataset[6]
contains 100 human shapes. Following [43], it is split into
80/20 for training and testing.
SCAPE r: The remeshed version [41] of SCAPE dataset[2]
contains 71 human shapes. Following [43], it is split into
51/20 for training and testing.
SHREC19 r: The remeshed version of SHREC19
dataset [33] collects 44 human shapes from 11 indepen-
dent datasets with distinctive poses and styles. We abandon
shape 40 due to its partiality, we test on 407 pairs among
the rest 43 shapes, which come with ground-truth.
DT4D-H [32]: The remeshed subset of the large scale an-
imation dataset DeformingThings4D [29]. In particular,
DT4D-H includes 10 categories of humanoid shapes under-
going significant pose and style variances, forming a chal-
lenging benchmark.
SMAL r: The remeshed SMAL dataset [53] contains 49
animal shapes with 8 species. We follow the setting
from [28], which splits 29 (5 species) and 20 (3 species)
shapes for training and testing.
TOSCA r: The remeshed TOSCA dataset [7] contains
multiple shape categories. We choose 4 animal categories,
including cat, dog, horse, and wolf to verify the generaliza-
tion performance of networks trained on SMAL r. Note that
we only infer the intra-category maps, due to the absence of
ground-truth inter-category maps.

We refer readers to Supp. Material for visualizations il-
lustrating the variability of the above datasets.

5.2. Near-isometric Shape Matching

In this part, we perform comparisons with an array of
non-rigid shape matching methods: (1) Axiomatic meth-
ods including ZoomOut [34], BCICP [41], IsoMuSh [17],
Smooth Shells [13], CZO [24]; (2) Supervised learning
methods including TransMatch [48], GeomFMaps [12],
and supervised version of AttentiveFMaps [28]; (3) Un-
supervised learning methods including NeuroMorph [14],
SyNoRiM [16], Deep Shell [15], AttentiveFMaps [28],
UDMSM [9], DUO-FM [11].

For all learning-based methods, we train models on
FAUST r and SCAPE r respectively. Table 1 reports re-
sults on both standard tests and more challenging gen-
eralizations. We observe a trade-off between the two
tasks, methods that performs the best in the former (e.g.,
supervised AttentiveFMaps and UDMSM) tend to over-
fit, and therefore suffer poor generalization (especially to
SREHC19 r). Meanwhile, our default setting, denoted
by Ours, achieves reasonable performance in the standard
tests but also outperforms the external baselines in 3 out
of 4 generalization tests. Especially, in generalizing to
SHREC19 r, Ours outperforms the external baselines by
a large margin, resulting in 41% (3.8 vs. 6.4) and 46% (4.5
vs. 8.4) error reduction upon the second best.

We highlight that post-processing with cycle consistency
generally depends on the initialized map quality and the size
of the test set (e.g., ≥ 3 shapes). In contrast, we leverage
cycle consistency to improve the feature extractor during
training. We also report the results from post-processing
techniques based on cycle consistency [17, 24, 16] in Ta-
ble 1. They are significantly outperformed by our method,
which is inferred per-pair and without any post-processing.

We further augment the dimension of functional maps
in network training to 80 (same as UDMSM), which is
beneficial to near-isometric matching [28]. It is evident
that Ours (80 dim) achieves on-par performance with the
regarding state-of-the-art methods in standard tests. On
the other hand, due to the significant variability between
SHREC19 r and the training sets (see Supp. Material),
augmenting dimension leads to worse generalization than
before (5.5 vs. 3.8, 5.8 vs. 4.5). Nevertheless, even in this
case, our method outperforms the external baselines in all
generalization tests by a notable margin.

5.3. Non-isometric Shape Matching

We also train our network on non-isometric datasets,
SMAL r and DT4D-H, and compare it with the state-
of-the-art baselines including DeepShells [15], Atten-
tiveFMaps [28], UDMSM [9] and DUO-FM [11].

SMAL r: We follow the split and input descriptors
from [28] (more details are provided in the Supp. Ma-
terial). Table 2 reports results on SMAL r, our method



Table 1. Mean geodesic errors (×100) on FAUST r, SCAPE r, and SHREC19 r. The best and the second best are highlighted.
Train FAUST r SCAPE rMethod Test FAUST r SCAPE r SHREC19 r SCAPE r FAUST r SHREC19 r

ZM[34] 6.1 \ \ 7.5 \ \
BCICP[41] 6.4 \ \ 11.0 \ \

IsoMuSh[17] 4.4 \ \ 5.6 \ \
Smooth Shell[13] 2.5 \ \ 4.7 \ \

CZO[24] 2.2 \ \ 2.5 \ \
TransMatch[48] 2.7 33.6 21.0 18.3 18.6 38.8
GeomFMaps[12] 2.6 3.3 9.9 3.0 3.0 12.2

AttentiveFMaps[28]
supervised

1.4 2.2 9.4 1.7 1.8 12.2
NeuroMorph[14] 8.5 28.5 26.3 29.9 18.2 27.6

SyNoRiM[16] 7.9 21.7 25.5 9.5 24.6 26.8
Deep Shell[15] 1.7 5.4 27.4 2.5 2.7 23.4

AttentiveFMaps[28] 1.9 2.6 6.4 2.2 2.2 9.9
UDMSM[9] 1.5 7.3 21.5 2.0 8.6 30.7

DUO-FM[11] 2.5 4.2 6.4 2.7 2.8 8.4
Ours

unsupervised

2.3 2.6 3.8 2.4 2.5 4.5
Ours (80 dim) 1.7 2.6 5.5 2.2 2.0 5.8

Table 2. Mean geodesic errors (×100) on SMAL r. The best and
the second best are highlighted correspondingly.

Train SMAL rMethod Test SMAL r TOSCA r
DeepShell[15] 29.3 8.7

GeomFMaps[12] 7.6 24.5
AttentiveFMaps[28] 5.4 20.9

UDMSM[9] 24.6 21.7
DUO-FM[11] 32.8 15.3

Ours 5.4 7.9

achieves the best performance, which is on-par with Atten-
tiveFMaps [28]. To evaluate generalization performance,
we use the trained models to directly infer intra-category
maps within TOSCA r. It turns out that AttentiveFMaps
and GeomFMaps both suffer from significant performance
drops (×3.8 and ×3.2 larger geodesic error). It is also
worth noting that DeepShells achieves the second-best gen-
eralization score in the relatively simpler task. However, it
fails dramatically regarding the base task. In contrast, our
method achieves the best balance between learning in diffi-
cult non-isometric pairs and generalizing to relatively easy
near-isometric pairs.

DT4D-H: We follow the train/test (198/95) split of [28], but
ignore the categories mousey and ortiz in both train and test,
due to the lack of inter-category map labels regarding them,
resulting a split of 168/80. We emphasize that we conduct
training and test in a category-agnostic manner, i.e., no class
label is used, and the training pairs can consist of shapes
from arbitrary two categories. This is significantly different
from [28], in which training pairs are selected according
to clustering information. Obviously, our setting is more
practical, but also more challenging. For completeness, we
report results under the setting of [28] in Supp. Material

Figure 4. Qualitative evaluation of spatial cycle consistency of dif-
ferent methods. Even composed along a path of 8 highly deformed
shapes, our resulting map remains close to identity, while all the
baselines fail significantly.

and our method outperforms the baselines in both intra- and
inter-category evaluation by a notable margin.

Table 3 reports results on DT4D-H, in which we pre-
serve 80 shapes for test and train networks with 168 and 80
shapes, respectively. Note that we report mean geodesic er-
rors over all possible test shape pairs, which may undergo
significant distortions (see, e.g., Fig. 1). Our method obtains
a 67.2%(7.7vs.22.4) geodesic error reduction with respect
to the second-best baseline. On top of that, we also test
the generalization of the trained model on near-isometric
benchmarks – our method also generalizes the best in gen-
eralization to FAUST r and SCAPE r. The same pattern
is observed when the training set is reduced by more than
half. Remarkably, our network trained on the reduced set
still outperforms all the baselines trained on the full set.

Overall, we attribute our performance on matching chal-
lenging non-isometric shapes (Table 3) and generalizing to
unseen shapes (Table 1) to our effort to promote both spec-



Table 3. Mean geodesic errors (×100) on DT4D-H. The best and the second best are highlighted correspondingly.
Train DT4D-H (168) DT4D-H (80)Method Test DT4D-H FAUST r SCAPE r DT4D-H FAUST r SCAPE r

DeepShell[15] 27.0 4.9 6.5 29.3 4.7 7.0
AttentiveFMaps[28] 25.7 3.4 6.4 28.9 2.7 6.3

UDMSM[9] 46.8 43.3 47.9 49.7 42.5 40.0
DUO-FM[11] 22.4 10.0 12.2 24.7 8.0 9.2

Ours 7.7 3.1 6.1 9.0 2.6 6.2

Table 4. Mean geodesic errors (×100) of SURFMNet and our vari-
ant trained on 4 datasets

Method SURFMNet SURFMNet + Ours
FAUST r 6.0 3.5
SCAPE r 6.8 3.4
SMAL r 20.4 13.3
DT4D-H 18.3 15.0

trally and spatially cycle consistency. Especially, the isom-
etry assumption is likely violated in the former case, thus
cycle consistency, as a generic prior, plays an important role
of regularizing maps.

As an illustration, we present a qualitative evaluation on
the point-wise cycle consistency in Fig. 4. We sample 8
shapes from the test set of DT4D-H (one from each cate-
gory) and compose the maps along the path (S1 → S2 →
· · · → S8 → S1) with respect to different approaches. It
is evident that due to the significant distortion undergoing
among the shapes, all but our method fails to preserve cycle
consistency in this demanding test, while our composing
map approximates the identity map on S1. It also aligns
nicely with the quantitative results reported in Table 3.

5.4. Integration with SURFMNet [43]

Our two-branch design can be easily incorporated into
any existing DFM framework following the general design
outlined in Sec. 3.1. To demonstrate this, we modify the
SURFMNet [43], one of the earliest approaches of unsuper-
vised DFM, by adding our new branch. Table 4 shows the
matching accuracy on the four main benchmarks. It is ev-
ident that in every case, incorporating our design leads to
significant error reduction ranging from 18% to 50% . Es-
pecially, in the near-isometric cases, we obtain 41.6% and
50% error reduction respectively. Note that the absolute
scores, 0.035, 0.034, are reasonable even compared to the
state-of-the-art results reported in Table 1.

5.5. Ablation Study

In this section, we present a set of ablation studies con-
sisting of two parts. The first part verifies the rationality
of our method, and the second part demonstrates the ro-
bustness of our method. We conduct all experiments on
SMAL r dataset [53].

First of all, instead of using the updating scheme in Sec-

tion 4.3, we test the performance of our pipeline using two
fixed values of α in Eqn. (3): α = 1 and α = 50. Com-
pared to our proposed model, the two variants yield a no-
ticeable performance drop. Especially in the case α = 50,
the network fails to deliver reasonable matching results. We
believe it is because a large α amplifies the noise of maps
learned at the early training stage.

Then we justify our two-branch network design. Remov-
ing spatial branch amounts to training a standard single-
branch DFM. To remove the spectral branch, we remove
the FMreg layer and instead use our new branch to compute
point-wise maps and convert them to functional maps. In
the end, we modify the training loss so that it covers descrip-
tor preservation, commutativity with the Laplace-Beltrami
operator, and orthogonality (the latter two compensate the
removed FMreg layer). The accuracy drop reported in the
third and fourth row of Table 5 clearly suggests the neces-
sity of our two-branch design.

In our experiments, we always use the full resolution
meshes (∼ 5k vertices) and compute in Eqn. (2) with all
of the 128 descriptors. We anticipate that efficiency can
become an issue when the input mesh resolution is high,
and/or we would like to increase the size of learned de-
scriptors. Therefore, we test the robustness of our pipeline
with respect to down-sampling, which is commonly used in
functional maps-based frameworks [34, 28]: 1) We down-
sample 3000 vertices on each shape via furthest point sam-
pling; 2) In order to down-sample the feature dimension, we
operate as the following during training: given a A1,A2,
we perform SVD on A1, i.e., A1 = U1Σ1V

T
1 , then we set

Â1 = A1V̂1, and set Â2 = A2V̂1, where V̂1 is the first
m columns of V1. We set m = 30 by replacing Ai with
Âi in Eqn. (2). The results in the bottom two rows show
that the above operation has a relatively minor effect on the
performance, proving the robustness of our method.

6. Conclusion

To conclude, we provide a theoretical justification for
spectral cycle consistency in DFM. To compensate for the
discrepancy of purely spectrally cycle consistency, we for-
mulate a spectral latent shape that allows the alignment of
the spectral embeddings of each shape to a canonical em-
bedding domain. Based on this construction, we introduce
a two-branch architecture for estimating maps in both spec-



Table 5. Mean geodesic errors (×100) on different ablated settings,
the models are all train on SMAL r.

Ours 5.4
α = 1 6.6
α = 50 35.2

remove spatial branch 33.4
remove spectral branch 14.3
Vertex downsampling 5.7
Feature downsampling 5.9

tral and spatial domains within DFM. The resulting network
is simple, computationally efficient, and compatible with
most existing DFM frameworks. We demonstrate the effec-
tiveness of our framework through a comprehensive set of
experiments, showing significant improvements upon state-
of-the-art approaches in terms of accuracy, consistency, and
generalization performance.

It is worth noting, though, our method is developed upon
clean and complete meshes. It would be interesting for fu-
ture work to investigate the utility of our approach in more
general tasks, involving partial meshes, noisy point clouds,
and other representations.
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Castellani, Jing Ren, Adrien Poulenard, Peter Wonka, and
Maks Ovsjanikov. Shrec 2019: Matching humans with dif-
ferent connectivity. In Eurographics Workshop on 3D Object
Retrieval, volume 7, page 3, 2019. 6

[34] Simone Melzi, Jing Ren, Emanuele Rodolà, Peter Wonka,
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registration in the time of transformers. Advances in Neural
Information Processing Systems, 34:5731–5744, 2021. 6, 7

[49] Fan Wang, Qixing Huang, and Leonidas J. Guibas. Image co-
segmentation via consistent functional maps. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 849–856, 2013. 2, 4

[50] Lanhui Wang and Amit Singer. Exact and stable recovery of
rotations for robust synchronization. Information and Infer-
ence: A Journal of the IMA, 2(2):145–193, 2013. 2



[51] Lei Yang, Wenxi Liu, Zhiming Cui, Nenglun Chen, and
Wenping Wang. Mapping in a cycle: Sinkhorn regularized
unsupervised learning for point cloud shapes. In ECCV,
2020. 2

[52] Christopher Zach, Manfred Klopschitz, and Marc Polle-
feys. Disambiguating visual relations using loop constraints.
In 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 1426–1433. IEEE,
2010. 2

[53] Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and
Michael J Black. 3d menagerie: Modeling the 3d shape and
pose of animals. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6365–6373,
2017. 6, 8


	. Introduction
	. Related Work
	. Cycle Consistency of Deep Functional Maps
	. Deep Functional Maps
	. Cycle Consistency

	. Two-branch Deep Functional Maps
	. Two-branch Map Estimation
	. Network Design
	. Updating Scheme of  in Eqn. (3)
	. Implementation Details

	. Experimental Results
	. Datasets
	. Near-isometric Shape Matching
	. Non-isometric Shape Matching
	. Integration with SURFMNet unsuperisefmap
	. Ablation Study

	. Conclusion

