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Abstract
In this paper, we introduce complex functional maps, which extend the functional map framework to conformal maps between
tangent vector fields on surfaces. A key property of these maps is their orientation awareness. More specifically, we demonstrate
that unlike regular functional maps that link functional spaces of two manifolds, our complex functional maps establish a link
between oriented tangent bundles, thus permitting robust and efficient transfer of tangent vector fields. By first endowing and
then exploiting the tangent bundle of each shape with a complex structure, the resulting operations become naturally orientation-
aware, thus favoring orientation and angle preserving correspondence across shapes, without relying on descriptors or extra
regularization. Finally, and perhaps more importantly, we demonstrate how these objects enable several practical applications
within the functional map framework. We show that functional maps and their complex counterparts can be estimated jointly to
promote orientation preservation, regularizing pipelines that previously suffered from orientation-reversing symmetry errors.

CCS Concepts
• Computing methodologies → Shape analysis; • Theory of computation → Computational geometry;

1. Introduction

Non-rigid shape matching is a well-established challenge in
computer graphics, geometry processing and related fields
[VKZHCO11, Sah20], with applications ranging from medical
imaging to statistical shape analysis, to name a few.

One prominent direction for addressing this problem is given
by the functional map framework [OBCS∗12]. This framework is
based on representing correspondences as linear transformations
between function spaces, and encoding them as matrices using a
reduced basis. A key advantage of this construction is that it al-
lows to both optimize for and to manipulate mappings by solving
small-scale optimization problems, whose complexity is largely in-
dependent of the size of the underlying meshes. Furthermore, the
continuous nature of this representation enables the use of differ-
entiable optimization techniques, which has recently proven useful
in learning pipelines, e.g., [LRR∗17, HLR∗19, GR20].

Despite the flexibility and simplicity of the functional map rep-
resentation, it has several key limitations: first, while functional
maps encode correspondences between points, they do not imme-
diately provide access to maps between derived quantities such
as the surface metric or tangent vector fields that require the no-
tion of a map differential. Several attempts have been made to
recover differential information in the functional map framework,
e.g., [ABCCO13,CSBC∗17]. However, these approaches often lead
to non-trivial optimization problems and, as we demonstrate below,

Source Ours [ABCCO13]

Figure 1: A comparison to [ABCCO13] in a vector field trans-
fer application. The transfer is done with a functional map mixing
symmetries (see Section 5.1). Unlike the method of [ABCCO13],
our approach is robust to this type of noise and transfers the vector
field correctly, without breaking its asymmetry.

can be prone to error especially when faced with approximate maps
in the reduced basis (see Figure 1). Perhaps even more importantly,
the functional map representation does not encode information
about the surface orientation, which means that standard functional
map optimization energies can easily lead to orientation-reversing
correspondences that may arise, e.g., due to intrinsic symmetries.
Existing methods try to tackle this challenge through a range of so-
lutions including by using landmarks [NO17, MMRC20], injecting
orientation into descriptor-based energies [RPWO18] or alignment
in the ambient space [RMOW20] among others. Unfortunately,
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Figure 2: A visualization of function transfer (left) and vector field
transfer (right) obtained respectively via a functional map and our
complex functional map. The values of the functions on the left are
encoded by a colormap, while the vector fields are visualized using
line integral convolution. Both functions and vector fields can be
decomposed in a Laplacian basis and be transferred using small
matrices.

these solutions often require additional user input and careful pa-
rameter tuning or incur significant computational cost.

In this work, we introduce a novel construction that helps to ad-
dress these challenges directly, without relying on user input or
post-processing. Our key idea is to build a representation for corre-
spondences that only allows orientation and angle-preserving (con-
formal) maps. Such a representation is, by its nature, more restric-
tive than the functional map representation, since only a subset of
maps is allowed. However, as we demonstrate below, using this rep-
resentation and especially the link with standard functional maps
helps to regularize map computation and to improve accuracy in
several applications without sacrificing expressive power.

To achieve this goal, we first observe that in the case of con-
formal maps, the pushforward (also called “map differential") is a
complex linear operator between tangent bundles. As a result, it
can be encoded as a small-sized complex-valued matrix, given a
choice of basis for the tangent vector fields on each shape. Since
a single vector field can be represented as a complex function, and
the pushforward allows to transfer vector fields across shapes, we
call these operators complex functional maps. As we highlight be-
low, complex functional maps have several properties that are com-
plementary to the standard functional map representation. Specif-
ically, they provide a simple and robust tool for transferring vec-
tor fields; furthermore, they allow to disambiguate intrinsic sym-
metries and help to promote more accurate, smooth, orientation-
preserving point-to-point correspondences.

Contributions To summarize, our main contributions include:

• We introduce a novel complex-linear operator acting on tangent
vector fields, used as relaxation of the map differential.

• We demonstrate that this operator is naturally orientation-aware,
and show how it can be used to regularize functional map esti-
mation, especially with respect to symmetry errors.

• We highlight the utility of our construction in a range of applica-
tions, from robust vector field transfer to orientation-aware map
refinement, leading to consistent improvement in accuracy.

2. Related Work

Computing maps or correspondences between non-rigid 3D shapes
is a key challenge in geometry processing and computer vision.
Below, we review some approaches in this area and focus especially
on methods that we either build upon or use as baselines, and refer
to recent surveys [VKZHCO11, BCBB16, Sah20] for a more in-
depth discussion.

Functional maps framework Our method heavily relies on the
functional map representation, which was originally introduced in
[OBCS∗12] as a tool for non-rigid shape matching. The key idea
of this representation is to represent point-to-point maps as small
matrices, encoded in a reduced basis, which greatly simplifies sub-
sequent optimization problems. The original work used only a basic
set of linear constraints on functional maps, which have been ex-
tended significantly in, e.g., [KBB∗13, AK13, HWG14, ERGB16,
BDK17, RCB∗17, NO17, HO17, NMR∗18, RPWO18, MRR∗19]
among many other works (see [OCB∗17]). These approaches heav-
ily exploit the compact and continuous nature of the functional map
representation and have been used to improve the accuracy, speed
and robustness of the resulting shape matching pipeline. However,
the functional representation itself has two major limitations that
limit its applicability, as we review below.

Functional representations of differential quantities As men-
tioned in the introduction, functional maps do not naturally pro-
vide information about derived quantities such as the map differ-
ential. Several attempts have been made to recover differential in-
formation in the functional map framework. This includes opera-
tor representations for tangent vector fields [ABCCO13] and cross
fields [ACBCO17] as well as covariant derivatives and parallel
transport [AOCBC15]. These operator representations enable tasks
such as computing vector field flow efficiently, which has been
used both for matching functions on surfaces [AVBC16] and even
for recovering continuous maps between shapes [COC15]. Further-
more, functional representations have been also proposed for ex-
trinsic “deformation fields” [CO19] and for capturing the intrinsic
shape metric [ROA∗13, CSBC∗17], among others (see also Chap-
ter 6 in [OCB∗17] and [BCA19] for an overview of some recent
approaches).

These constructions significantly extend the power and flexibil-
ity of the functional maps framework. At the same time, the basic
concept of the map differential or pushforward, and thus reliable
mapping of tangent vector fields is still cumbersome to define and
use within this formalism. As we demonstrate below, in the spe-
cial case of orientation-preserving conformal maps, however, this
differential has a particularly convenient representation, which pro-
vides complementary information to standard functional maps.

Orientation preservation Another common challenge to using
the functional map representation is that it does not encode sur-
face orientation. This implies that typically-used optimization en-
ergies, e.g., based on preservation of intrinsic descriptors, such
as the HKS or WKS [SOG09, ASC11] can lead to undesirable
orientation-reversing correspondences (also known as symmetry
flips). One can tackle this issue by using extrinsic descriptors
such as SHOT [TSDS10], but such descriptors can be very sen-
sitive to discretization [PO18, DSO20], which can have dramatic
effects on robustness. Existing methods have tried to address this

submitted to COMPUTER GRAPHICS Forum (1/2022).



Nicolas Donati, Etienne Corman, Simone Melzi, Maks Ovsjanikov / Complex Functional Maps 3

challenge by using either segment [OBCS∗12, KO18] or point-
wise landmarks [NO17, MMRC20], injecting orientation informa-
tion with descriptor-based energies [RPWO18], factoring the func-
tional space using symmetry information [OMPG13], alignment
in the ambient space [ELC20] or, most recently, using map space
exploration strategies [RMOW20]. However, since the functional
map representation itself does not encode orientation information,
these solutions only address the problem indirectly, and, e.g., in
[RMOW20] orientation-preserving maps are selected a posteriori
among the set of candidates, using a set of filtering criteria.

In contrast, we demonstrate that by first endowing the tangent
bundle with the complex algebra using the outward normals, and
then defining the derived complex functional maps it becomes pos-
sible to directly promote orientation-preserving correspondences
without any additional descriptor preservation constraints or post-
processing.

Vector Field Map Representation Closest to our construction is
the work of [WLZT18], where the authors extend the functional
map representation to differential forms on manifolds. Similarly
to our approach, that method encodes the pushforward as a lin-
ear operator acting on vector fields, while imposing orthogonal-
ity, which is a necessary condition to arise from a conformal map.
However, crucially, the authors of [WLZT18] use R-linear opera-
tors to encode the pushforward, whereas we use the outward nor-
mals to construct and exploit the complex algebra on the tangent
space, leading to C-linear operators. This difference is fundamen-
tal, as it implies that the representation in [WLZT18] cannot distin-
guish orientation-preserving from orientation-reversing maps. As
we demonstrate in Section 5, this severely limits the scope of ap-
plications of that representation, which are, in contrast, enabled by
our approach thanks, in particular, to its orientation-aware nature.

3. Tangent Bundle Map as Operator

In this section, we describe the theoretical aspects of our complex
functional maps. At a high level, we follow the motivation behind
the original functional map framework, by ultimately providing a
linear relaxation of a particular geometric concept. While func-
tional maps aim at representing diffeomorphisms as linear opera-
tors acting on functions, our goal is to represent the pushforward of
a conformal map as a C-linear operator acting on complex fields.

3.1. Notation

From now on, we consider a pair of compact Riemannian surfaces
M, N embedded in R3. We use TpM to denote the tangent plane
at a point p ∈ M, while the tangent bundle T M := ∪p∈MTpM, is
the disjoint union of all the tangent planes of M. We equip this
space with a proper inner product (i.e. the Riemannian metric)
⟨·, ·⟩TpM : TpM×TpM →R, which depends smoothly on p∈M. For
every pair of real-valued functions f ,g : M →R, we use another, L2

inner product, which is defined as ⟨ f ,g⟩M =
∫

M f (p)g(p)dµM(p),
where dµM is the area element on the surface M. With respect to this
inner product, we define L2(M) = { f : M →R s.t. ⟨ f , f ⟩M <+∞},
as the space of square-integrable real-valued function defined over
M. Similarly for every pair of vector fields X ,Y : M → T M we con-
sider their inner product ⟨X ,Y ⟩T M =

∫
M⟨X(p),Y (p)⟩TpMdµM(p).

Figure 3: The pushforward dϕ takes a tangent vector v ∈ TpM and
transports it to the plane tangent to ϕ(p) ∈ N. In all generality
(top) surface tangent planes identify to R2 and the pushforward is
locally a R2-linear map. If ϕ is conformal (bottom), tangent planes
identify to the complex plane C and dϕ is locally a multiplication
by a complex number qp ∈ C.

Finally we denote by LM : T M → T M the connection Laplacian
acting on vector fields.

3.2. Pushforward in the smooth setting

A diffeomorphism ϕ : M → N bijectively maps points on a surface
M to points on a surface N. The pushforward dϕ : TpM → Tϕ(p)N
associated to ϕ maps the tangent space at point p ∈ M, denoted as
TpM, to the tangent space Tϕ(p)N and can be understood as the best
linear approximation of the map at the given point p (see Figure 3
top). Thus, the pushforward contains two pieces of information: 1)
which tangent plane of N corresponds to a given tangent plane of
M and 2) how a tangent plane is deformed by the diffeomorphism
ϕ. While the first is already contained in ϕ, the second is of very
different nature, and is especially difficult to recover in the discrete
setting as it requires to numerically differentiate the mapping.

For surfaces, tangent planes can be identified to the vector space
R2. Given an arbitrary diffeomorphism, the pushfoward acts lin-
early on the tangent vectors (see [GP10], Chapter 2) so at that each
point p ∈ M, (dϕ)p can be represented as a linear map between two
Euclidean spaces. This map can be represented by a 2× 2 matrix
if each space is endowed with a local 2D basis formed by two lin-
early independent tangent vectors. For a more in-depth discussion
of map differentials, we refer to [GP10, Lee13].

3.3. Pushforwards of conformal maps

In this paper, we are especially interested in the pushforward of
a conformal map. Conformal maps have been widely used in
computer graphics notably for texture mapping [RL03, SSP08],
parametrization [KSS06, MTAD08, SC17] and shape match-
ing [LF09, KLF11] among others. Their success is mostly due to
their simple structure-preserving property: a conformal map pre-
serves angles between tangent vectors. This means that, by defini-
tion, the pushforward of a conformal map is a similarity transfor-
mation (i.e., a combination of rotation and uniform scaling) of the
tangent space at every point.
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Each tangent plane on an orientable surface can also be natu-
rally identified with the complex plane C by identifying an arbitrary
fixed direction with the real axis, and using the outward normal
to determine the 90◦ counter-clockwise rotations, associated with
multiplication by ı. Moreover, observe that for any fixed complex
number q, the transformation S : C→C given by complex multipli-
cation by q, and defined as S(v) = q∗ v, is a similarity transforma-
tion of R2. To see this, observe that in polar coordinates complex
multiplication simply adds the arguments (angles) and multiplies
the magnitudes. Conversely, it is easy to see that for any similarity
transformation S : R2 → R2, there exists a unique complex number
q such that S(v) = q∗ v, where we implicitly identify R2 with C on
both sides of the equality (see Figure 3 bottom). These observations
can be therefore summarized in the following lemma:

Lemma 3.1 Given a smooth map ϕ : M → N between surfaces,
if each tangent plane Tp and Tϕ(p) is identified with the complex
plane, then the map ϕ is conformal if and only if for every point
p ∈ M there exists a complex number qp such that the pushforward
dϕp(v) = v∗qp.

Stated differently, a map is conformal if and only if its pushforward,
which can be thought of as a mapping between (two copies of) the
complex plane, can be represented, at every point, as multiplication
by some fixed complex number.

In general the pushfoward is a real-linear map between tangent
spaces identified with R2. However, in the special case of confor-
mal mappings, the pushfoward is a C-linear map. Crucially, while
any C-linear map is also real-linear, the converse, of course, does
not hold. Remark also that up to technical conditions of differentia-
bility, Lemma 3.1 is equivalent to the well-known Cauchy-Riemann
equations, which can be stated compactly as saying that a mapping
is conformal if and only if the associated map differential is C-
linear (see [Rem91], p. 51 for a discussion).

3.4. Complex functional maps

Following a similar reasoning as in the functional map framework
[OBCS∗12], in which a functional map is any linear transformation
between functions spaces, we now consider the space of all com-
plex linear maps between tangent bundles. As mentioned above,
we implicitly assume that the tangent bundles are endowed with
the complex structure given by some reference direction at every
tangent space, and using the outward normal to define counter-
clockwise rotation.

Thus we call a complex functional map any C-linear operator
Q that maps a complex field X ∈ T M ≃ ∪p∈MC to a complex field
Q(X)∈ T N ≃∪p∈NC on N, where we use T M ≃∪p∈MC to denote
the identification between tangent spaces and complex planes.

Remark that the complex structure allows us to represent any
tangent vector field as a complex function, and, as a result, the op-
erator Q enables the transfer of tangent vector fields defined on M to
those defined on N. Crucially, by Lemma 3.1 we have that the push-
forward of a conformal map must be a C-linear operator and thus
a complex functional map. The converse, however, does not hold,
as not all C-linear operators on the tangent bundle come from con-
formal pushforwards, in a similar way that not all linear functional
mappings arise from pullbacks of pointwise correspondences.

In the remainder of the section we list the key properties of
complex functional maps. In Section 3.5 we exhibit a necessary
and sufficient condition for a complex functional map to represent
the pushforward of a conformal mapping. Section 3.6 studies addi-
tional useful properties, notably a weaker necessary condition for
Q to uniformly scale tangent planes and a characterization of iso-
metric pushforwards as a subset of conformal maps.

3.5. Pushforwards vs. Complex-Linear Maps

As introduced above, a complex functional map Q : T M → T N
is any C-linear operator between tangent bundles. Our goal is to
obtain a necessary and sufficient condition for such an operator to
represent the pushforward (differential) of a conformal mapping.
For this, we will use the following two key properties.

Connection to pullbacks First, suppose that ϕ : M → N is any dif-
feomorphism between two smooth surfaces. It is well-known that
the pushforward dϕ : TpM → Tϕ(p)N is the unique linear map be-
tween tangent spaces that satisfies:

⟨X ,∇( f ◦ϕ)⟩TpM = ⟨dϕ(X),∇ f ⟩Tϕ(p)N , (1)

for all X ∈ T M, f ∈ L2(N) (see [Lee13], Chapter 3).

Orientability Second, consider any C-linear mapping Q between
tangent bundles. By linearity, for any complex number q ∈ C and
any two complex fields X ,Y ∈ T M ≃ ∪p∈MC, we have:

X = qY ⇐⇒ Q(X) = qQ(Y ).

For instance, if q= ı, the map Q preserves 90◦ rotation. As rotations
are defined relative to the local basis of the tangent plane, they carry
the information of the orientation of the manifold. Therefore the
operator Q cannot change the orientation of the tangent bundle.
This property of the complex functional maps is key in our shape
matching applications: it forces the maps to remain orientation-
preserving. Combining these observations, we conclude that com-
plex functional maps can only represent the differential of an ori-
entation preserving conformal map. Put differently, we have:

Theorem 3.1 The complex-linear map Q is a pushforward if and
only if there exists an orientation-preserving and conformal diffeo-
morphism ϕ : M → N satisfying:

⟨X ,∇( f ◦ϕ)⟩TpM = ⟨Q(X),∇ f ⟩Tϕ(p)N ,

for all X ∈ T M, f ∈ L2(N).

Thm. 3.1 is a direct consequence of Lemma 3.1 and the unique-
ness property of the map differential in Eq. (1). For completeness
we provide the full argument in Appendix A.

This theorem highlights the importance of Eq. (1) to link the
complex-linear map Q with the underlying pointwise map ϕ. Note
that importantly, Eq. (1) only depends on the knowledge of the pull-
back associated with ϕ, and thus provides a natural link between
Q and the standard functional map representation, which encodes
pullbacks. In Section 4.2, we show how this property can be used
to relate our complex and standard functional maps in practice.
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3.6. Properties of complex functional maps

In this section we provide two additional structural properties of
complex functional maps.

Orthogonality. First, we show a necessary condition for Q to rep-
resent the differential of a conformal map: Q must be an orthogo-
nal operator. Interestingly, this is different from standard functional
maps, which are orthonormal if and only if the underlying corre-
spondence is locally area-preserving [OBCS∗12, ROA∗13].

Theorem 3.2 If Q represents the pushforward of a conformal map
ϕ between surfaces, then:

Q⋆Q = I,

where Q⋆ is the adjoint operator uniquely defined by ⟨QX ,Y ⟩T N =
⟨X ,Q⋆Y ⟩T M .

Intuitively, this theorem comes from the fact the change of metric
under the conformal map is given by some scaling factor at each
tangent plane. When integrating the inner products on the surface,
this scaling factor cancels out with the change of area measure. A
similar result was shown in [ROA∗13] for gradients of functions.
We provide the complete proof in Appendix B.

Importantly, Theorem 3.2 only establishes a necessary condition:
indeed, even if Q is an orthonormal C-linear operator it is only
guaranteed to represent the pushfoward of a conformal map, if it
satisfies Eq. (1).

Isometries. Secondly, a pushforward is isometric if and only if it
commutes with the Levi-Civita connection [Car92] (p.181). A sim-
ilar statement can be made about the connection Laplacian recently
used in geometry processing [SSC19] to compute transport of vec-
tor fields along geodesic paths.

Theorem 3.3 Let L be the connection Laplacian. If a complex func-
tional map Q : T M → T N represents the pushforward dϕ of a con-
formal map, then it satisfies:

LN ◦Q = Q◦LM

if and only if ϕ is an isometry.

Theorem 3.3, proved in detail in Appendix C, is very similar to
that of functional maps [OBCS∗12].

3.7. Operators in a reduced basis

In order to improve the efficiency of our algorithms it is often de-
sirable to consider operators acting on a subspace of smooth vector
fields. Since tangent planes can be identified to complex planes, we
will use the complex inner product defined as:

⟨X ,Y ⟩CpM := ⟨X ,Y ⟩TpM + ı⟨J X ,Y ⟩TpM ∈ C,

where J is the 90◦ rotation around the normal. Note that for two
vectors x,y in the same complex plane this inner product is equiva-
lent to the standard xy, where x is the complex conjugate of x.

Suppose that M is equipped with the family of vector fields
{Ψ

M
i } orthonormal with respect to the inner product ⟨., .⟩CM .

Then [RS80] (Thm II.6), any vector field X can be written as a
linear combination:

X = ∑
i

aiΨ
M
i ,

where ai =
〈

X ,ΨM
i

〉
CM

∈ C. The transferred complex field Q(X)

can be decomposed in the basis of N:

Q(X) = ∑
j

〈
Q(X),ΨN

j

〉
CN

Ψ
N
j

= ∑
j

Ψ
N
j ∑

i

〈
Q(ΨM

i ),ΨN
j

〉
CN

ai,

where the second equality follows from the C-linearity of Q. Thus
the complex functional map can be understood as a matrix with co-
efficients Q ji =

〈
Ψ

N
j ,Q(ΨM

i )
〉

CN
, matching coefficients in basis

on M to coefficients of the basis on N. Figure 2 provides a visual
comparison between a classical functional map transferring func-
tions (left) and a complex functional map transporting tangent vec-
tor fields (right), both using a reduced basis of size 30.

4. Discrete Setting

In this section, we introduce complex functional maps in the dis-
crete setting. Throughout, we consider oriented manifold trian-
gle meshes (V,E,F). Our overall strategy is based on represent-
ing tangent vector fields as complex-valued pointwise functions,
so that Xi ∈ C per vertex i ∈ V . This choice of a point-based rep-
resentation for tangent vector fields (and not face-based, as in e.g.
[ABCCO13]) is motivated by our main application: disambiguating
symmetries in non-rigid shape correspondence problems. Matching
vertices between surface meshes is convenient as it directly allows
to transfer texture coordinates or deformations.

We thus represent discrete complex functional maps Q as
complex-valued matrices mapping complex-valued pointwise func-
tions on M to complex-valued pointwise functions on N. In a sim-
ilar spirit to functional maps, we improve computational efficiency
by representing the operator Q as a small matrix in a reduced ba-
sis of vector fields. As a basis, we use the first eigenvectors of the
connection Laplacian, discretized as in [SSC19].

Below we introduce Laplacian operators and the necessary local
complex structure, then we construct our complex functional map
and translate each continuous property in the discrete setting.

4.1. Laplacian operators

Cotan-Laplacian The standard Laplacian
operator W ∈ R|V |×|V | for a piecewise lin-
ear function f ∈ R|V | is obtained by the well-
known cotan-weight formula [BKP∗10]:

(W f )i :=
1
2 ∑
(i j)∈E

(
cotθ

k
i j + cotθ

l
ji

)(
fi − f j

)
,

where the index notation is defined in the inset figure. We also de-
fine the diagonal |V |× |V | lumped mass matrix A:

Aii :=
1
3 ∑
(i jk)∈T

ai jk,

where ai jk are the areas of triangles adjacent to i. This matrix de-
fines the scalar product in the space of piecewise linear functions.
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Namely if f ,g ∈ R|V | are two piecewise linear real-valued func-
tions then:

⟨ f ,g⟩L2 := f T Ag.

Connection Laplacian Our discretization of tangent vector fields
using complex numbers follows [KCPS13,SSC19]. Namely, we as-
sign to each vertex an arbitrary reference unit vector orthogonal to
the vertex normal. This reference direction represents the tangent
vector, associated with the complex number 1+ ı0. The outward
normal dictates the orientation of the tangent planes, providing the
additional axis ı. Given this reference frame, any tangent vector can
be represented as a complex number, and a tangent vector field as
a complex-valued function.

In this context, the mass matrix A defines a complex scalar prod-
uct in the space of tangent fields, represented as complex functions:

⟨X ,Y ⟩CM := X⋆AY,

where ⋆ represents the conjugate-transpose operation.

As mentioned above, in our applications we use a family of
smooth vector fields given by the first k first eigenfunctions of the
discrete connection Laplacian, as defined in [SSC19]. The connec-
tion Laplacian is the matrix L ∈ C|V |×|V | uniquely defined by the
Dirichlet energy:

X⋆LX =
1
2 ∑
(i j)∈E

(cotθ
k
i j + cotθ

l
ji)

∣∣Xi − ri jX j
∣∣2 ,

where the unit complex number ri j are the rotations necessary to
compare vectors expressed in two different bases.

By definition, L is a complex Hermitian matrix, and similarly to
the cotangent Laplacian, on Delaunay meshes has only real non-
negative eigenvalues. Therefore, L admits the generalized eigende-
composition:

LΨ = AΨΛ,

where Ψ
⋆AΨ = I, Λ the diagonal matrix of eigenvalues, and Ψ

is a set of complex-valued eigenfunctions. In particular, any tan-
gent vector field U can be expressed as a linear combination
with complex coefficients of the family {Ψi, i = 1, . . . , |V |} [HJ12]
(Thm. 4.1.5), i.e.: U = ∑i ciΨi, where ci ∈ C. In practice we trun-
cate this sum and typically use a fixed number k of the complex
eigenfunctions, associated with the eigenvalues of smallest modu-
lus.

4.2. Discrete complex functional map

In order to define a discrete equivalent of the pushforward, we sim-
ply discretize the continuous definition in Eq. (1). For meshes of
same connectivity we are able to derive a closed-form expression
for Q and a consistent notion of discrete conformality. For meshes
with different connectivity or when the deformation is not exactly
conformal we enforce this equation in the least-squares sense.

To discretize Eq. (1), we will need the pullback operator C, rep-
resented by a functional map [OBCS∗12], and the operator DX
often encountered in differential geometry to define tangent vec-
tors [Mor01] and introduced in geometry processing for vector field
design in [ABCCO13].

To define the discrete pullback, recall that given a map ϕ : M →
N, the associated functional map C : L2(N) → L2(M) can be dis-
cretized in the full, “hat”, basis as a binary matrix CNM = ΠMN ,
where ΠMN(i, j) = 1 if and only if ϕ(i) = j, while in the reduced
basis we have CNM = (ΦM)⊤AM

ΠMNΦ
N where Φ

M ,ΦN are ma-
trices that store, as columns, the basis functions on the two shapes.

Vector field operator In addition, we will use the linear functional
operator DX : L2(M) → L2(M) describing the action of a vector
field X ∈ T M on a function f ∈ L2(M):

DX ( f )p := ⟨X ,∇ f ⟩TpM . (2)

This operator uniquely characterizes a tangent vector field X on
a manifold [Mor01], and will allow us to write Eq. (1) as an
equality between matrices. Azencot et al. [ABCCO13] proposed
a discretization for face-based vector fields, however, as previously
stated, we use a different vertex-based discretization, that we de-
scribe in detail below.

We discretize the operator DX ∈ R|V |×|V | as a vertex-wise scalar
product at tangent planes:

(DX f )i := ⟨Xi,∇ f i⟩TiM , (3)

where ∇ fi evaluates the gradient of a piece-wise linear function at
vertex i (rather than at a face). In practice, we store the operator DX
into a complex sparse matrix.

Locally, the gradient of a function represents the best R2-linear
approximation of this function in the tangent plane. The directional
derivative of f along an edge vector ei j is simply ( fi − f j)/|ei j|.
We therefore ask ∇ f to be the best approximation of all directional
derivatives, namely:

∇ f i := arg min
X∈R2 ∑

(i j)∈E
∥e⊤i j X − ( fi − f j)∥2. (4)

This least squares optimization problem amounts to pseudo-
inverting a di ×2 matrix per vertex, where di is the degree of vertex
i. This can be done exactly in pre-processing. As the gradient at
vertex i only depends on its neighbors, it can be encoded as a com-
plex sparse matrix whose non-zero coefficients per-line are equal
to the degree of the vertex plus one.

Discrete definition of a pusforward By combining these tools,
we obtain a simple discretization of the definition of the pushfor-
ward in Eq. (1), as a composition of functional operators, repre-
sented in the discrete setting as matrix multiplication:

DM
X CNM =CNMDN

QX , ∀ X ∈ C|VM|. (5)

Note that in this expression, consistently with Eq. (1), the push-
forward Q maps vector fields in the opposite direction from the
pullback C. In practice, we have found it simpler to work with an
expression that assumes that the two operators map in the same
direction, which leads to:

CMNDM
X = DN

QXCMN , ∀ X ∈ C|VM|. (6)

This expression can be obtained simply by pre- and post multiply-
ing Eq. (5) by CMN , and assuming an invertible mapping.

In practice, mappings are usually not conformal, so we cannot
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hope to satisfy Eq. (6) exactly. However, we can define the energy
Ecq measuring how close Q : T M → T N is to be the differential of
the operator CMN : L2(M) → L2(N) and evaluating the constraint
in the least squares sense:

Ecq(C,Q) = ∑
i
∥CDM

Xi −DN
QXiC∥2

F , (7)

where {Xi} is a family of vector fields in T M. Remark that Eq. (6)
is linear with respect to X . Consequently, minimizing the energy of
Eq. (7) will ensure that Eq. (6) is satisfied as well as possible on
the subspace of T M generated by {Xi}. As above, we use the first
eigenfunctions of the connection Laplacian operator for this family,
and thus the energy in Eq. (7) ensures that Eq. (6) is satisfied as well
as possible for smooth tangent vector fields.

Our overall strategy thus consists in recovering Q given an arbi-
trary functional map C by solving the problem:

min
Q

Ecq(C,Q). (8)

Eq. (8) defines a simple least squares system which can be effi-
ciently optimized by solving a linear system of equations. We de-
scribe how to do in it more details in Appendix F. The solution of
this problem is the best approximation of the map differential by an
orientation-preserving conformal pushforward. The energy Ecq is
fundamental in our experiments as it allows us to extract orientation
information from any given functional map.

4.3. A closed-form expression for Q

While Eq. (7) plays a fundamental role in our experiments, we re-
mark that in the case of meshes with the same connectivity, it is
possible to obtain an intuitive closed-form expression for Q. Re-
call that a conformal pushforward is given by 1) an assignment be-
tween points and 2) a similarity transformation between matching
tangent planes. Therefore, it is expected that the discrete dϕ, the
pushfoward between piecewise linear complex fields, is simply the
composition of a matrix ΠMN , assigning vertices of M to those on
N, and a multiplication by a complex field q : N → C performing
the tangent plane deformation at each vertex. Using our discrete
definition of the pushforward (Eq. (6)), we can recover this prop-
erty when the two meshes have same the connectivity.

Theorem 4.1 Given two meshes with same connectivity and given
the permutation matrix Π describing the vertex-to-vertex corre-
spondence, the solution of Eq. (8) has the form:

Q = D(q)Π,

where D(q) is a diagonal matrix with complex coefficients qi. The
complex numbers qi are the best conformal alignement of the tan-
gent planes.

The proof of Thm. 4.1 can be found in Appendix D.

4.4. Constraints on complex functional maps

Operator orthogonality While the discrete version of Thm. 3.2
holds exactly in our discrete setting, it is not very informative, since
the discrete notion of conformality induced by Thm. 4.1 is too rigid,

λ = 18.5 λ = 30.8 λ = 37.8 λ = 53.2 λ = 57.6

λ = 77.6 λ = 85.4 λ = 90.7 λ = 116.3 λ = 128.2

Figure 4: LIC visualization of the first 10 eigenvectors of the con-
nection Laplacian (from left to right, top to bottom). We see that
a higher eigenvalue λ gives an eigen tangent vector field whose
frequency is higher, resulting in a less smooth flow. Neverthe-
less, all these tangent vector fields represent the generators of the
smoothest vector fields over the shape. It is in this basis that we will
decompose tangent vector fields, as described in Section 4.5.

since the only deformations of a mesh that preserve angles at every
triangle exactly are isometries with possible global scaling.

However, orthonormality of Q is still a valuable constraint in the
reduced basis and forces Q to be the approximation of a pushfor-
ward. Furthermore, the use of a reduced basis helps to avoid both
the reliance on an exact mesh structure and the rigidity of exactly
conformal maps. In our experiments this constraint proved to be
very effective.

In practice, we therefore solve the following Procrustes problem:

min
Q∗Q=I

Ecq(C,Q). (9)

This is a standard problem that can be solved exactly using a Singu-
lar Value Decomposition. For completeness we provide the details
in Appendix F.

Commutativity with the connection Laplacian The isometric
constraint of Thm. 3.3 is still valid in the discrete setting. Interest-
ingly, the isometry condition by enforcing the commutativity with
the Laplacian is identical to the standard functional map frame-
work. In particular, as remarked in [OBCS∗12], it implies the more
isometric a mapping is, the more diagonal our matrix Q will be,
when expressed in the reduced basis.

Theorem 4.2 The conformal pushforward Q commutes with the
connection Laplacian:

LNQ = QLM ,

if and only if it represents an isometric map.

The proof is deferred to Appendix E.
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Random noise
Method / level of noise s = 0 s = 0.2 s = 0.5
Wang et al. [WLZT18] 0.40 2.2 5.5
Azencot et al. [ABCCO13] 6.2 4.6 3.2
Ours 0.40 0.43 0.74

Symmetric noise
Method / level of noise a = 0.3 a = 0.5 a = 0.6
Wang et al. [WLZT18] 0.75 1.1 1.3
Azencot et al. [ABCCO13] 4.6 1.8 4.2
Ours 0.40 0.51 0.81

Table 1: Average accuracy of the three vector field transfer algo-
rithms on 20 random pairs of FAUST [BRLB14] for two types of
noise, three noise levels. We use k = 50 eigenvectors for both real
and complex Laplacian operators. For noisy input functional maps,
our method is always the most accurate. For completeness, we re-
port more results for k = 30,70,150 in Appendix G.

4.5. Discrete operators in a reduced basis

In order to improve the efficiency of our algorithms we will not
consider all piecewise linear tangent vector fields but only those
spanned by a small number k of smooth vector fields stored in a
complex |V |× k-matrix Ψ.

For a known deformation across compatible meshes, the closed-
form expression of Q is exhibited in Thm. 4.1 and can easily be
rewritten in a reduced basis:

QNM = (ΨM)⋆AMD(q)ΠMNΨ
N . (10)

Note that Eq. (10) is very similar to the expression of discrete
functional map C introduced in [OBCS∗12]. For the function bases
Φ

M and Φ
N a functional map reads:

CNM = (ΦM)⊤AM
ΠMNΦ

N . (11)

All the constraints on Q in the “hat” basis can be simply rewrit-
ten by replacing each term by an operator projected in the reduced
basis.

In theory any orthonormal basis could be considered. For the
purpose of non-rigid 3D shape matching a basis smooth and sta-
ble under nearly-isometric deformations leads to better results. In
our experiments, we use the k first eigenvectors of the connection
Laplacian for complex functional maps, that we visualize via Line
Integral Convolution in Figure 4. Indeed, as proved in Thm. 3.3 this
operator is invariant under isometric deformations and moreover its
discretization is easily implemented.

4.6. Point-to-point map conversion

In the functional map pipeline a key step is the conversion from a
functional map to a vertex-to-vertex map. As originally described
in [OBCS∗12] and extended in [PRM∗21], one just needs to trans-
fer Dirac functions on M using the adjoint of the functional map,
and compute the closest Dirac function on N using a nearest neigh-
bor search algorithm. Namely, the operation performed is ΠMN =
NNsearch(ΦN ,ΦMCNM), where Φ

M and Φ
N are the eigenfunctions

from the standard Laplace-Beltrami operator on M and N.

OursAzencot et al.Wang et al. Error

3.0

0

Ground Truth

Source

Figure 5: Comparison of three tangent vector field transfer meth-
ods. Top row: we display a LIC visualisation of the transferred
vector field on the target shape. Bottom row: we show the trans-
fer error, computed as the difference with the ground-truth transfer.
For this transfer, we used a 50× 50 ground-truth functional map
blurred with a random noise of magnitude 0.1. Quantitative results
can be found in Table 1.

In our case, extending this algorithm to “Dirac vector fields” is
not straightforward as a single vector is not isotropic. Instead, we
propose to use the divergence operator to convert the vector field
basis to functions and then use the standard functional point-to-
point conversion scheme via nearest neighbor search. When Q is
expressed in a reduced basis, this simply amounts to computing:

ΠMN = NNsearch(divNΨN ,divMΨMQNM). (12)

Where we define the discrete divergence to be the adjoint of the
gradient operator matrix defined in Eq. (4).

This solution is not fully satisfying as it relies on the commu-
tativity of the pushforward with the divergence operator, and thus
is geared towards near isometries. This approach, however, proves
to be sufficient for our shape matching applications in Section 5.
Furthermore, in our current pipeline, Q is evaluated alongside C
and thus, if needed, the conversion can be done using the standard
functional map. We leave finding a robust and general conversion
scheme for complex functional maps as interesting future work.

5. Results

In this section, we present several applications of our complex
functional maps. We start by demonstrating that robust vector
field transfer can be achieved with complex functional maps with-
out requiring additional information or computation. Then, we
demonstrate that the orientation-aware nature of complex func-
tional maps can be used to eliminate the symmetry ambiguity in
non-rigid near-isometric shape matching problems. Complex func-
tional maps are easily added to standard functional map pipelines
like map estimation from descriptors [OBCS∗12,NO17,RPWO18]
or refinement methods like ZOOMOUT [MRR∗19] and its follow-
ups [RMOW20,RMWO21]. An implementation of our method can
be found at: https://github.com/nicolasdonati/QMaps.
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Method (-/+ICP) [NO17] [RPWO18]
- 0.24 / 0.21 0.21 / 0.17
+ Ours 0.15 / 0.13 0.12 / 0.10
Method (-/+ICP) [WLZT18] [WLZT18] + [RPWO18]
- 0.31 / 0.23 0.23 / 0.13
+ Ours 0.16 / 0.13 0.11 / 0.083

Table 2: Average geodesic error on 190 FAUST remeshed shape
pairs. Our complex functional map step always improves the cor-
respondence quality for all four algorithms, even those already in-
corporating the orientation-aware operators from [RPWO18]. De-
tailed graph geodesic error vs. percentage of correspondences can
be found in Fig. 8 of the Appendix.

5.1. Vector field transfer

The first direct application of complex functional maps is tangent
vector field transfer. We compare three methods for vector field
transfer using as only input an approximate functional map C. We
demonstrate below that using our approach is more accurate, com-
pared to existing methods [WLZT18, ABCCO13] especially in the
presence of noise.

Vector field transfer with complex functional maps Our repre-
sentation allows for efficient and easy-to-use tangent vector field
transfer. Indeed, given a functional map CMN , we can easily re-
cover a complex functional map Q by solving the Procrustes prob-
lem in Eq. (9). Then, transferring a vector field X defined on shape
M to shape N, boils down to : 1) projecting X in the complex spec-
tral basis X ≈ Ψ

Mx (see Section 4.1 ), 2) transferring the spectral
coefficients using: y = Qx and 3) recovering the output as linear
combination of the target basis: Y = Ψ

My.

To assess the accuracy of our method, we compare it with two
standard baselines: the transfer using Hodge decomposition from
Wang et al. [WLZT18] and the transfer using the vector field oper-
ator proposed by Azencot et al. [ABCCO13].

Hodge decomposition transfer On a shape M with a sphere-
topology, any tangent vector field X ∈ T M can be decomposed
as the sum of a gradient and a rotated gradient. As remarked in
[WLZT18], transferring vector fields with a conformal map can
be done using only the functional map C by: 1) computing the
Hodge decomposition, i.e. finding the functions f ,g ∈ R|V | such
that X = ∇ f + ı∇g, 2) transferring the functions f ,g using C and
3) computing the gradient and rotated gradient on N.

Vector field operator Azencot et al. [ABCCO13] use the repre-
sentation of a tangent vector field X ∈ T M via the associated func-
tional operator f 7→ DX ( f ) , defined in Eq. (2) above. The method
boils down to transferring X by solving :

min
Y

∥DYC−CDX∥2
F .

This method is similar to ours as their energy is also inspired by
Equation (1). However, there are two key differences. Firstly, our
method estimates the transfer for all low-frequency tangent vec-
tor fields of the source eigenbasis simultaneously by estimating Q,

Source [NO17] [RPWO18] [WLTZ18]

+ Ours

Ground Truth

[WLTZ18]+[RPWO18]

Figure 6: We visualize the influence of complex functional map step
on some descriptor-based functional map pipelines. The quality of
the computed maps is displayed with texture transfer on a pair of
FAUST re-meshed shapes (91 as source, 89 as target). We see that
for every of the considered pipeline, our method helped with con-
tinuity and left-right symmetry errors. Quantitative results can be
found in Table 2.

whereas the approach of Azencot et al. is limited to one vector
field transfer at a time. Secondly, the approach in [ABCCO13] is
not limited to conformal deformations, making it more flexible but
also more sensitive to noisy input functional maps.

Results Table 1 reports a quantitative comparison between the
three methods described above on 20 random pairs taken from the
original FAUST dataset [BRLB14]. These meshes are in one-to-one
vertex correspondence, allowing us to compute the ground-truth
pushforward. To perform the comparison, we generate a smooth
vector fields on the source, transfer it and then compute the L2-
distance with the exact transfer normalized by the norm of the in-
put vector field. We use k = 50 eigenvectors for both the functional
space and the vector field space. We assess the robustness of the
three functional-based vector field transfer methods by adding two
types of noise to the input ground-truth Cgt functional map:

• Random noise: the input ground-truth Cgt functional map
is corrupted by adding a random matrix N whose entries
are taken uniformly at random between −s and s, s being a
given threshold. We transfer tangent vector fields of the form
X = ∇ f + ı∇g by randomizing the spectral coordinates of f ,g
such that they decrease in intensity as frequency goes up. The
results are reported in the first half of Table 1.

• Symmetric noise: The input ground-truth map Cgt is mixed with
an orientation-reversing functional map Csym by linearly interpo-
lating between the two maps C = aCgt +(1− a)Csym. This kind
of noise often arises when estimating maps from descriptors with
the original pipeline introduced in [OBCS∗12]. We transfer a
tangent vector field of the form X = ∇ f , with f the extrinsic
coordinate of the left-right axis. This results in an antisymmetric
vector field that will only be transferred correctly if the method
is robust to noise. The results are reported in the second half of
Table 1.

submitted to COMPUTER GRAPHICS Forum (1/2022).



10 Nicolas Donati, Etienne Corman, Simone Melzi, Maks Ovsjanikov / Complex Functional Maps

Method / stats Avg. Med. Min.
ZO 0.520 0.523 0.226
ZO + Ours 0.320 0.328 0.037
ZO + bij 0.508 0.447 0.106
ZO + bij + Ours 0.367 0.382 0.040
ZO + bij + conf 0.47 0.45 0.025
ZO + bij + conf + Ours 0.225 0.078 0.029
ZO + bij + iso 0.450 0.433 0.025
ZO + bij + iso + Ours 0.198 0.081 0.029

Table 3: Adding our complex functional map step in the pipeline
of Ren et al. [RMWO21] always improves map accuracy. We report
the average, median and minimal geodesic distance error on 50
shape pairs of the SMAL dataset. Detailed graph geodesic error
vs. percentage of correspondences can be found in Fig. 9 of the
Appendix.

In presence of noise, our method always outperforms the base-
lines. This is due to the fact that we first compute the pushforward
closest to C in the least square sense, making it robust to random
noise. By construction, our pushforward is orientation-preserving,
so it is resistant to symmetric noise and is able to recover a well-
oriented transfer as shown in Fig. 1. In comparison, the other two
methods directly rely on the functional map and fail if C does not
exactly represent a pointwise map. Moreover, if C is a mix of a di-
rect and orientation-reversing map, it is not easy to recover the un-
derlying orientation-preserving map and thus to be robust to such
noise.

In Figure 5 we provide qualitative illustrations of vector field
transfer obtained using our method compared to baselines. Note
that even a small amount of noise in the input functional map can
compromise the quality of the transfer performed by [WLZT18].
Our method only exhibits minor errors, even though it is only de-
signed to handle conformal deformation. In fact, the only visible
mis-transfer happens at the shoulder joint where the deformation is
far from conformal. The approach of Azencot et al. [ABCCO13]
is clearly under-performing and always achieves the worst accu-
racy of our comparisons. However this method is more general and
would give the best results in presence of perfect information and
in the full basis, even with strongly non-isometric deformations.

In conclusion, complex functional maps can help to alleviate the
errors in map orientation and allow to accurately transfer vector
fields between near isometric shapes even if the deformation is not
exactly conformal.

5.2. Disambiguating symmetry in functional maps
computation

In our next application, we show that complex functional maps
can be used within the standard descriptor-based functional map
pipeline to significantly improve robustness and accuracy. The
key issue that we consider is that, as remarked in prior works
[OMPG13, COC15] intrinsic descriptors [SOG09, ASC11] are of-
ten symmetric, which can lead to poor correspondences, where a
point is arbitrarily matched to the correct target point or its sym-

Source

Ground Truth

[RMOW20] [RMWO21]

+ Ours

+ Ours

Figure 7: Texture transfer on SMAL re-meshed dataset [ZKJB17]
illustrating maps obtained with two methods based on ZOOMOUT:
bijective ZOOMOUT [RMOW20] (third column) and bijective
ZOOMOUT with isometric energy [RMWO21] (last column).
Adding our Q-step (bottom sub-rows) considerably improves the
accuracy of the map. For quantitative results see Table 3.

metric counterpart [RMOW20]. As we demonstrate below, inject-
ing our orientation-preserving complex maps into the pipeline can
help to resolve this issue efficiently.

To achieve this, we propose to project a given functional map
into the space of orientation-preserving maps by using Q as an
intermediary. This projection is done in two steps. First, we ap-
proximate the associated map differential Q by solving the Pro-
crustes problem in Eq. (9). Secondly, we extract from Q the un-
derlying point-to-point mapping using the algorithm described in
Section 4.6. Since, by construction, Q is orientation preserving, the
projection removes the orientation reversing component of the in-
put map, and thus the resulting point-to-point mapping should be
orientation preserving.

In a third optional step, one can reconstruct a new functional
map from the point-to-point map using Eq. (11). This allows us
to improve the mapping using post-processing technique like the
spectral ICP refinement introduced in [OBCS∗12].

We compare this approach to four alternative algorithms for
computing functional maps solely from 50 WKS [ASC11] descrip-
tors:

• The algorithm introduced by Nogneng et al. [NO17] where de-
scriptors are converted into operators that must commute with
the functional map.

• We add the orientation-promoting operators of [RPWO18] to the
pipeline of Nogneng et al. [NO17].

• The method proposed in [WLZT18], in theory closest to ours,
which proposes to also transfer differential 1-forms with func-
tional maps. It differs from our method mainly because they
rely on R2 − linearity whereas our maps are C-linear, and thus
orientation-aware. In [WLZT18] the authors transform descrip-
tor functions into tangent vector fields by taking the gradient.

• A combination of [WLZT18] with the orientation-aware opera-
tors of [RPWO18].

To assess the ability of Q to recover orientation information, we
compare maps obtained by direct conversion of the functional map
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computed using each of approaches above, with maps obtained by
conversion from Q, that has first been estimated from C.

The results are computed on 20 shapes (which corresponds to
190 pairs) from the FAUST dataset [BRLB14], which were re-
meshed in [RPWO18] in order to remove the bias of identical trian-
gulations. We then compare the mean geodesic distance error ob-
tained by these different methods – for each source point, we com-
pute the geodesic distance on the target between the point mapped
by the obtained maps and the point mapped by ground-truth. The
results are reported in Table 2. Additionally, we display in Figure
6 a qualitative result where our additional step was able to disam-
biguate symmetry whereas the standard pipelines could not.

This experiment shows that our Q-map projection step signifi-
cantly improves the accuracy of the correspondence with all algo-
rithms, even in the presence of orientation-aware operators.

5.3. Orientation-preserving ZOOMOUT

Finally, our complex functional maps can also be used to improve
more recent functional map algorithms based on spectral upsam-
pling, inspired by ZOOMOUT [MRR∗19]. The ZOOMOUT algo-
rithm starts with an initial pointwise map Π0 and alternates between
two steps: estimating a new functional map Cn from Πn and recov-
ering the new pointwise map Πn+1 from Cn. In order to increase
the map precision, the size of the spectral basis increases at each
iteration.

Interestingly, we can modify the basic ZOOMOUT approach to
incorporate complex functional maps and thus promote discovery
of orientation preserving maps. Our new algorithm basically boils
down to 3 steps instead of 2: 1) estimate the functional map Cn
from Πn. 2) [Q-step] Estimate the complex functional map Qn from
Cn, using Eq. (9). 3) Estimate the new pointwise map Πn+1 from
Qn (instead of Cn like in classic ZOOMOUT) using Eq. (12). The
pseudo-code can be found in Algorithm 1 where the lines that de-
scribe our modification are highlighted in bold.

We remark that this “Q-step" can easily be added to other
algorithms built on top of ZOOMOUT. MapTree [RMOW20],
which uses a tree structure to explore the space of maps, mod-
ifies ZOOMOUT to promote bijectivity. This idea was later ex-
tended to other properties like conformality or isometry by Ren
et al. [RMWO21]. Like ZOOMOUT, these algorithms are based
on spectral upscaling and conversions between spectral mappings
and vertex-to-vertex maps. We describe their modification in Ap-
pendix I.

We demonstrate the beneficial effect of this Q-step by refining
random functional maps with four versions of ZOOMOUT with and
without our modification. We upscale the maps from 4 eigenfunc-
tions up to 50, with a step of 1, and 10 inner loops per step. We
perform this experiment on 50 shape pairs of SMAL [ZKJB17]
re-meshed. We report the obtained quantitative results in Table 3.
For the baselines, we used the standard ZOOMOUT algorithm
[MRR∗19], bijective ZOOMOUT [RMOW20], and the discrete op-
timization with first conformal (conf) and isometric energy (iso)
[RMWO21]. For all of these baselines, we report both their over-
all geodesic error (mean, median and minimum error) and that of

Algorithm 1 Complex ZOOMOUT

1: Intput: Manifold meshes M and N
2: Initial pointwise maps ΠMN

3: Output: Refined maps Π
re f
MN

4: Parameters: The number of refinement steps J
5: An array [k j], j ∈ [1,J] with the (increasing) number of spectral

coordinates to use at each refinement step
6: Preprocessing: Compute the Laplace Beltrami eigenbases Φ

M

and Φ
N (used for function in spectral basis)

7: Compute the connection Laplacian complex eigenbases
Ψ

M ,ΨN (used for vector field spectral bases, see Section 4.5)
8: Compute the differential operators DΦM

i
, and D

ΦN
i

for i∈ [1,kJ ]
(used for estimating Q from C, see Section 4.2)

9: Compute the reduced divergence operators divM and divN
(used for conversion from Q to pointwise map, see Section 4.6)

10: for k ∈ [k1, ...,kJ ] do
11: ΦM = Φ

M
[1,k],ΦN = Φ

N
[1,k]

12: CNM = Φ
†
MΠMNΦN

13: QNM = argminQ∈O(k) ∑
k
i=1 ∥CNMD

ΨN
i
−DQΨN

i
CNM∥2

F
14: ΠMN = NNsearch(divNΨN ,divMΨMQNM)
15: end for

their modification with our method. We observe that our modifica-
tion is always relevant in this case, resulting in a significant boost
in overall accuracy on this dataset. More specifically, the discrete
optimization approach [RMWO21] with complex functional maps
performs really well (median error below 0.09) despite the fact it is
randomly initialized, and does not use any descriptors.

In Figure 7 we provide qualitative results with two shape pairs
with the same source, and report five maps per pair: the ground-
truth, bijective ZOOMOUT [RMOW20], and bijective isometric
ZOOMOUT [RMWO21], as well as their version with our modi-
fication. For both shape pairs and both methods, the original al-
gorithms are affected by the left-right symmetry and converge to
discontinuous maps.

In summary, in state-of-the-art refinement pipelines involving
ZOOMOUT, our Q-step appears to promote orientation preservation
and continuity, resulting in better convergence and more accurate
results overall. This confirms that using complex functional maps
in functional map pipelines is beneficial to estimate high quality
correspondences from very low-frequency or extremely unreliable
initialization.

6. Conclusion, Limitations & Future Work

In this paper, we have introduced a new functional operator result-
ing from a C-linear relaxation of the space of pushforwards: the
complex functional map. This operator allows to robustly trans-
fer tangent vector fields between non-rigid surfaces in 3D. Further-
more, the most prominent property of this new tool is that it reflects
the complex structure of the surfaces and is thus orientation-aware.
In our experiments, we exploited the orientation-aware property
of complex functional maps in several shape matching tasks. This
contribution to the functional framework considerably increases the
applicability of intrinsic shape matching methods, which are often
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hindered by the presence of orientation-reversing intrinsic symme-
tries. This is particularly relevant for functional map-based algo-
rithms, since they rely on a linear relaxation of diffeomorphisms,
which can linearly blend direct and orientation-reversing maps, po-
tentially resulting in large discontinuities.

However our framework is naturally restricted to differentials of
conformal orientation-preserving mappings. This constraint is only
enforced in a least squares sense in our approach and thus helps to
promote conformality which can be beneficial for shape pairs satis-
fying this assumption. Besides, like most algorithms derived from
the functional framework, our construction is dependent on the
choice of reduced basis. This can limit its applicability in more gen-
eral non-isometric shape matching. As follow-up work, we would
like to study other representations for orientation-preserving push-
forwards and alleviate the dependency on the reduced basis.

In the future it would also be interesting to investigate the util-
ity of complex functional maps in other applications that involve
vector field transfer, including deformation or pose transfer, or syn-
chronized convolution in the context of geometric deep learning.
Indeed, restricting the search to well-oriented maps without addi-
tional supervision could lead to new efficient methods in unsuper-
vised 3D deep learning.
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Appendix A: Proof of Theorem 3.1

Necessary condition: Let Q be the differential of an orientation-
preserving conformal diffeomorphism ϕ. Then by Lemma 3.1 Q
must be C linear and by virtue of being a differential, Q = dϕ must
satisfy Eq. (1), [Lee13].

Sufficient condition: Let Q be a C linear operator and suppose
that there exists a diffeomorphism ϕ : M → N such that Q satisfies
Eq. (1). Since the pushforward dϕ : T M → T N is the unique op-
erator satisfying Eq. (1) (see [Lee13], Chapter 3), we must have
Q = dϕ. Now, since Q is a C-linear pushforward, it preserves
both the angles between the vectors and the orientation of the tan-
gent bundle. Therefore, the map ϕ must then be an orientation-
preserving conformal map.

Appendix B: Proof of Theorem 3.2

Let ϕ : M →N be a conformal diffeomorphism and Q= dϕ : T M →
T N its corresponding pushforward. By definition of conformality
there exists a log-scale factor u : M → R relating the metric tensors
of both surfaces ϕ

⋆gN = e2ugM and their volume form ϕ
⋆dµN =
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Algorithm 2 Complex Bijective ZOOMOUT

1: Intput: Manifold meshes M and N
2: Initial pointwise maps ΠMN and ΠNM

3: Output: Refined maps Π
re f
MN and Π

re f
NM

4: Parameters: The number of refinement steps J
5: An array [k j], j ∈ [1,J] with the (increasing) number of spectral

coordinates to use at each refinement step
6: Preprocessing: Compute the Laplace Beltrami eigenbases Φ

M

and Φ
N (used for function in spectral basis)

7: Compute the connection Laplacian complex eigenbases Ψ
M

and Ψ
N (used for vector fields in spectral basis, see Section

4.5)
8: Compute the differential operators DΦM

i
and D

ΦN
i

for i ∈ [1,kJ ]
(used for estimating Q from C, see Section 4.2)

9: Compute the reduced divergence Operators divM and divN
(used for conversion from Q to pointwise map, see Section 4.6)

10: for k ∈ [k1, ...,kJ ] do
11: ΦM = Φ

M
[1,k],ΦN = Φ

N
[1,k]

12: CMN = Φ
†
NΠNMΦM , CNM = Φ

†
MΠMNΦN

13: QMN = argminQ∈O(k) ∑
k
i=1 ∥CMNDΨM

i
−DQΨM

i
CMN∥2

F

14: QNM = argminQ∈O(k) ∑
k
i=1 ∥CNMD

ΨN
i
−DQΨN

i
CNM∥2

F
15: ΠMN = NNsearch(divNΨN ,divMΨMQNM)
16: ΠNM = NNsearch(divMΨM ,divNΨNQMN)

17: CMN =

(
ΦN

ΠMNΦN

)†(
ΠNMΦM

ΦM

)
18: CNM =

(
ΦM

ΠNMΦM

)†(
ΠMNΦN

ΦN

)
19: ΠMN = NNsearch(

(
ΦNCNM ΦNCMN

)
,
(
ΦM ΦM

)
)

20: ΠNM = NNsearch(
(
ΦMCMN ΦMCNM

)
,
(
ΦN ΦN

)
)

21: end for

e2udµM . Thus, the L2 scalar product between vector fields X ,Y ∈
T M is preserved by the pushforward:∫

N
gN

p (Q(X),Q(Y ))dµN(p) =
∫

N
gN

p (dϕ(X),dϕ(Y ))dµN(p)

=
∫

M
gN

ϕ(q) (dϕ(X),dϕ(Y ))e−2udµM(q)

=
∫

M
(ϕ⋆gN)q (X ,Y )e−2udµM(q)

=
∫

M
gM

q (X ,Y )dµM(q)

This this holds for arbitrary X ,Y , we obtain that Q⋆Q = I.

Appendix C: Proof of Theorem 3.3

Let us assume that LM = Q−1 ◦ LN ◦ Q. As shown in [BGV03,
SSC19], the diffusion kernel of the connection Laplacian is, at first
order, the parallel transport along a geodesic and its magnitude is
identical to the decay of the scalar heat kernel. Since the push-
forward preserves the connection Laplacian, it also preserves the
scalar heat kernel, therefore it must be an isometry [SOG09].

As proved in [Car92] (p.181) the pushforward of the Levi-Civita
connection by a conformal mapping is itself the Levi-Civita con-
nection if and only if the map is an isometry. Therefore, if ϕ is an
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Figure 8: Geodesic error of different methods with and without
our Q-step, then refined with ICP, on 190 shape pairs of FAUST
re-meshed.

isometry, the pushfoward of the connection Laplacian Q−1 ◦LN ◦Q
is equal to the connection Laplacian on M.

Appendix D: Proof of Theorem 4.1

Let ϕ : M → N be the permutation associated to the matrix Π.

The energy of Eq. (8) for vertex-based vector field must be
evaluated for X a basis of complex field and f a basis of func-
tions. We choose the “hat" basis for the fields X i ∈ C|VM| where
X i

j = zδi j,z = 1 or ı and f i ∈ R|VM| where f i
j = δi j. The symbol δ

denotes the Kronecker delta. Explicitly writing the coefficients of
the matrices, boils down to:

(CDM
X i)k j =

∣∣∣∣∣
〈

z,(∇ f j)i

〉
, k = ϕ(i)

0, k ̸= ϕ(i)

(DN
QX iC)k j =

∣∣∣∣∣
〈

Q(X i)k,(∇ f ϕ( j))k

〉
, (kϕ( j)) ∈ EN or k = ϕ( j)

0, (kϕ( j)) /∈ EN and k ̸= ϕ( j)

An immediate conclusion is that Q must be zero everywhere ex-
cept at Qϕ(i),i so there exists vector q ∈ C|VM| such that:

Q = D(q)Π.

Now we can go back the least-squares problem and find each
coefficient of q individually. Using the fact that z form a basis of
C, at a vertex i ∈ M the best conformal deformation of the tangent
plane qϕ(i) is solution of:

qϕ(i) = argmin
x∈C

∑
j

∣∣∣〈x,(∇ f ϕ( j))ϕ(i)

〉
−
〈

1,(∇ f j)i

〉∣∣∣2 .
Appendix E: Proof of Theorem 4.2

• Suppose that Q is an isometric pushforward then the commu-
tativity with the Laplacian immediately holds as the connection
Laplacian, like the usual cotangent Laplacian, is preserved by
isometric changes.
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Algorithm 3 Complex Discrete Optimisation
1: Intput: Manifold meshes M and N
2: Initial pointwise maps ΠMN

3: Output: Refined maps Π
re f
MN

4: Parameters: The number of refinement steps J
5: An array [k j], j ∈ [1,J] with the (increasing) number of spectral

coordinates to use at each refinement step
6: Preprocessing: Compute the Laplace Beltrami eigenbases Φ

M

and Φ
N (used for function in spectral basis)

7: Compute the connection Laplacian complex eigenbases Ψ
M

and Ψ
N (used for vector fields in spectral basis, see Section

4.5)
8: Compute the differential operators DΦM

i
and D

ΦN
i

for i ∈ [1,kJ ]
(used for estimating Q from C, see Section 4.2)

9: Compute the reduced divergence Operators divM and divN
(used for conversion from Q to pointwise map, see Section 4.6)

10: for k ∈ [k1, ...,kJ ] do
11: ΦM = Φ

M
[1,k],ΦN = Φ

N
[1,k]

12: QNM = argminQ∈O(k) ∑
k
i=1 ∥CNMD

ΨN
i
−DQΨN

i
CNM∥2

F
13: ΠMN = NNsearch(divNΨN ,divMΨMQNM)

14: CNM = Φ
†
MΠMNΦN

15: ΠMN = NNsearch(divNΨN ,divMΨMQNM)
16: end for

• Assume that Q commutes with the Laplacian then thanks to
Thm. 4.1, the cotan-weights are preserved under the mapping.
Therefore, the deformation is an isometry [GGLZ10].

Appendix F: Solving the least-squares problem to estimate Q

Here we propose to complete Section 4.2 by giving one potential
way to solve Eq. (8) and Eq. (9) explicitly. To that end we first
proceed to rewrite Eq. (6), by switching from functional to vector
field operator. More precisely, for a shape M, and f ∈ L2(M),X ∈
T M, we define the linear operator D f ∈ T M → L2(M):

D f (X)p = ⟨X ,∇ f ⟩TpM

With this operator we adopt the dual point of view from DX . In-
deed ∀ f ∈ L2(M),X ∈ T M,D f (X) = DX ( f ). Consequently, the
discretization is almost identical, except that since this operator
takes vector fields as input, we choose to encode it as a complex
operator D f ∈ C|V |×|V |. Namely, D f is a diagonal matrix such
that (D f )ii =∇ f i. One can then retrieve D f (X) by taking the real
part Re(D f X). It can also be noted that Im(D f X) = Re(D f · ıX) =
D f · ıX , so that the complex matrix D f also stores information for
rotated gradients.

Let M and N be two manifolds. Switching from DX to D f in
Eq. (6), we get Eq. (13):

CMNDM
f = DN

CMN f QMN , ∀ f ∈ R|VM|. (13)

We then discuss how to minimize, for a fixed input functional
map C and a family of smooth functions fi the following energy.
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Figure 9: Geodesic error of different versions of ZOOMOUT with
and without our Q-step, on 50 shapes pairs of SMAL re-meshed.

Similarly to Eq. (7), fi is chosen to be the truncated eigenbasis of
the Laplace-Beltrami operator.

Eq(Q) = ∑
i
∥CDM

fi −DN
C fi Q∥2

F , (14)

Regular problem In this first paragraph we ignore the constraint
QQ⋆ = I, which corresponds to Eq. (8).

Consider an input functional map C, and reference functions
fi, i ∈ [1,k f ]. The minimum to Eq. (14) can be written explicitly: by
concatenating CD fi , i ∈ [1,k f ] in a big matrix A ∈ C(|VN |×k f )×|VM|,
and DC fi , i ∈ [1,k f ] in another matrix B ∈ C(|VN |×k f )×|VN |, we can
re-write Eq. (13) as Q = B†A, where B† is the Moore pseudo-
inverse of B. In practice, we express these operators in a reduced
spectral basis (See Section 4.5) before computing the pseudo-
inverse, to improve computation time. Indeed in the reduced basis,
operators A and B are respectively of size kNk f ×kM and kNk f ×kN
if we choose to truncate the tangent vector field eigenbasis at kM on
M and at kN on N. This results in a kN × kM reduced complex op-
erator for Q.

Procrustes problem Considering the same setting and keeping the
last notations as in last paragraph, minimizing Eq. (14) with the
constraint QQ⋆ = I, which corresponds to Eq. (9), is a Procrustes
problem. As such, it boils down to a Singular Value Decomposi-
tion: writing Ω = B⋆A, we use its SVD Ω = UΣV to retrieve the
orthogonal matrix Q = UV minimizing Eq. (9). As stated in the
previous paragraph, one benefits from writing these equations in
the reduced basis.

Appendix G: Vector Field transfer with more spectral values

In this appendix, we complete the vector field transfer experiment
of Section 5.1 by showing the evolution of vector field transfer ac-
curacy with the number of spectral coordinates involved in both the
Laplace-Beltrami and the connection Laplacian operator (the lat-
ter is only used in Azencot et al. and our method). Table 4 reports
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Random noise
Method / level of noise s = 0 s = 0.2 s = 0.5

k = 30
Wang et al. [WLZT18] 0.42 5.3 14
Azencot et al. [ABCCO13] 11 12 12
Ours 0.54 0.57 0.80

k = 70
Wang et al. [WLZT18] 0.41 14 33
Azencot et al. [ABCCO13] 2.6 2.4 2.4
Ours 0.46 0.48 0.77

k = 150
Wang et al. [WLZT18] 0.37 27 68
Azencot et al. [ABCCO13] 0.68 0.81 1.0
Ours 0.44 0.47 0.81

Symmetric noise
Method / level of noise a = 0.3 a = 0.5 a = 0.6

k = 30
Wang et al. [WLZT18] 0.87 1.13 1.29
Azencot et al. [ABCCO13] 10.19 6.84 10.59
Ours 0.54 0.62 0.76

k = 70
Wang et al. [WLZT18] 0.81 1.09 1.26
Azencot et al. [ABCCO13] 2.93 1.99 2.55
Ours 0.39 0.47 0.81

k = 150
Wang et al. [WLZT18] 0.77 1.05 1.22
Azencot et al. [ABCCO13] 0.69 1.04 1.43
Ours 0.37 0.41 0.56

Table 4: Average accuracy of the three vector field transfer algo-
rithms of Section 5.1 on 20 random pairs of FAUST [BRLB14] for
two types of noise, and three noise levels. We use k = 30,70,150
eigenvectors for both real and complex Laplacian operators.

this comparison in detail. Let us recall that only a number below
1 shows a result with reasonable accuracy, above this threshold the
error is higher that the norm of the input vector field.

We observe that the transfer from Wang et al. is always very
sensitive to noise, leading to high inaccuracies when noise corrupts
the high frequencies. Notice also that the approach of Azencot et
al. only starts to give reasonable transfer with high spectral values,
namely k = 150. In comparison, our method almost doesn’t suffer
from noise, whether it is random or symmetric, and is accurate even
for low spectral values.

Our method is the only one to recover from strong symmetric
noise (a ≥ 0.5). Indeed the vector field we transfer for this second
type of noise is antisymmetric as described in Section 5.1, but the
input (blurred) functional map projects antisymmetric functions to
0. This results in baselines transferring the input vector field to a
vector field close to 0 on the target shape, and thus errors above or
close to 1.

Appendix H: Geodesic distance curves for Table 2 and 3

In Figure 8 and 9 we respectively display the results of Table 2 and
3 with more precision using the Princeton graphs first introduced in
[KLF11]. With these curves it is easier to assert the finer quality of
the correspondence computed with the help of complex functional
maps.

Appendix I: Complex bijective ZOOMOUT algorithms

In this section we describe precisely how to implement the different
versions of ZOOMOUT to which we add our Q-step. These algo-
rithms are used to generate the correspondence whose quality are
reported in Figure 7 and Table 3.

Complex bijective ZoomOut We first display the bijective
ZOOMOUT algorithm used in [RMOW20], modified to include our
Q-step. This results in Algorithm 2, where we bold the line num-
bers where change occurs. The idea behind bijective ZOOMOUT is
to optimize for maps in both directions (from M to N and from N to
M). The energy to minimize is the so-called bijective energy Ebi j =

∥CMNCNM − I∥2
F + ∥CNMCMN − I∥2

F , and [RMOW20] proposes
to optimize it with the following steps : Remarking that CNM =

Φ
†
MΠMNΦN , we have ∥ΦM∥2

F∥CNMCMN − I∥2
F = ∥ΠMNΦNCMN −

ΦM∥2
F . Thus, knowing ΠMN and ΠNM , one can optimize for CMN

in a bijective fashion with:

CMN = argmin
C

∥ΦNC−ΠNMΦM∥2
F +∥ΠMNΦNC−ΦM∥2

F

And the same operation can be performed for CNM .

Afterwards, one can perform a symmetric trick to get ΠMN
knowing CMN and CNM , by additionally noting that in a bijective
orthogonal setting, C−1 =CT :

ΠMN = argmin
Π

∥ΠΦNCT
NM −ΦM∥2

F +∥ΠΦNCMN −ΦM∥2
F

And the same operation can be performed for ΠNM .

In the modified version of this algorithm, the pointwise map
directly comes from our complex functional maps, and thus is
orientation-aware. Its translation to functional map will also carry
that information, making Algorithm 2 more robust than its original
version to symmetry errors.

Complex Discrete Optimization Secondly, we modify discrete
optimisation algorithms [RMWO21] (again, the necessary modi-
fications bear bold line numbers). These algorithms consist in re-
ducing a continuous energy with the same kind of trick used in
bijective ZOOMOUT. It is thus adaptable to all kind of energies.
Besides, this method proved more efficient than continuous solvers
to reduce natural energies such as conformality or isometry. one
simply defines either E(ΠMN) (respectively E(ΠMN ,ΠNM) in the
case of a bijective energy), rewrites a continuous energy using the
pointwise map trick CMN =Φ

†
NΠNMΦM , and minimizes it for ΠMN

given CNM . Adding in our Q-step, we get Algorithm 3. This algo-
rithm is both orientation-aware and optimizes for desirable maps
such as isometries, often resulting in the best map as shown in Ta-
ble 3 and Figure 7.
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