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Abstract

State-of-the-art fully intrinsic networks for non-rigid
shape matching often struggle to disambiguate the symme-
tries of the shapes leading to unstable correspondence pre-
dictions. Meanwhile, recent advances in the functional map
framework allow to enforce orientation preservation using
a functional representation for tangent vector field trans-
fer, through so-called complex functional maps. Using this
representation, we propose a new deep learning approach
to learn orientation-aware features in a fully unsupervised
setting. Our architecture is built on top of DiffusionNet,
making it robust to discretization changes. Additionally,
we introduce a vector field-based loss, which promotes ori-
entation preservation without using (often unstable) ex-
trinsic descriptors. Our code is available at: https:
//github.com/nicolasdonati/DUO-FM .

1. Introduction

Learning for non-rigid shape correspondence is a key
problem in 3D shape analysis with applications ranging
from statistical shape analysis [6,37] to deformation or tex-
ture transfer [4]. Early approaches have focused either on
learning informative features so that corresponding points
have similar feature descriptors, e.g., [27], or modeling
shape correspondence as a semantic segmentation problem.
Approaches in the latter category, e.g., [29, 32, 38, 52] aim
to predict, for every point on the surface, the corresponding
vertex id on some ground truth template shape. Unfortu-
nately both approaches impose very little consistency be-
tween individual point correspondence predictions, and can
be sensitive to the underlying shape discretization [44].

More recently, techniques have focused on both predict-
ing and imposing a training loss on the entire map between
each pair of shapes. This has been greatly facilitated by
spectral approaches and especially the functional map rep-
resentation [34], which encodes a map as a small matrix
using the spectral (Laplacian) eigen-basis. A wide range of
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Figure 1. Our method aims at producing orientation preserving
maps for non-rigid 3D shape matching in a fully unsupervised
setting through the estimation of descriptors whose gradients also
align on source and target shape.

approaches based on both supervised [9, 13, 24] and unsu-
pervised losses [22, 41] have been proposed using the func-
tional map representation. Key to all of these methods is
learning feature functions that are then used to predict the
functional map as a whole. As was shown across multiple
recent works, this reduces the amount of necessary training
data [13], provides strong regularization promoting smooth
maps, makes the learned features robust to changes in dis-
cretization [44], and alleviates the requirement of the exis-
tence of a fixed template shape.
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While using the compact functional map representation
introduces a strong bias towards smooth approximately iso-
metric correspondences, it nevertheless leaves room for
both orientation-preserving and orientation-reversing cor-
respondences. This orientation-agnostic property of func-
tional maps can be useful, e.g., in symmetry detection tasks.
However, in most practical scenarios, the underlying sought
correspondence is expected to preserve orientation. Unfor-
tunately, restricting to only orientation-preserving maps is
not straightforward while using the functional map repre-
sentation, and the maps obtained using this framework can
easily introduce local and global symmetry flipping (i.e.,
left/right ambiguity present in many organic shapes). As a
result, existing state-of-the-art learning networks require ei-
ther a supervised loss [13, 24, 44], rigid pre-alignment [43],
or rely on hand-crafted extrinsic descriptors to disambiguate
symmetries.

In this paper, we demonstrate that these limitations can
be overcome by using the recently-proposed complex func-
tional map representation [12] that is based on alignment
of tangent vector fields (represented as complex functions)
rather than real-valued functions.

To achieve this, we propose the first architecture that
uses complex functional maps and learns specific features
that align tangent bundles on surfaces. The use of the com-
plex structure makes our approach fully orientation-aware,
and helps to restrict the space of allowed correspondences
to only globally orientation-preserving maps, while regu-
larizing the learning process. We introduce losses adapted
to complex functional maps and demonstrate that our net-
work can be trained in a fully unsupervised manner without
relying on rigid pre-alignments or ground truth correspon-
dences. More broadly, the vector-valued features learned
by our approach provide a novel and informative signal for
non-rigid shape analysis tasks.

2. Related Works
Non-rigid shape matching is a very rich and well-

established research area. Below we review works that are
most closely related to ours, focusing on learning-based,
and especially unsupervised techniques. We also refer the
interested readers to surveys including [5, 42] for a more
in-depth overview.

Functional Maps Our method builds upon the functional
map representation, which was originally introduced in [34]
and then extended in a very wide range of follow-up works,
e.g., [8, 17, 19, 33, 39, 47, 50, 51] among others. The key ad-
vantage of this framework is that it allows to represent and
optimize for maps as small-sized matrices, enables strong
linear-algebraic regularization, and can even be adapted to
the partial setting [26, 40].

An essential step in works using this representation, are

the “descriptor” (also known as “probe” [35]) functions that
are used to estimate the underlying functional maps and that
must be provided a priori. Early methods have exploited
axiomatic descriptors such as heat or wave kernel signatures
[2,48], with several attempts aiming to optimize the weights
of such descriptors through optimization techniques [9].

Learning-based Methods Learning shape correspon-
dence has also been done by treating it as a dense seman-
tic segmentation problem, e.g., [7,18,29,32,38,52], among
many others, or via template alignment [21]. However, such
works tend to require significant amount of training data, es-
tablish a map to a template, and can fail to generalize under
connectivity changes [44].

More closely related to our approach are methods that
use learning together with the functional map representa-
tion, thus evaluating the map as a whole and allowing to
directly train and test on arbitrary shape pairs. This was
first introduced in FMNet [25] , which proposed a method
to refine given descriptor functions such as SHOT [49] with
a deep neural network, by minimizing a supervised loss,
given some ground truth correspondences. This was later
extended in [13], where descriptor functions for functional
map estimation are extracted directly from the shapes’ ge-
ometry using point-based feature extractors, and a new reg-
ularized functional map estimation layer.

Unsupervised Spectral Learning Even closer to ours are
spectral approaches that use unsupervised learning while
exploiting the functional map representation. This was first
done by replacing the supervised loss in FMNet with either
geodesic distance preservation [22] or desirable structural
properties in the spectral domain [41]. Other properties
such as cycle consistency [20] or unsupervised alignment of
heat kernels [3] have also been used to improve efficiency
and accuracy.

These methods are attractive since they do not rely on
manual supervision, are fully intrinsic and thus tend to gen-
eralize well across pose changes. At the same time, their
fully intrinsic nature can cause ambiguities in the pres-
ence of intrinsic symmetries such as those present in human
shapes. To alleviate this problem, previous functional maps
methods, typically only refine given descriptors such as
SHOT, which carry some extrinsic information [3,20,22,41]
but can unfortunately be highly unstable under connectivity
changes. More recently, “weak supervision” was advocated
in the form of rigid pre-alignment [15, 43] to resolve sym-
metry ambiguity. Finally, Deep Shells [16] performs SHOT
feature refinement jointly with using the 3D embedding to
guide unsupervised correspondence learning.

Unfortunately, despite significant effort, symmetry am-
biguity remains a central problem in unsupervised learning
for non-rigid shape matching. This is especially problem-
atic since spectral methods tend to generalize much better to



unseen poses compared to extrinsic methods such as [21].
As we argue in this paper, the symmetry ambiguity prob-
lem is inherent to the functional maps approaches, as the
losses used are fully intrinsic and thus cannot disambiguate
orientation-preserving vs. orientation-reversing maps.

Complex Functional Maps Recently a tool was intro-
duced for geometry processing, called complex functional
maps [12] aimed at alignment of tangent vector fields rather
than functions. Crucially, complex functional maps allow
to remove orientation reversing maps from the space of al-
lowed correspondences. As a result, as shown in [12], this
can help to gain better control on both orientation, and ul-
timately symmetry in the computed maps. However, the
approach in [12] still uses either axiomatic descriptors or
an iterative approach in its pipeline. Therefore, it is unclear
how to incorporate this representation into a learning frame-
work, while maintaining accuracy and efficiency.

Contributions Our main contributions are as follows:

1. We introduce a new orientation-aware unsupervised
loss, using the recently proposed complex functional
maps representation [12], that exploits the properties
of tangent vector fields.

2. We show that computing complex functional maps di-
rectly from gradients of learned features and then im-
posing an additional loss on these maps helps to regu-
larize currently unstable pipelines with respect to sym-
metry aliasing.

3. By building upon a recent, robust feature extraction
backbone [44], we introduce a fully unsupervised cor-
respondence learning approach, without using extrin-
sic descriptors or coordinate information, while being
robust to significant changes in triangulation.

3. Background and Motivation
3.1. Notation, Background & Motivation

Given a pair of non-rigid shapes, M,N , represented as
triangle meshes, our main goal is to estimate a map φ :
M → N in an unsupervised manner.

Functional Maps In this work, we use the functional map
framework, which has recently given rise to state-of-the-
art supervised [13, 24, 44] and unsupervised [16, 20, 22, 41]
learning-based non-rigid shape correspondence methods.

The key idea behind the functional maps approaches
is that any correspondence can be represented compactly
as a small-sized matrix. Specifically, given any map φ :
M → N , it can first be encoded as a binary matrix ΠMN

s.t. ΠMN (i, j) = 1 if and only if φ(i) = j where i and
j are vertices on M and N respectively. The associated

functional map CNM is given as CMN = Φ†
MΠMNΦN

where ΦM ,ΦN are matrices storing as columns the first k
eigenfunctions of the Laplace-Beltrami operators of shapes
M,N , while † is the Moore-Penrose pseudo-inverse. Note
that CMN is of size k×k with k typically between 20−100,
and is thus orders of magnitude smaller than ΠMN .

In addition to allowing to represent any map in a reduced
basis, the functional map representation also allows to re-
cover the underlying map ΠMN by exploiting CMN . Here
and throughout the paper we adopt the notation from [35]
where objects in the reduced basis are denoted in bold.

The basic pipeline for map recovery, introduced in [34],
assumes the presence of some descriptor functions that are
expected to be preserved under the unknown mapping. If
AN ,AM are the coefficients of descriptors in the basis ΦM

and ΦN , the optimal functional map CMN is computed as:

min
CNM

∥CNMAN −AM∥+ αEreg(CNM ). (1)

Here the first term promotes preservation of descriptor func-
tions, whereas the second is a regularizer that promotes
structural properties; e.g., Ereg(CNM ) = ∥CNM∆N −
∆MCNM∥, where ∆M ,∆N are diagonal k × k matrices
of Laplacian eigenvalues.

The final point-to-point map φ : M → N can be ex-
tracted via nearest neighbor search between the rows of
ΦMCNM and those of ΦN [36]. We refer to [35] for an
overview of the functional map representation and its ex-
tensions.

Unsupervised Learning with Functional Maps The
compactness of the functional map representation CMN

implies that the optimization problem in Eq. (1) reduces to
a small scale least squares problem. On the other hand, the
quality of the correspondence is intimately tied to the choice
of the input descriptor functions. Early approaches have re-
lied on hand-crafted features such as the Wave Kernel Sig-
nature [2]. However, more recent methods have focused on
learning optimal features from data, first in the supervised
setting [9, 24] and recently using unsupervised or weakly
supervised deep learning, [16, 20, 22, 41, 43].

Our approach is directly inspired by methods in the
latter category. The general approach, shared by all ex-
isting unsupervised or weakly supervised methods, is to
train a neural network FΘ that, given a shape M can pro-
duce a set of d real-valued functions on M , FΘ(M) =
{fM

1 , fM
2 , ..., fM

i }, where fM
i : M → R.

At training time, the network FΘ is presented with a
set of pairs of shapes M,N , and the extracted features
FΘ(M),FΘ(N) are used to estimate the functional map
CNM by first projecting the features onto the reduced basis
and then solving the optimization in Eq. (1) (typically ignor-
ing the regularization term Ereg). The network parameters



Θ are then optimized by minimizing a training loss which
penalizes some structural properties of the estimated func-
tional map CNM .

The difference between existing methods [16, 20, 22, 41,
43] lies primarily in: a) The choice of feature extractor FΘ

and b) The training losses used for learning.
Our first observation is that the vast majority of ex-

isting unsupervised learning methods have a fundamen-
tal limitation in the presence of shapes with intrinsic self-
symmetries. We summarize our observation in the follow-
ing theorem:

Theorem 1. Given a set of shapes {Si} that all contain an
orientation reversing isometric self-symmetry {Ti : Si →
Si}, s.t. dSi(xj , xk) = dSi(Ti(xj), Ti(xk)), then a generic
neural network FΘ that is trained by any of the losses intro-
duced in [3,20,22,41,43] has at least two possible solutions
that both lead to the global optimum of the loss.

Proof. See the supplementary materials.

In this theorem we call a neural network FΘ generic if it
is capable of producing an arbitrary function on the shape.
An orientation-reversing self symmetry is a map that is an
intrinsic reflection such as the left-right symmetry of human
shapes, and dSi is the geodesic distance on Si.

A direct consequence of this theorem is that regardless
of the neural network used, there must be at least two pos-
sible global optima, when training the networks using the
unsupervised losses in the majority of existing works, in
common settings involving symmetric shapes.

Existing methods have primarily tried to overcome this
inherent limitation by restricting the power of the neural
network, and training it, not from the shape geometry, but
from some initial axiomatic features like the SHOT descrip-
tors [49]. Unfortunately, as it has been observed in the past,
e.g., [38, 44], and as we confirm in our extensive experi-
ments, these descriptors are highly sensitive to the triangle
mesh structure. Alternatively, some approaches [43] have
relied on pre-aligning the shapes in 3D space (and enforc-
ing a consistent forward direction) or used correspondences
in 3D space to guide learning [16]. Such an approach, while
useful for some categories, can be difficult to enforce for ar-
bitrary non-rigid 3D shapes.

Finally, several solutions to intrinsic orientation problem
have been proposed within the functional map framework.
However, most of them are descriptor-based [39, 49] which
are unreliable, and form very weak constraints: the map
does not have to be orientation preserving but instead en-
couraged to follow (possibly noisy) descriptors.

3.2. Complex Functional Maps

In this work, we propose to address the limitations men-
tioned above by exploiting the recently-proposed complex

functional map representation [12]. The fundamental ob-
servation leading to this new tool is that it is challenging
to recover orientation, a global signal, from a point-to-point
mapping giving only local information. Therefore, the con-
struction in [12] relies on global analysis of the pushforward
dφ : TM → TN associated to φ whose local properties
are related to normal orientation. By definition, a pushfor-
ward maps tangent vectors at p ∈ M to tangent vectors at
φ(p) ∈ N . dφ is also called the differential of φ and is the
best linear approximation of the map at point p.

A complex functional map Q : TM → TN is a re-
laxed representation of the pushforward in the sense that
it maps any tangent vector field on M to a tangent vector
field on N with only one constraint: it must be complex lin-
ear: Q(zX) = zQ(X), z ∈ C, X ∈ TM . The adjective
complex comes from the fact that tangent vector fields are
represented by complex valued functions as in [46].

By definition, the pushforward contains the information
of pointwise mapping (which tangent planes on N corre-
spond to tangent planes on M ) already carried by φ thus
C and Q cannot be independent. Moreover, Q also contains
local orientation information related to the orientation of the
outward normals. As shown in [12], since Q is complex lin-
ear it can only represent orientation preserving maps. These
fundamental properties have been summarized in Thm. 2
proved in [12] (Sec. 3.5).

Theorem 2. The complex-linear map Q is a pushforward if
and only if there exists an orientation-preserving and con-
formal diffeomorphism φ : M → N satisfying:

⟨X,∇(f ◦ φ)⟩TpM = ⟨Q(X),∇f⟩Tφ(p)N , (2)

for all X ∈ TM, f ∈ L2(N), p ∈ M .

Apart from this complex-linearity, the construction of
complex functional maps (which we also call Q-maps) is
analogous to standard functional maps described above.
They can be written in the spectral basis {Ψi}i∈(1,k) of
the connection Laplacian L introduced in [46]. In these re-
duced spaces, Q-maps are small matrices transferring coef-
ficients in the basis ΨM to coefficients in ΨN . A point-
to-point map is extracted from a nearly isometric Q us-
ing a nearest-neighbor search on Dirac functions: ΠMN =
NNsearch(divMΨM ,divNΨNQ) (see [12], Section 4.6).

Moreover, a pushforwad Q is isometric if and only if it
commutes with the connection Laplacian: QLM = LNQ.
Finally, as shown in Sec. 3.6 of [12] a necessary condition
for Q to represent a pushforward is that Q must be orthog-
onal i.e. Q⋆Q = I where ⋆ denotes the complex transpo-
sition. Here, unlike functional maps, orthogonality is not
equivalent to area-preservation.

A complex functional map can be estimated by minimiz-
ing a simple optimization problem, similar to Eq. (1):

QMN = argmin
Q

∥QBM −BN∥2F + Ereg(Q), (3)
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Figure 2. Overview of our unsupervised network. We extract
source and target descriptors DM and DN using DiffusionNet [44]
and then project descriptors onto the Laplace-Beltrami eigenbasis
and descriptor gradients onto the connection Laplacian eigenbasis.
This leads respectively to the Functional Map block (Section 4.2.1)
and the Complex Functional Map block (Section 4.2.2). Losses are
imposed on both of these maps (Section 4.3).

where Ereg(Q) = wQ-ortho∥Q⋆Q − I∥2F + wQ-iso∥QLM −
LNQ∥2F , and B are the coefficients of complex (tangent
vector)-valued features expressed in spectral basis of the
corresponding shape.

4. Method
In this section, we describe our proposed network in de-

tail. As mentioned in Section 3, a deep functional map
pipeline can be decomposed into three different building
blocks: the feature extractor (Sec. 4.1), the non-learnable
functional map layer (Sec. 4.2) and the loss (Sec. 4.3). We
describe our design choices for each of these components,
and how they permit orientation-aware unsupervised learn-
ing in the subsections below. We also provide a graphic
representation of our whole approach in Figure 2.

4.1. Feature Extractor

The first major component of our network is the deep
feature extractor. Its structure is that of a Siamese network
extracting features for both source and target shapes. We
use a recent surface feature extractor backbone Diffusion-
Net [44], and use the Wave Kernel Signature [2] (WKS)
as input for the network, for its rotational invariance prop-
erty. DiffusionNet then outputs feature vectors of dimen-
sion d on the source and target shapes (respectively com-
posed of nM and nN vertices). We denote by DM , DN ∈
RnM×d × RnN×d the learned source and target features.

The use of DiffusionNet [44] makes our approach highly
robust to changes in shape triangulation unlike previous un-
supervised approaches relying on SHOT descriptors [49].
These methods usually fail if trained and tested triangula-
tions are different, as demonstrated in Section 5. On the
contrary, DiffusionNet is based on robust diffusion, and is

consequently largely independent on the choice of shape tri-
angulation. Although learned diffusion is fully intrinsic, the
network is aware of the shape orientation because of ori-
ented gradient blocks, as described in [44] (Section 3.4).
Therefore, our feature extractor can produce orientation-
aware features that we use later to estimate orientation-
preserving complex functional maps.

To sum up, we use DiffusionNet jointly with WKS inputs
to build discretization-agnostic features. In the results Sec-
tion 5, we exhibit shapes with anisotropic triangulations to
illustrate that methods relying on SHOT descriptor refine-
ment tend to overfit to the triangulation rather than learn
relevant shape information.

4.2. The Functional Map Blocks

This block, first introduced in [25] estimates the func-
tional map in a differentiable way from the source and target
features estimated by the feature extractor.

4.2.1 Regularized Functional Map Block

The input features D are projected on spectral Laplace-
Beltrami eigenbasis ΦS to get spectral features AS =
Φ†

SDS with S ∈ {M,N}. The functional map CNM is
then estimated as the solution to the following least-squares
problem:

CNM = argmin
C

∥CAN −AM∥2F ,

leading to:
CNM = AMA†

N . (4)

In this work, we use the regularized approach, introduced
in [13], which incorporates the Laplacian commutativity en-
ergy ∥CNM∆N −∆MCNM∥2F in a differentiable manner,
directly in the functional map estimation step.

4.2.2 Complex Functional Map Block

The complex functional map estimation is analogous to that
of the standard functional map. We first convert the fea-
ture functions D to vector fields using the discrete gradient
operator G. We visualize these vector field descriptors in
Figure 1 (where they are rotated by π/2 to better see singu-
larities). These vector valued descriptors are then projected
in the eigenbasis Ψ of the connection Laplacian. This leads
to complex spectral feature vectors BS = Ψ†

SGSDS with
S ∈ {M,N}, and GS the gradient operator on shape S.

The complex functional map QMN is then estimated as
the solution to the following least-squares problem:

QMN = argmin
Q

∥QBM −BN∥2F ,

whose closed-form solution is given simply as:

QMN = BNB†
M . (5)



In our work, we extend the in-network Laplacian regulariza-
tion [13], and apply it to complex functional map estimation
by modifying the least squares system in the same way as
was done in [13] for real-valued functional maps.

Remark that as mentioned in Section 3.2, the complex
functional map estimated from feature gradients is a push-
forward if and only if the features themselves give rise to
an orientation-preserving map. We elaborate on the relation
between the two blocks in Section 4.3.1 below. Specifically,
we demonstrate that although C and Q are estimated inde-
pendently, they still satisfy the equation of Thm. 2.

4.3. Losses

From estimated C,Q we build a loss inspired by
SURFMNet [41].

Loss on C. SURFMNet [41] imposes the estimated func-
tional map C to be orthogonal, resulting in the first loss
Lortho:

Lortho(C) = ∥C⊤C− I∥2F (6)

Moreover, they also propose to promote isometry through
commutativity between C and the Laplace-Beltrami opera-
tors ∆M ,∆N , resulting in the second loss Liso:

Liso(C) = ∥C∆N −∆MC∥2F (7)

As stated previously, we remark that this isometric loss is
not necessary if we estimate C with the Laplacian regular-
izer of [13]. Indeed, the regularizer only produces maps that
have a low isometric loss. We therefore only use Lortho in
our implementation.

The association of these two losses is generally enough
to estimate intrinsically an isometric map. The fundamental
problem that we propose to remedy here is the fact that these
two losses are not in themselves sufficient to rule out intrin-
sic symmetries. We stress again that many previous works
rule out these symmetries based on triangulation only, us-
ing the SHOT feature extractor. However these methods are
then biased towards the training triangulations.

Loss on Q. As demonstrated in [12] (Section 3.6), a
complex functional map will only encode a pointwise map
(which will then be orientation preserving) if it is an orthog-
onal matrix. Hence the complex orthogonal loss LQ-ortho:

LQ-ortho(Q) = ∥Q⋆Q− I∥2F (8)

Moreover, since we aim for maps which are as isometric
as possible, we can also use a complex isometric loss LQ-iso,
evaluating the lack of commutativity with the connection
Laplacians:

LQ-iso(Q) = ∥QLM − LNQ∥2F (9)

We observe that this isometric loss can also be avoided
by computing Q using a Laplacian regularizer [13]. We
therefore only use LQ-ortho in our implementation.

Loss Function. In summary, we use 2 losses that we com-
bine to compute the final loss Lfinal:

Lfinal(C,Q) = worthoLortho(C) + wQ-orthoLQ-ortho(Q)

These losses, jointly with the Laplacian regularizers en-
sure that the learned descriptors result in an isometric map
and that this map is orientation-preserving. The whole
pipeline remains both light and unsupervised.

4.3.1 Correlation of the Two Functional Map Blocks

Note that we never explicitly use Eq.(10) relating C and Q
required by Theorem 2. However, we prove that when both
functional maps are nearly isometric and estimated from the
same features this relation is always verified.

Theorem 3. Let M,N be two manifolds, and FM , FN

surface features such that the functional map C estimated
from these features is an isometry. Let Q be the complex
functional map computed with the feature gradients as de-
scribed in Section 4.2.2. Then the maps (C,Q) must satisfy
Eq. (10), and C is an orientation-preserving isometry.

Proof. See the supplementary materials.

The isometric assumption is not restrictive in the sense
that deep spectral methods already implicitly make this as-
sumption. Moreover, as we demonstrate below, our ap-
proach is robust even for non-isometric shape categories.

4.4. Implementation

We implemented our method with Pytorch 1.8 (this ver-
sion is required to include complex Tensors in the differ-
entiable pipeline) by adapting the open-source implementa-
tion of DiffusionNet [44] for the feature extractor and [13]
for the functional map block with Laplacian regularizer.

We use WKS descriptors [2] as input signal for the net-
work. We use this descriptor because it is: a) Robust to
changes in the shape triangulation, and captures the intrinsic
geometry of the surface. As shown in the next section that
guarantees that the network learns relevant surface informa-
tion, rather than overfit to the mesh triangulation. b) Inde-
pendent of the embedding of the shape. This makes our ap-
proach fully rotationally invariant, and capable of predicting
correspondences between arbitrarily rotated shapes. Indeed
methods such as [15, 43] depend on pre-aligned datasets to
work, which makes them only weakly supervised instead of
fully unsupervised.

Our feature extraction network consists of 4 Diffusion-
Net blocks (a standard DiffusionNet setup [44]), where the



Meth / Data F r/F r F r/F a S r/S r S r/S a
SHOT+FMN [25] 5.8 43. 7.0 41.
WKS+GFM [13] 2.0 2.6 2.2 2.3
BCICP [39] 6.1 8.5 11. 14.
ZO [31] 6.1 8.7 7.5 15.
SHOT+UFMN [22] 5.7 42. 9.9 44.
SHOT+DS [16] 1.7 12. 2.5 10.
WKS+DS [16] 8.2 9.5 8.3 20.
WKS+Ours 2.5 3.0 2.6 2.7

Cross Training
Meth / Data S r/F r S r/F a F r/S r F r/S a
SHOT+FMN [25] 14. 43. 11. 44.
WKS+GFM [16] 9.9 8.4 3.8 3.9
SHOT+UFMN [22] 12. 44. 9.3 43.
SHOT+DS [16] 2.7 15. 5.7 16.
WKS+DS [16] 6.7 12. 9.2 21.
WKS+Ours 2.7 3.1 4.2 4.4

Table 1. Comparative results (×100) of all main baselines on
FAUST and SCAPE re-meshed and anisotropic. Deep Learning
methods are displayed with the descriptor input they were fed dur-
ing training time. The methods shown in the top group are su-
pervised, while the ones below (separated by a double line) are
axiomatic or unsupervised. Note that our approach outperforms
all unsupervised baselines without post-processing, and achieves
similar or better performance even to supervised ones.

128-dimensional input WKS features are transformed by
each block to learned features of same dimension 128, to
finally produce 128-dimensional descriptors on source and
target shape. As described in Section 4.1, our network is
applied in a Siamese way on the two input shapes, using the
same weights for feature extraction on source and target.

Parameters In addition to the architecture above, our
method has some key hyper-parameters: a) The size of both
spectral basis: we use kC = 50 for Laplace-Beltrami and
kQ = 20 for connection Laplacian b) The Laplacian reg-
ularizer from [13] in the functional map blocks: we use
λ = 10−3 as recommended in the original paper c) The loss
hyper-parameters: The loss if focused on map orthogonality
since Laplacian-commutativity is enforced previously with
the regularizers. We enforce both maps to be “equally” or-
thogonal, by setting wortho = wQ-ortho = 1.

We train our network with a batch size of 1 for a number
of epochs between 5 and 30. We use a learning rate of 10−3

with ADAM optimizer [14].

5. Results
In this section, we show that our network can outper-

form state-of-the-art deep shape matching architectures on
standard datasets like FAUST (F r) [6] and SCAPE (S r) [1]
as-well-as non-isometric datasets like SHREC’19 [30] and

Meth / Data F r/Sh r S r/Sh r Sh r/Sh r
BCICP [39] 15. 15. 15.
ZO [31] 21. 21. 21.
SHOT+DS [16] 27. 24. 24.
WKS+DS [16] 27. 29. 28.
WKS+Ours 6.4 8.4 3.9

Table 2. Comparative results (×100) on SHREC’19 re-meshed
with different train sets, including SHREC’19 re-meshed itself.
We compare unsupervised methods on this more challenging
dataset, and keep the same notations as in Table 1. We see that
our approach gives the best correspondences and their quality is
relatively stable with respect to the training set.

SMAL [53]. Following [39], all shapes are remeshed so that
they do not share the same connectivity. Moreover, we in-
troduce an anisotropic re-meshing of FAUST (denoted F a)
and SCAPE (denoted S a), generated with Mmg [10,11], to
demonstrate how some methods overfit to mesh connectiv-
ity to disambiguate between intrinsic symmetries. We show
our anisotropic remeshings in the supplementary materials.

In all our tables, we denote by F/S a method trained on
the dataset F and tested on S.

5.1. Quantitative Results

Baselines We compare our method to:

• Axiomatic methods: BCICP [39] and ZoomOut [31]
are very efficient for solving close to isometric match-
ing. It should also be noted that these axiomatic meth-
ods are slower than a test pass of our method which
does not require post-processing.

• Supervised methods: FMNet [25] (denoted as FMN)
and GeoFmaps [13] (denoted as GFM), using Diffu-
sionNet as feature extractor.

• Unsupervised methods: Unsupervised-FMNet [22]
(denoted as UFMN), and the state-of-the-art method
Deep Shells [16] (denoted as DS).

For the most relevant baselines, we compare our method,
which uses WKS descriptors, to both original networks
(trained with SHOT descriptors) and their variant when
trained with WKS as input. Consequently, we de-
note as “SHOT+Net” a Network trained with SHOT and
“WKS+Net” its variant with WKS as input.

Anisotropic FAUST and SCAPE For this experiment we
train networks on FAUST and SCAPE re-meshed as in [39],
and test them on both re-meshed and anisotropic. We report
the mean geodesic errors in Table 1.

From the results shown in Table 1, we see that: a)
Our method is robust to triangulation changes which make
SHOT-based methods fail at test time (often because they



Meth / Data SMAL r
BCICP [39] 19.
ZO [31] 35.
SHOT+DS [16] 25.
WKS+DS [16] 33.
WKS+Ours 4.8

Table 3. Comparative results (×100) on SMAL re-meshed dataset.
This animal dataset exhibits strong non-isometries, as can be seen
on the qualitative result in Figure 5, to which only our method
proves to be robust.

mistake anisotropy for meaningful geometric information).
Deep Shells [16] is the most robust SHOT-based approach,
since its feature extractor uses spectral filters which helps
filter out high-frequency overfitting. Still, the quality of the
correspondence collapses on anisotropic datasets. b) Deep
Shells, if presented with an intrinsically symmetric signal
(here WKS [2]) as input, fails to learn accurate descriptors,
resulting in overall poor correspondence. c) Our approach
gives the best results among unsupervised networks. More-
over, the quality of the correspondence is often close to that
achieved by the best supervised baseline [13].

SHREC’19 Re-meshed For this second experiment, we
train the networks respectively on FAUST, SCAPE and
SHREC’19 (denoted as F r, S r and Sh r) re-meshed so
that mesh connectivity are different and tested only on
SHREC’19. We removed shape 40 from SHREC’19 in this
experiment since it is the only partial non-closed shape and
therefore outside the scope of this method.

We show in Table 2 that Deep Shells fails to general-
ize to this test set, even though all meshes have similar
number of vertices and well-shaped meshes. In compari-
son, our method gives significantly better results, as it is
a purely geometric approach tailored to exploit surface in-
formation rather than triangulation details and to produce
well-oriented maps.

SMAL Re-meshed We test unsupervised methods on
SMAL shapes [53] (again re-meshed so that connectivity is
different on every mesh as in [39]). The dataset, originally
composed of 49 shapes, is split in 32 training shapes and
17 test shapes. This dataset constitutes the hardest of the
three experiments, since its shapes are often strongly non-
isometric. Indeed, they involve animal shapes of different
species, which often poses significant challenges for exist-
ing (especially spectral) approaches.

The results of this experiment are reported in Table 3.
Observe that our method is the only one that produces even
reasonable correspondence, significantly outperforming the
closest competitor. This highlights the significant additional
robustness ensured by our combination of an accurate fea-

Source Ground truth

Ours Deep Shells (w/SHOT) Deep Shells (w/WKS) ZoomOut (w/WKS ini) BCICP (w/WKS ini)

Figure 3. Qualitative results for baselines on the SMAL dataset.
The areas where baselines gave the most wrong predictions are
highlighted in red.

ture extractor with a range of well-founded geometric regu-
larizers, which allow our approach to accommodate even for
non-isometric shapes and learn from limited training data.

5.2. Qualitative Results

We additionally provide a qualitative result for our third
experiment in Figure 5, comparing our method with base-
lines on SMAL. We see that our method yields a map very
close to ground-truth, even on this challenging example
with strong non-isometric distortions. Meanwhile, both ax-
iomatic and learning baselines fail to predict accurate corre-
spondences. We provide another qualitative comparison in
the supplementary materials.

6. Conclusion, Limitations & Future Work
To conclude, we introduced a new fully unsupervised

way to efficiently learn accurate descriptors for shape
matching. These descriptors are guaranteed by our com-
plex functional map loss to be orientation aware in the sense
that the resulting map is orientation preserving, making the
pipeline robust to aliasing due to shape intrinsic symme-
tries. Besides, the use of DiffusionNet for a feature extrac-
tor enables robustness to changes in shape discretization.

Our approach has several limitations: the loss, which
aims at as-isometric-as-possible functional maps is depen-
dent on the fact that the input shapes are not too non-
isometric. It would therefore be interesting to use spectral
bases adapted to non-isometry, as in [28], which we leave
as future work. Another current limitation of our method
is that it needs manifold meshes as input. However, good
Laplacian operators can be built on point clouds [45], and it
would be interesting to check how robust our pipeline is to
potentially noisy point cloud inputs. Finally, we believe it
would be interesting to further leverage complex functional
maps in other learning applications, while promoting gen-
eral rotation-invariant and orientation-preserving maps.
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A. Proof of Theorem 1, 2, 3
Theorem 1. Given a set of shapes {Si} that all contain an
orientation reversing isometric self-symmetry {Ti : Si →
Si}, s.t. dSi

(xj , xk) = dSi
(Ti(xj), Ti(xk)), then a generic

neural network FΘ that is trained by any of the losses intro-
duced in [3,20,22,41,43] has at least two possible solutions
that both lead to the global optimum of the loss.

Proof. The spectral losses L defined in [3,20,22,41,43] are
fully intrinsic, thus they are invariant under shape isometric
changes i.e. L ◦ Ti = L. So, if all shapes admit an isomet-
ric self-symmetry, the solution composed with the isometry
will have the same loss value.

Theorem 2. The complex-linear map Q is a pushforward
if and only if there exists an orientation-preserving and con-
formal diffeomorphism φ : M → N satisfying:

⟨X,∇(f ◦ φ)⟩TpM = ⟨Q(X),∇f⟩Tφ(p)N , (10)

for all X ∈ TM, f ∈ L2(N), p ∈ M .

Proof. See Theorem 3.1 in [12], Section 3.5

Theorem 3. Let M,N be two manifolds, and FM , FN

surface features such that the functional map C estimated
from these features is an isometry. Let Q be the complex
functional map computed with the feature gradients as de-
scribed in the main manuscript. Then the maps (C,Q) sat-
isfy Eq. (10), and C is an orientation-preserving isometry.

Proof. By assumption the functional map C : L2(N) →
L2(M) represents the isometric map φ : M → N and ex-
actly transfers the descriptors i.e. C(FN ) = FM . Moreover
the complex functional map Q : TM → TN transfers the
gradient of the descriptors Q(∇MFM ) = ∇NFN and is
complex-linear.

To recover Eq. (10), we take the inner product of the
gradient transfer with the gradient of an arbitrary function
f : N → R:

gN
p (Q(∇MFM ),∇Nf) = gN

p (∇NFN ,∇Nf) .

This equation easily simplifies using the properties of
an isometric map: the metric is preserved by the pullback
(φ⋆gN = gM ) and the pushforward commutes with the
gradient (dφ−1 (∇Nf) = ∇MC(f)), yielding:

gN
p (Q(∇MFM ),∇Nf)

=
(
(φ⋆)

−1
gM

)
φ−1(p)

(
dφ−1 (∇NFN ) ,dφ−1 (∇Nf)

)
= gM

φ−1(p) (∇MC(FN ),∇MC(f))

So Q and C satisfy Eq. (10) for all complex-linear com-
bination of the gradient descriptors. Therefore, following

Meth / Data SMAL r
xyz input-3 axis 25.
xyz input-1 axis 5.9
nonOA-FE 34.
no Q-maps (epoch 3) 5.8
no Q-maps (epoch 15) 8.1
Ours (epoch 3) 4.8
Ours (epoch 15) 5.1

Table 4. Comparative results (×100) for the different ablations of
our method.

Thm. 2, Q is the pushforward associated to φ and C must
be orientation preserving.

B. Ablation Study
This section presents an ablation study for the most vital

components of our approach, namely: a) The input signal
fed to the network, b) The orientation-aware feature extrac-
tor, c) The orientation-aware loss. We test these ablations on
our third experiment, on the SMAL dataset [53] (see main
manuscript, Section 5.1 for more details), and to a maxi-
mum of 20 epochs. We compare these three ablations to our
approach and report the results in Table 4. The ablations are
commented in details in the sections below.

B.1. The WKS Descriptors as Input Features

As stated in the main manuscript, many unsupervised
deep learning for non-rigid 3D shape matching rely on
SHOT descriptors [49] as input signal for the neural net-
work to produce correspondences between shapes [16, 22,
41]. This descriptor is orientation-aware but very sen-
sitive to the input triangulation, resulting in overfitting
to the training triangulation as demonstrated in [13], and
also in the first experiment of the main manuscript, with
anisotropic remeshings.

Therefore we use an input descriptor that is agnostic to
the input triangulation so as to not overfit to it: the WKS
descriptor [2], which is built using the eigenvectors and
eigenvalues of the Laplace-Beltrami operator. These de-
scriptor functions (hk)k∈[1,d] are therefore fully intrinsic,
and will display the same intrinsic self-symmetries as the
shapes themselves. Namely, with the notations of Theorem
1, hk ◦ T = hk.

Another commonly used option for an input signal is the
3-dimensional extrinsic coordinates of the shape points, as
done in [13]. However, this input signal is dependent on the
shape position in space. With this input signal, the method
is no longer fully intrinsic and therefore potentially unsta-
ble to rotations of the input shapes. Consequently, the input
data needs to be centered, and augmented by adding ran-
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Figure 4. SCAPE [1] dataset remeshed in an anisotropic fashion,
used in the first experiment of the main manuscript

domly rotated poses.
For this first ablation experiment, we train our method

with this input signal (denoted as “xyz input” in Table 4)
instead of WKS descriptors. To make the experiment more
complete, we report the results with two different data aug-
mentations: a) The general case, where there is no prior
on the shapes alignment, so the data need to be augmented
with all 3D rotations (3 parameters space). We denote this
data augmentation as “3 axis” in Table 4. b) The special
case where the input shapes are all aligned to one axis, but
potentially rotated around this axis, so the data needs to be
augmented around this axis (1 parameter space). We denote
this data augmentation as “1 axis” in Table 4. We stress
the fact that this kind of prior on the shapes rigid alignment
already makes the method weakly supervised.

We see in Table 4 that even with the prior of shapes
aligned to one axis, our method is better (and more general)
when trained with WKS descriptors as an input signal.

B.2. The Orientation-aware Feature Extractor

To make our approach unsupervised, it is crucial that the
feature extractor should be orientation-aware. Indeed, since
we train on shapes exhibiting an isometric self symmetry
(the left-right symmetry present in most organic shapes), the
only way to disambiguate between left and right is through
orientation, since the symmetric map reverses this orienta-
tion. DiffusionNet [44] uses gradient features to incorpo-
rate this orientation information into potentially symmetric
inputs (e.g. WKS descriptors in our case). For this second
ablation, we propose to show that without this orientation-
aware feature extractor, the method fails to produce infor-
mative descriptors, and report the results in Table 4, on
row “nonOA-FE” (standing for non orientation-aware fea-
ture extractor).

To that end, we deactivate the gradient-based blocks of
DiffusionNet, which results in a new orientation-agnostic
feature extractor which can still produce excellent results
[44]. We then train our method using this feature extrac-
tor and WKS as input signal. We see in Table 4 that this

Source Ground truth

Ours Deep Shells (w/SHOT) Deep Shells (w/WKS) ZoomOut (w/WKS ini) BCICP (w/WKS ini)

Figure 5. Qualitative comparison to baselines on the SMAL
dataset, using texture transfer from source to target shape. Only
our method gives accurate correspondence, whereas in this chal-
lenging case baselines completely fail to predict the map.

ablation greatly impairs the method.

B.3. The Complex Functional Maps Block and the
Orientation-aware Loss

We remove the complex functional map block from the
loss by setting wQ-ortho = 0. As discussed in Theorem 1,
the resulting network is not guaranteed or encouraged to
produce orientation-preserving correspondence. We report
the result of this ablation in Table 4, on rows “no Q-maps”.

We observe that this ablation still seems to converge to
well oriented maps in this case. This may be explained
by the fact that DiffusionNet can produce non-symmetric
descriptors from symmetric inputs like WKS, using shape
orientation through gradients. Therefore, if two input
shapes are consistently oriented, the symmetric input sig-
nal will be “taken in the same direction” by DiffusionNet
gradient-based blocks. Conversely, if two shapes are non-
consistently oriented (e.g. one with inward normals, one
with outwards normals), the symmetric input will be “taken
in opposite directions”. In fact, using this remark one can
retrieve symmetrized output descriptor functions (by sym-
metrized, here we mean composited with the intrinsic sym-
metric map Ti of the shape Si) generated by DiffusionNet
from symmetric descriptors such as WKS, by simulating a
change in shape orientation (which corresponds to a con-
jugation operation on the tangent bundle structure, or more
practically to setting gradY = -gradY in DiffusionNet
gradient operator entries).

In practice, a second beneficial effect of our complex
functional map loss is the reduction of overfitting. In-
deed, in the experiment reported in Table 3 of the main
manuscript, the train set is made of 32 SMAL re-meshed
shapes and the test set is made of 17 shapes other SMAL re-
meshed shapes. Learning methods are thus liable to overfit
to their training set. We see in Table 4 (where we report
the geodesic error at epoch 3 and epoch 15 both with and
without the complex functional map layer/loss) that with-
out the complex functional map loss, the method is more



Descriptor 1 Descriptor 2

Mesh1
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Figure 6. Visualization of two different scalar descriptors learned
by our method, along with their vector valued counterparts, on 3
meshes from the SMAL dataset. Contrary to the descriptors pro-
duced by [13], these descriptors are fully intrinsic and generally
not localised. However, we see that both our scalar and vector
valued descriptors are robust to strong distortions.

prone to overfitting, as it looses generality if trained for
too many epochs. To summarize, our complex functional
map block and loss theoretically guarantee our approach to
be orientation-preserving, and in practice also improve the
pipeline stability with respect to overfitting.

C. More Quantitative Results
For completeness, we report in Figure 7 the accuracy

of our method and some baselines on the third experi-
ment we conducted in the main manuscript (trained on
32 SMAL remeshed shapes, tested on 17 other SMAL
remeshed shapes), using the evaluation protocol introduced
in [23]. We see that our method gives the best correspon-
dence quality by far, as in this case it always predicts well-
oriented maps for the test pairs (we see the tail of the error
curve quickly reaches the y = 1 line, which is equivalent to
saying most predicted correspondences are extremely close
to ground-truth).

D. More Qualitative Results
D.1. Anisotropic Remeshing

In Figure 4, we show the anisotropic remeshing of
SCAPE dataset [1], generated with Mmg [10, 11]. We use
this anosotropic remeshing in the first experiment of the
main manuscript to show that SHOT [49] based learning
methods do not generalize to unseen triangulation. Specif-
ically, we see in Figure 4 that the triangle scale is a func-
tion of the element coordinate. For the first seven shapes
of SCAPE test set, we constrain the triangle size to be de-
pendent on the position on the up axis. For the next seven
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Figure 7. Quantitative results of the different methods using the
protocol introduced in [23], on the SMAL remeshed test set (third
experiment of the main manuscript).

shapes, we constraint the triangle size to be dependent on
the position on the back-front axis. For the remaining six
shapes, we constraint the triangle size to be dependent on
the position on the left-right axis. With this remeshing, a
network overfitting to the triangulation combinatorics will
most likely fail to predict the desired map. Our method,
which is triangulation agnostic, remains almost unaltered,
as shown in the first experiment of the main manuscript.

D.2. Another Qualitative Comparison on SMAL

We report in Figure 5 a second texture transfer performed
by baselines and our method on two of the SMAL test
shapes. On this example the distortion between the two
shapes is even stronger than on the example displayed in
the main manuscript. However, our method still manages
to predict accurate correspondences, while baselines fail to
produce even a reasonable mapping in this case. Despite
the fact that our method is spectral based, we see it can still
produce accurate maps in challenging non-isometric cases.

D.3. Visualization of the Scalar & Vector Valued
Descriptors Learned by our Method

Lastly, we propose to visualize some descriptors learned
by our network, also on the SMAL dataset, in Figure 6.
Since our method also exploits the gradients of the scalar
descriptors learned by DiffusionNet, we visualize these gra-
dients (here rotated by π/2 to better make singularities
stand out) which in fact correspond to the tangent vector
field descriptors used to compute the complex functional
map. Our method enforces learned descriptors and their
gradients to correspond between source and target shapes,
which was not done in any previous work to the best of
our knowledge. Consequently, the features obtained with
our method are all the more robust, since their gradients are



also well-preserved under shape non-rigid deformation.
Indeed we notice that both the scalar-valued and the

vector-valued part of the two descriptors displayed in Fig-
ure 6 correspond well on the three chosen meshes, despite
the strong distortions involved between these shapes.
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