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A. Details on Building Affection

We build Affection by annotating images existing in the
following five datasets: MS-COCO [4], Visual-Genome [15],
Flickr30k Entities [21], Emotional-Machines [14], and the
images considered in the work of Quanzeng et al. [22].
Specifically, we begin by annotating with affective responses
all images in the latter two emotion-oriented works. We then
proceed by using the images in Quanzeng et al. to find for
each one of them its three nearest-neighbors in the image
collections of MS-COCO, Visual-Genome and Flickr30k
Entities, respectively. We include and annotate with affec-
tive responses the found neighbors, resulting in covering
additionally 22,770 images from MS-COCO, 13,202 from
Flickr30k Entities, and 16,437 from Visual-Genome.

To implement the nearest neighbor search we use the
512D embedding space formed by the output weights of the
final convolutional layer of a ResNet-32 [9], pre-trained on
ImageNet [7]. Before applying the search algorithm, we first
average pool the 7×7 spatial dimensions of the penultimate
ResNet layer (forming a 1×1×512 embedding vector per
image).

For the Visual Genome it is worth noting that we restrict
the nearest-neighbor search on its 56,506 images (out of
108,077) that are not included in COCO [4], or Flickr30k
Ent. [21], to enable the discovery of a larger number of
unique neighbors across the individual datasets. As a final
step, upon aggregating all relevant images from all corre-
sponding (five) datasets, we use “fdups” [17] to remove
possible duplicate images among them. For the final version
of Affection, we detected and removed 198 duplicates found
in this manner.

B. Analyzing Properties of Affection

In this Section, we briefly include some supplementary
analysis, similar in spirit to the one presented in Section 3 of
the main paper.

First, we count count the unique Parts-of-Speech (PoS)
that different annotators use in their explanations for the
same image (Table 1). We find that Affection has a sig-

nificantly higher average number across all PoS than other
datasets. This fact implies that our collected annotations are
both lexically more rich (main paper, Table 1), and also more
diverse than other datasets.

Dataset Nouns Pronouns Adjectives Adpositions Verbs

Affection 20.9 (3.4) 4.4 (0.7) 9.6 (1.5) 8.6 (1.3) 18.7 (3.0)
ArtEmis [2] 18.7 (3.4) 3.1 (0.6) 8.3 (1.5) 6.5 (1.2) 13.4 (2.4)
Flickr30k Ent. [32] 12.9 (2.6) 0.8 (0.2) 4.0 (0.8) 4.9 (1.0) 6.4 (1.3)
COCO [4] 10.8 (2.2) 0.6 (0.1) 3.3 (0.7) 4.5 (0.9) 4.5 (0.9)
Conceptual Capt. [25] 3.8 (3.8) 0.2 (0.2) 0.9 (0.9) 1.6 (1.6) 1.1 (1.1)
Google Refexp [19] 7.8 (2.2) 0.4 (0.1) 2.8 (0.8) 2.9 (0.8) 2.3 (0.6)

Table 1. Lexical comparison over distinct part-of-speech cate-
gories, per individual images. The shown numbers indicate unique
words per category averaged over individual images. In parentheses,
we include a normalized version accounting for discrepancies in
the number of annotators individual images might have. Evidently,
Affection’s language is lexically more diverse.

Second, we analyze how some of the key linguistic prop-
erties discussed in that main paper, are manifested in the
annotations collected for each of the five underlying im-
age datasets used to build Affection. Namely, we report the
average attained scores (computed with the same methods de-
scribed in the main paper) for the properties of concreteness,
subjectivity and use of sentimental language. As seen in Fig-
ure 1, the annotations collected based on images found in the
emotion-oriented datasets of Emotional-Machines [14] and
of Quanzeng et al., result on average in only slightly more
abstract, subjective and sentimental affective explanations
(language), compared to used images from the remaining
datasets. In other words, it appears that w.r.t. these criti-
cal characteristics of Affection, the images used across all
underlying datasets do not result in any significant discrep-
ancy among the responses they evoked (hence, ameliorating
concerns of a possible bias among them).

Third, for the above described properties, we also com-
pare Affection to ArtEmis [2] (Figure 2). As mentioned in
the main paper Affection and ArtEmis are similar in terms
of their average concreteness scores (average scores of 2.82
vs. 2.81), but also Affection contains significantly more sub-
jective and sentimental annotations (see histograms (b) and
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Figure 1. Measuring key properties of Affection across its underlying image datasets. Histograms comparing Affection in each of its
underlying image datasets along the axes of (a) Concreteness, (b) Subjectivity, and (c) Sentiment.

(c) of Figure 2, Figure 7, and Section 3.1 of main paper).

Remark on Joint Data Exploitation. Affection is built on
top of images for which rich annotations exist that are com-
plimentary to our collected affect-oriented annotations. For
instance, the images from Emotional-Machines [14] contain
Valence-Arousal measurements (see first Paragraph of Sec-
tion 2 in main paper), and the images from Quanzeng et al.
contain further categorical image-to-emotion-classification
labels. Most importantly, for FlickR30K, Visual Genome,
and COCO, descriptive captions accompany each annotated
image of Affection. We believe that a joint exploitation of
those annotations with the data in Affection offers many
promising future directions, e.g., one can imagine neural
speakers that disentangle and control the ‘objective’ parts of
our visually grounded explanations, from their more subjec-
tive/personal references.

C. Data preprocessing

For all experiments described in Section 6 of the main
manuscript, we train neural networks by using an 85%-5%-
10% train/val/test split of Affection, making sure that the
splits have no overlap in terms of their underlying images.
Moreover, we ignore explanations that contain more than 51
tokens (99-th percentile of token-length across Affection),
or those containing fewer than 5 tokens (in total these two
constraints remove ∼ 1% of all utterances). Following com-
mon practice (e.g., [2, 5, 11, 20],), we convert our captions
to lower-case, remove punctuation characters, and perform
tokenization with the NLTK toolkit [3]. We note that tokens
appearing less than twice in the training set were replaced
with a special <unk> token denoting an out-of-vocabulary
word.

D. Fine-grained Emotion Classification from a
Single Modality

As stated in Section 6 of the main paper, all auxiliary
emotion classifiers trained with Affection fail gracefully, as
in, they primarily confuse fine-grained emotion classes of the
same (positive or negative) sentiment. Here we include the
corresponding confusion matrices for the ResNet101-based
image-2-emotion classifier (Figure 3) and the LSTM-based
text-2-emotion classifier (Figure 4).

For the text-2-emotion classifiers specifically, it is worth
noting that if we binarize their output predictions for the orig-
inal 9-way posed problem along with the ground-truth labels
into positive vs. negative sentiments (ignoring the something-
else category); the LSTM-based, and the transformer-BERT-
based models, achieve 94.0%, 95.5% accuracy, respectively.

Finally, we note that for the image-2-emotion classifier
we use during training and inference, only images for which
there is a strong majority among the annotators w.r.t. the
emotions they indicated. Crucially, as stated in the main
paper, the underlying distribution of emotions when consid-
ering only such images is highly imbalanced (see Figure 8).

E. Neural Comprehension of Affective Expla-
nations

As mentioned in the first paragraph (Section 4) of the
main paper, we explore the extent to which the textual expla-
nations in Affection refer to discriminative visual elements
of their underlying images, to enable their identification
among arbitrary images.

For the corresponding CLIP-based experiments of Sec-
tion 6 we use a pretrained CLIP model with 400M parame-
ters (version ViT-B/32). During inference, we couple all
ground-truth image-caption/explanation pairs of a dataset
with a varying number of uniformly randomly chosen im-
ages from the same dataset – and upon embedding them in
CLIP’s joint visio-linguistic space we retrieve for each given



Figure 2. Comparing Affection to ArtEmis along the axes of (a) Concreteness, (b) Subjectivity, and (c) Sentiment. The histograms
presented here are analogous to those contrasting Affection to COCO in Figure 2 of the main paper.

Figure 3. Confusion matrix for a ResNet-101 pretrained im-
age2emotion 9-way classifier trained and tested with Affection’s
emotion labels. Only images and emotion labels for which there is
a unique strong majority among the dominant emotions indicated
by the annotators are used in this experiment.

Figure 4. Confusion matrix for an LSTM-based text2emotion 9-
way classifier trained and tested with Affection’s explanations.

caption the image with the largest (cosine-based) similarity.
We note that to the best of our knowledge, these compre-

hension/listening studies are the first that address the extent
to which affective language is also referential [27].
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Figure 5. Listening accuracy of a pretrained CLIP on the entire
collection of Affection and COCO as a function of the number
of distracting images used at inference time. The x-axis displays
the number of distracting images, and the y-axis the average accu-
racy of identifying the corresponding image given a ground-truth
caption from either datasets. Random guessing reflects perfor-
mance when selecting the target uniformly at random. Surprisingly,
it appears that Affection contains explanations that describe salient
visual elements regarding the image content, to enable excellent
identification of them, i.e., comparably to the performance of using
a purely objective dataset such as COCO.

As can be seen in the results of the average retrieval ac-
curacy displayed in Fig. 5, Affection’s explanations contain
significant amounts of ‘objective’ and discriminative ground-
ing details to enable excellent identification of an image
from its underlying explanation. Specifically, the average
accuracy when contrasting the ground-truth pair with a sin-
gle distracting image is in the very high nineties for both
datasets (COCO: 99.5% vs. Affection: 97.9%). Moreover,
even with as many as ten distracting images the retrieval ac-
curacy remains strong (COCO: 96.5% vs. Affection: 89.7%).
Interestingly, for either dataset, the drop in performance with
the addition of more distracting images is robust (less steep
drop than guessing uniformly at random). Finally, we note
that the training set of CLIP includes web-scale internet-
crawled data, which are expected to be closer to COCO’s
nature than to Affection’s i.e., affective explanations are pos-
sibly not as common online as descriptive image captions –



potentially explaining some of the performance gap observed
among the two datasets.

Training from scratch. Figure 9 shows the test perfor-
mance of a contrastive neural listener made by a transformer-
based language encoder coupled with a ResNet-101-based
image encoder; trained from scratch with Affection’s ex-
planations. Despite, the fact that this listener uses the ex-
plicit supervision of our annotations during training, it per-
forms on average worse than the non-finetuned CLIP-based
model [23] presented above. This fact is presumably due
to using a combination of simpler architectural components
(e.g., compared to the Vision Transformer [8] of CLIP), and
not exploiting any web-scale pre-training.

F. Neural Speakers for AEC

Below we provide additional details for our default,
emotion-grounded and pragmatic speaker variants men-
tioned in Section 4 of the main paper. It is important to
note that our adaptations for the neural speakers (i.e., using
emotion-grounding, and pragmatic-inference) are generic
and agnostic to the choice of the base/backbone model.

Default speaker backbones. Our first backbone uses the
Show-Attend-and-Tell (SAT) [31] backbone. The main
element of this backbone is an LSTM cell [10] which is
grounded with the input image and which by using Affec-
tion’s data learns to generate utterances that explain plausible
emotional reactions to it. Specifically, at each time step the
model learns to attend [33] to different parts of the image
(which is encoded by a separate ResNet-101 network), and
by combining the ‘current’ input token with the LSTM’s
hidden state, attempts to predict the ‘next’ token. The out-
put predicted token at each step is compared with the ‘next’
ground-truth token, under a cross-entropy loss using the
paradigm of Teacher-Forcing [30]. To find a good set of
model hyper-parameters (e.g. L2-weights, dropout-rate and
# of LSTM neurons) and the optimal (early) stopping epoch,
we use a held-out validation set from Affection and select
the model whose generations minimize the negative-log-
likelihood against the ground-truth.

The second backbone uses the recent SoTA transformer-
based architecture of GRIT [20]. Aside from replacing the
LSTM cell and ResNet encoder of SAT with visual and lan-
guage transformers, two noticeable differences of this back-
bone from SAT are that: i) it uses both region-based [6] and
grid-based features [13, 18] (SAT only uses the latter), ii) it
also uses self-critical training with CIDEr [29] score as the re-
ward [24] besides cross-entropy-based Teacher-Forcing [30].
The effect of these changes is a significantly boosted at-
tained score on all metrics capturing the similarity of the
output generation to the held-out ground-truth explanations,
compared to SAT as seen in Table 2 (vs. Table 2 of the

main paper). However, when comparing these tables we
also observe a noticeable deterioration of GRIT in terms of
diversity of productions. E.g., a reduced number of unique
productions, and higher Max-LCS and ClipDivCos. Despite
these discrepancies, we also notice that the general trends
and comparisons between their Default, Emo-Grounded and
pragmatic variants are similar for the two backbones. E.g.,
the Pragmatic variants in both cases maximize the diver-
sity and CLIP-Score-based metrics, and the Emo-Grounded
variants maximize the Emotional-Alignment score.

It is important to note that for all shown qualitative neural
speaking results and the results in Table 2 (and main paper,
Table 2), our neural speakers are sensitive to the choices
made during inference for i) the speaker’s (soft-max) tem-
perature, ii) the beam-size of the beam-search sampling, and
iii) the relative importance we assign between the listen-
ing vs. speaking compatibility in the pragmatic variants.
However, the trends these hyper-parameters create w.r.t. the
machine-based evaluation metrics and specifically regarding
the ‘Best Strategy’ (Table 2) one should follow to maximize
each metric, are very stable and predictable [1, 2, 28].

Specifically, during inference for all the SAT-based neu-
ral speaking variants and the results presented in the main
paper, we use beam-search with a beam size of 20 (or 5
for GRIT-based speakers) and a soft-max temperature for
the layer predicting each generated token of 0.3. For the
pragmatic variants of both backbones, the β parameter de-
scribed in Section 4 (main paper) controlling the influence
of the internal/judging listener is set to 0.25. When using
GRIT as a backbone, for its Emo-Grounded variant, we
use the public implementation of the original authors, by
slightly adapting its updated class embedding g〈cls〉 into an
9-dimensional (instead of 8-dimensional) vector, to include
also the ‘something-else’ category, using a linear projection.
During training, and following the authors’ strategy we min-
imized the summation of two loss terms, i.e., for emotion
prediction and caption generation.

Failure modes. Figure 6 displays examples of some of our
neural speakers’ characteristic (common) failure modes. The
first problem oftentimes faced by all of our speaker variants
is their inability to recognize the underlying object classes
of the depicted objects in the grounding image. Thus, their
generations might appear to ground their explanations on
objects not actually displayed, e.g., describe properties of
a male human when only females are shown. This generic
error appears in numerous captioning systems and is not
specific only to speakers trained with affective explanations.
However, this problem can be more severe in typical affec-
tive imagery since such images tend to have more subtle and
abstract semantics (e.g., pizza-like-looking wall clock, ex-
ample (A)). A second but less frequently occurring problem
that is also faced by all speaking variants is that they can
sometimes create non-sensible emotional assessments, e.g.,



a human would find it strange to describe a bicycle as being
calm (example (B)). Besides these generic problems, the
main idiosyncratic problem we observed with the emotion-
grounded variant is that it can overfocus (compared to other
variants) on language concerning the underlying emotion
while missing to ground key visual details. For instance, for
image (C), the default variant produces ‘I feel sad because
the monkey looks like he is trapped in a cage’. Finally, the
pragmatic variant, unlike the emotion-grounded one, some-
times might try too hard to use specific visual details in its
explanations, creating errors like those seen for image (D)
– for which the default variant produces ‘The zebras are
beautiful and I would love to see them in the wild’.

Emotional Turing test. As mentioned in Section 6 of the
main paper, we evaluate how likely our neural speaking vari-
ants’ output generations can be perceived as if they were
made by humans. Specifically, we first form a random sam-
ple of 500 test images and accompany each image with one
of their ground-truth, human-made explanations. We then
couple each such image/explanation with a generation made
by a neural speaker. We do this by considering all our four
speaking variants to obtain 2,000 image-caption samples
(an image paired with two explanations, a ‘neural-’ and a
‘human-’ based one). We then proceed by asking AMT anno-
tators who have never seen these sampled images to observe
them and, upon reading closely the coupled explanations,
to select one among four options indicating that: (a) both
explanations seem to have been made by humans justifying
their emotional reaction to the shown image; (b) none of the
explanations are likely to have been made by humans for that
purpose, or (c) (and (d)) to select the explanation that seems
more likely to have been made by a human. The findings
of this emotional Turing test are summarized in Figure 10.
As can seen in this figure, for all variants, more than 40%
of the time (41.4%-46.2%), both displayed utterances were
thought as if humans made them (blue bars). Moreover, and
perhaps somewhat surprisingly at first reading, in a signif-
icant fraction of the answers, the neural-based generations
were deemed more likely/fitting than the human-made ones
(green bars of the same figure). These results highlight both
the complexity of the AEC problem as well as the promising
overall quality of our neural speaker solutions, enabled by
the Affection dataset.

G. Ethical Considerations and Limitations
In this section we discuss certain considerations and limi-

tations of the Affection dataset, along with presenting a short
and final critique of methods utilizing it, including those we
proposed by this work.

First, we highlight that our corpus contains emotional ex-
planations given explicitly and only in English. Despite the
fact that we collaborate with a large number of annotators

(6,283) from different countries where English is the official
spoken language (e.g., USA, Canada, etc.); its monolinguis-
tic nature limits its universality making it more prone to
possible cultural biases of the underlying ethnic groups. Sec-
ond, sometimes images that are likely to induce an emotional
reaction can portray sensitive topics including distressing sit-
uations such as injuries, riots, etc. – or explicit and sensitive
topics such as nudes. Despite this fact, and importantly, we
stress that for our studies: a) we use images already existing
in public and widely adopted research datasets, b) we inform
and ask for explicit consent of all our annotators to acknowl-
edge the possibility of being exposed to such content, before
allowing them to participate in our study. Specifically, our
Amazon Mechanical Turk -based study requires each par-
ticipant to have an ‘Adult Content Qualification’, does not
collect any personally identifiable information for the par-
ticipants, and strictly follows all guidelines described in the
platform’s acceptable use policy [26]. Last, we point out that
an exemplar of possible misuse of Affection and methods
learning from a dataset of this nature would be using it for
finding or generating images that could induce a powerful
emotion in an individual to manipulate them without their
knowledge or consent. We do not endorse such usage and
we ask for future users and researchers working with Affec-
tion to use it responsibly per the principles indicated in Lo
Piano [16].

On the more technical side, AEC is a novel but subjective
task, and poses new challenges for the learning community
as mentioned in Sections 1 and 2 of the main paper. First,
it requires matching not a single outcome but a distribution
of outcomes (captions/explanations) to an underlying visual
input. Second, it requires having metrics to capture how
specifically an utterance’s content is expressed in the afore-
mentioned match. This is harder than typical caption quality
assessment due to the increased subjectivity and correspond-
ing variance of our underlying annotations; which makes
reference-free-like metrics like CLIPScore or ClipDIVCos
(Section 5 main paper) a promising starting direction. Third,
we point out that there is not yet an established or easy way to
capture how well an arbitrary explanation represents a justifi-
cation for an emotion in a way that is informed by both visual
and linguistic elements. Such a generic ‘reasonableness’-
like evaluation might require explicitly modeling intuition
and other forms of logic and human knowledge that are in-
trinsically hard; making human-based evaluations like our
Turing Test irreplaceable for the time being. Last, as we
progress with automating and improving different aspects of
the evaluation process, we expect the quality of the result-
ing neural-speaking models to also benefit from similarly
improved loss functions. I.e., in the future, we expect to see
neural models that incrementally approach human-level ac-
curacy and diversity that avoid mistakes like those presented
in Figure 6.



(Default speaker)

“the pizza looks so delicious and I 

 would love to eat it”

(Default speaker)

“the bike is so calm and the  

trees are so beautiful”

(Emo-grounded speaker)

“this monkey looks sad and  

I feel sad for him” 

(Pragmatic speaker)

“the two zebras in the water look  
like they are having a good time” 

(A) (B) (C) (D)

* 

Figure 6. Most common failure modes of our affective neural speakers. Left-most two examples show generic problems that all neural
variants might suffer from: e.g., misidentifying the underlying visual elements (example A) or making non-sensible emotional judgments
(example B). While the third example (C) is sensible, it highlights how an emo-grounded variant can overfocus on the underlying emotion
and miss crucial visual details (e.g., the fence). On the contrary, the pragmatic variant (example D) can overcompensate by wrongly
mentioning visual details (the default neural speaker simply mentions the zebras in this example). For more details see Section F

Metrics Speaker Variants
Default Emo-Grounded Default

(Pragmatic)
Emo-Grounded

(Pragmatic)
Best

Strategy

BLEU-1 (↑) 72.1 71.3 72.0 70.9

default architecture

BLEU-2 (↑) 41.7 39.9 41.3 39.8
BLEU-3 (↑) 24.2 22.7 23.9 22.9
BLEU-4 (↑) 14.5 13.6 14.1 13.5

METEOR (↑) 15.7 15.0 15.9 15.3
ROUGE-L (↑) 32.3 31.4 32.5 31.9

SPICE (↑) 7.9 7.2 8.2 7.6

CLIPScore (↑) 67.6 67.7 71.1 71.0 pragmaticRefCLIPScore (↑) 77.1 77.0 78.2 78.2

Unique-Productions (↑) 76.5 78.8 81.1 81.4
pragmaticMax-LCS (↓) 71.7 71.6 71.2 70.4

ClipDivCos (↓) 74.2 73.9 70.6 70.3

Similes (↓) 40.0 35.1 39.7 33.8 emo-grounded architectureEmo-Alignment (↑) 50.1 56.8 50.3 57.6

Table 2. Neural speaker machine-based evaluations with GRIT-based backbone [20]. The Default models use for grounding only the
underlying image, while the Emo-Grounded variants also input an emotion-label. Pragmatic variants use CLIP to calibrate the score of
sampled productions before selecting the final proposal.
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Figure 9. Listening accuracy of a Transformer-based language encoder coupled with a ResNet-101 image-encoder, trained con-
trastively with Affection captions from scratch.. The performance displayed is a function of the number of distractor images used at
inference time and is the average resulting from five random seeds, used when pairing the target with randomly selected distractor images.
Random guessing reflects performance when selecting the target uniformly at random. As expected, our neural listener fares significantly
better, than random guessing, and also decreases its performance when more distractor images are considered.
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Figure 10. Turing test results for our neural speaking variants. For each variant we show the percent of its evaluated explanations
that fall in one of the four categories ("both", "human", "neural" and "none") described in Section 6 of the main paper. All variants show
strong baseline performance, with a minimum aggregate success rate ("both" and "neural" bars) of 59.6% attained by the emo-grounded
variant, and a maximum rate of 65.2% attained by its (emo-grounded) pragmatic version. Note, that both pragmatic variants (two right-most
histograms) outperformed their non-pragmatic versions.



Figure 11. User interface of emotional Turing test. Upon reading the instructions (top) and observing the underlying image, each annotator
had to select among the four options shown (bottom). In this example, the second utterance (B) is made by a neural speaker, while an
annotator of Affection created the first utterance (A).
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