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Matching Enables
Information Transport
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Functional Maps as 
Information Transporters

Functions on cat are transferred to lion using Tφ Tφ is a linear operator (matrix)

from cat to lion
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The Network View:
Information Transport
Between Visual Data
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Networks of Shapes and Images
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Societies, or
Social Networks of Data Sets

Our understanding of data can greatly benefit from 
extracting these relations and building relational networks.

We can exploit the relational network to
• transport information around the network
• assess the validity of operations or interpretations of data (by checking 

consistency against related data)
• assess the quality of the relations themselves (by checking consistency 

against other relations through cycle closure, etc.)
• extract shared structure among the data

Thus the network becomes a regularizer in any form of 
joint data analysis.
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Semantic Structure Emerges 
from the Network

7[Q. Huang, F. Wang, L. Guibas, ’14]



The Operator View
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Shape Differences

9

[R. Rustamov, M. Ovsjanikov, O. Azercot, M. Ben-Chen, F. Chazal, L.G. Siggraph ’13]

vs.



Understanding Intrinsic 
Distortions

Where and how are shapes different, locally and 
globally, irrespective of their embedding
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Area distortion Conformal distortion



A Functional View of 
Distortions

To measure distortions induced by a 
map, track how inner products of 
vectors change after transporting.

To measure distortions induced by a 
map, track how inner products of  

functions change after transporting.

Riemann
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Input: Functional Map F

Functions on cat are transferred to lion using F

F is a linear operator (matrix)

from cat to lion



Output: A Shape Difference

linear operator (matrix) linear operator (matrix)
 

 

-0.50

0.00

0.50

1.00

1.50

2.00

 

 

-0.50

0.00

0.50

1.00

V – area-based shape difference R – conformal shape difference 

Also operators



The Art of Measurement
A metric is defined by a 
functional inner product

So we can compare M and N by 
comparing
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Riemann

M

FN

The functional map F
transports these functions to N, 
where we repeat this 
measurement with the inner 
product hN(F(f),F(g))



Measurement Discrepancies

after before

Both can be considered as
inner products on the cat 15



The Universal Compensator

There exists a linear operator

such that

1907 1909

Comptes Rendus Hebdomadaires des 
Séances de l'Académie des Sciences de Paris

Frigyes Riesz

Riesz Representation Theorem
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Area-Based Shape Difference: 
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A Small Example of V

18

Note that V maps functions on M
to functions on M



Conformal Shape Difference: R
Consider a different inner-product of functions ...

get information about conformal distortion

area preservation + angle preservation = isometry
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Shape Differences in 
Collections
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Intrinsic Shape Space

…

Area Conformal1 8

6457

28 29

36 37
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Area Conformal

13

4

16

1

21 24

Intrinsic Shape Space
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Comparing Differences I

…
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Localized Comparisons

supported in RoI

…

ROI

½ : M ! R

D1½ to D2½
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Exaggeration of Difference in 
RoI
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Comparing Differences II
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Analogies: D relates to C as B
relates to A

A B

C D

output

D = C + (B – A)
hands raised up
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Analogies: D relates to C as 
B relates to A

Entire 
SCAPE

D

output

…

A B

C

Input

F
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Shape Analogies
A B A

C D

B

output

C D

output
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Extrinsic Shape Differences
Shape Synthesis

30

[E. Corman, J. Solomon, M. Ben-Chen, L. J. Guibas, and M. Ovsjanikov, 2017]

Intrinsic differences of an offset surface
capture extrinsic distortions of the original surface

[Image: K. Crane]



Comparing Differences III
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Aligning Disconnected 
Collections

First Collection Second Collection
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Complete graph

… …

Complete graph

Aligning Disconnected 
Collections
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Aligning, Without
“Crossing the River”
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Comparing the differences is sometimes easier than comparing the originals



Large Networks:
Consistency of

Network Transport
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Map Networks for Related Data

36Networks of “samenesses”
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Saunders MacLane

Samuel Eilenberg

The Information is
in the Maps

Herni Cartan

A Functorial View of Data

Homological Algebra
1956



Yes, But With a Statistical 
Flavor

Yes, straight out of the playbook of homological algebra 
/ algebraic topology
But, the maps 

are not given by canonical constructions
they have to be estimated and can be noisy
the network acts as a regularizer …
commutativity still very important
imperfections of commutativity in function transport 
convey valuable information: consistency vs. 
variability – “curvature” in shape space
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Fixing Maps

39

Intermediate
object

[Q. Huang, G. Zhang, L. Gao, S. Hu, A. Bustcher, and L. Guibas, 2012]



Cycle-Consistency ≡ Low-Rank

In a map network, commutativity, path-invariance, or 
cycle-consistency are equivalent to a low rank or 
semidefiniteness condition on a big mapping matrix

Conversely, such a low-rank condition can be used to
regularize and clean up functional maps
extract shared structure

40Map processing!



Map Synchronization by 
Factorization

41



Map Synchronization

SDP formulation

Recovery guarantees

42

[Y, Chen, L. Guibas, Q. Huang, 2014]

[Q. Huang, L. Guibas, 2013]



Shared Structure 
Discovery
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Entity Extraction in Images

Task: jointly segment a set of related images
same object, different viewpoints/scales:

similar objects of the same class:

Benefits and challenges: 
Images can provide weak supervision for each other
But exactly how should they help each other? How to 
deal with clutter and irrelevant content?

[F. Wang, Q. Huang, L. G., ICCV ’13]
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Co-Segmentation via an Image 
Network

Image similarity graph based on GIST
Each edge has global image similarity       
and functional maps in both directions;
Sparse if large.
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Graph for iCoseg-Ferrari

Graph for PASCAL-Plane



Superpixel Representation

Over-segment images 
into super-pixels

Build a graph on super-
pixels

Nodes: super-pixels
Edges weighted by length 
of shared boundary
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Encoding Functions over Graphs

Basis of functional space
: First M Laplacian
eigenfunctions of the graph

Reconstruct any function with 
small error (M=30)

Binary indicator function Reconstructed function Thresholded
reconstructed function

Reconstruction error 47



Functional map:
A linear map between functions in two 
functional spaces

Can be recovered by a set of probe functions

Joint Estimation of Functional Maps, 
I
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Joint Estimation of Functional Maps, 
I

Recover functional maps by aligning image 
features:

Features (probe functions) for each super-pixel:
average RGB color, 3-dimensional;
64 dimensional RGB color histogram;
300-dimensional bag-of-visual-words.
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Joint Estimation of Functional Maps, 
II

Regularization term:

Correspond bases of similar spectra
Enforce sparsity of map

Map with regularization Map without regularization

Λi, Λj diagonal matrices
of Laplacian eigenvalues
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Joint Estimation of Functional Maps, 
III

Incorporating map cycle consistency:
A transported function along any loop should be 
identical to the original function:

Consistency term:

Image global similarity weight via 
GIST
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Joint Estimation of Functional Maps, 
III

Plato’s allegory of the cave: a 
latent space

52
X 30x30, Y 30x20



Joint Estimation of Functional Maps, 
IV

Overall optimization

Alternating optimization:
Fix Y, solve X           Independent QP problems

Fix X, solve Y            Eigenvalue problem
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Consistency Matters

54

Source
image

Target
image

Without 
cycle
consistency

With
cycle
consistency



Generating Consistent 
Segmentations

Two objectives for segmentation functions
consistent under functional map transportation

agreement with normalized cut scores:

Joint optimization: 

Easy to incorporate 
labeled images with 
ground truth segmentation

Eigen-decomposition 
problem

consistent

55

We look for network fixed points!



Experiments

iCoseg dataset
Very similar or the same object in each class;
5~10 images per class.

MSRC dataset 
Similar objects in each class;
~30 images per class.

PASCAL data set
Retrieved from PASCAL VOC 2012 challenge;
All images with the same object label;
Larger scale;
Larger variability.
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Kuettel’12 (Supervised) Unsupervised 
Fmaps

Image+transfer Full model

87.6 91.4 90.5

Class Joulin
’10

Rubio
’12

Vicente
’11

Fmaps
-uns

Alaska Bear 74.8 86.4 90.0 90.4

Red Sox Players 73.0 90.5 90.9 94.2

Stonehenge1 56.6 87.3 63.3 92.5

Stonehenge2 86.0 88.4 88.8 87.2

Liverpool FC 76.4 82.6 87.5 89.4

Ferrari 85.0 84.3 89.9 95.6

Taj Mahal 73.7 88.7 91.1 92.6

Elephants 70.1 75.0 43.1 86.7

Pandas 84.0 60.0 92.7 88.6

Kite 87.0 89.8 90.3 93.9

Kite panda 73.2 78.3 90.2 93.1

Gymnastics 90.9 87.1 91.7 90.4

Skating 82.1 76.8 77.5 78.7

Hot Balloons 85.2 89.0 90.1 90.4

Liberty Statue 90.6 91.6 93.8 96.8

Brown Bear 74.0 80.4 95.3 88.1

Average 78.9 83.5 85.4 90.5

iCoseg data set
New unsupervised method

Mostly outperforms other 
unsupervised methods
Sometimes even 
outperforms supervised 
methods
Supervised input is easily 
added and further improves 
the results

Supervised 
method
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MSRC
Unsupervised performance comparison

Supervised performance comparison

Class N Joulin
’10

Rubio
’12

Fmaps
-uns

Cow 30 81.6 80.1 89.7

Plane 30 73.8 77.0 87.3

Face 30 84.3 76.3 89.3

Cat 24 74.4 77.1 88.3

Car(front) 6 87.6 65.9 87.3

Car(back) 6 85.1 52.4 92.7

Bike 30 63.3 62.4 74.8

Class Vicente
’11

Kuettel
’12

Fmaps
-s

Cow 94.2 92.5 94.3

Plane 83.0 86.5 91.0

Car 79.6 88.8 83.1

Sheep 94.0 91.8 95.6

Bird 95.3 93.4 95.8

Cat 92.3 92.6 94.5

Dog 93.0 87.8 91.3

• PASCAL
Class N L Kuettel

’12
Fmaps

-s
Fmaps

-uns

Plane 178 88 90.7 92.1 89.4

Bus 152 78 81.6 87.1 80.7

Car 255 128 76.1 90.9 82.3

Cat 250 131 77.7 85.5 82.5

Cow 135 64 82.5 87.7 85.5

Dog 249 121 81.9 88.5 84.2

Horse 147 68 83.1 88.9 87.0

Sheep 120 63 83.9 89.6 86.5

• New method mostly 
outperforms the state-of-
the-art techniques in both 
supervised and 
unsupervised settings

58



iCoseg: 5 images per class are shown
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iCoseg: 5 images per class are shown
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iCoseg: 5 images per class are shown
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iCoseg: 5 images per class are shown
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MSRC: 5 images per class are shown
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MSRC: 5 images per class are shown
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PASCAL: 10 images per class are shown
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PASCAL: 10 images per class are shown
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PASCAL: 10 images per class are shown
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PASCAL: 10 images per class are shown
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Multi-Class Co-Segmentation

Input: 
A collection of N images sharing M objects
Each image contains a subset of the objects

Output
Discovery of what objects appear in each 
image
Their pixel-level segmentation 69

[F. Wang, Q. Huang, M. Ovsjanikov, L. G., CVPR’14]



Framework

70



Alternating between:
Continuous optimization: 

Optimal segmentation functions in each class 
Combinatorial optimization: 

Class assignment by propagating segmentation 
functions

Optimizing Segmentation Functions
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Experimental Results

Accuracy
Intersection-over-union
Find the best one-to-one matching between each 
cluster and each ground-truth object.

Benchmark datasets
MSRC: 30 images, 1 class (degenerated case);
FlickrMFC data set: 20 images, 3~6 classes
PASCAL VOC: 100~200 images, 2 classes
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Experimental Results

class N M Kim’12 Kim’11 Joulin
’10

Mukherjee
’11

Ours

Apple 20 6 40.9 32.6 24.8 25.6 46.6

Baseball 18 5 31.0 31.3 19.2 16.1 50.3

butterfly 18 8 29.8 32.4 29.5 10.7 54.7

Cheetah 20 5 32.1 40.1 50.9 41.9 62.1

Cow 20 5 35.6 43.8 25.0 27.2 38.5

Dog 20 4 34.5 35.0 32.0 30.6 53.8

Dolphin 18 3 34.0 47.4 37.2 30.1 61.2

Fishing 18 5 20.3 27.2 19.8 18.3 46.8

Gorilla 18 4 41.0 38.8 41.1 28.1 47.8

Liberty 18 4 31.5 41.2 44.6 32.1 58.2

Parrot 18 5 29.9 36.5 35.0 26.6 54.1

Stonehenge 20 5 35.3 49.3 47.0 32.6 54.6

Swan 20 3 17.1 18.4 14.3 16.3 46.5

Thinker 17 4 25.6 34.4 27.6 15.7 68.6

Average - - 31.3 36.3 32.0 25.1 53.1

73
Performance comparison on the MFCFlickr dataset

class N NCut MNcut Ours

Bike + person 248 27.3 30.5 40.1

Boat + person 260 29.3 32.6 44.6

Bottle + dining table 90 37.8 39.5 47.6

Bus + car 195 36.3 39.4 49.2

bus + person 243 38.9 41.3 55.5

Chair + dining table 134 32.3 30.8 40.3

Chair + potted plant 115 19.7 19.7 22.3

Cow + person 263 30.5 33.5 45.0

Dog + sofa 217 44.6 42.2 49.6

Horse + person 276 27.3 30.8 42.1

Potted plant + sofa 119 37.4 37.5 40.7

Performance comparison on the PASCAL-multi dataset

class N Joulin’10 Kim’11 Mukherjee’11 Ours

Bike 30 43.3 29.9 42.8 51.2

Bird 30 47.7 29.9 - 55.7

Car 30 59.7 37.1 52.5 72.9

Cat 24 31.9 24.4 5.6 65.9

Chair 30 39.6 28.7 39.4 46.5

Cow 30 52.7 33.5 26.1 68.4

Dog 30 41.8 33.0 - 55.8

Face 30 70.0 33.2 40.8 60.9

Flower 30 51.9 40.2 - 67.2

House 30 51.0 32.2 66.4 56.6

Plane 30 21.6 25.1 33.4 52.2

Sheep 30 66.3 60.8 45.7 72.2

Sign 30 58.9 43.2 - 59.1

Tree 30 67.0 61.2 55.9 62.0
Performance comparison on the MSRC dataset



Apple + picking

Baseball + kids

Butterfly + blossom
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Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pump

Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe
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Cheetah + Safari

Cow + pasture

Dog + park

Dolphin + aquarium
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Cheetah + Safari (red: cheetah; yellow: lion; magenta: monkey.)

Cow + pasture (red: black cow; green: brown cow; blue: man in blue.)

Dog + park (red: black dog; green: brown dog; blue: white dog.)

Dolphin + aquarium (red: killer whale; green: dolphin.)
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Fishing + Alaska

Gorilla + zoo

Liberty + statue

Parrot + zoo
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Fishing + Alaska (blue: man in white; green: man in gray; magenta: woman in gray; yellow: salmon.

Gorilla + zoo (blue: gorilla; yellow: brown orangutan)

Liberty + statue (blue: empire state building; green: red boat; yellow: liberty statue.)

Parrot + zoo (red: hand; green: parrot in green; blue: parrot in red.)
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Stonehenge

Swan + zoo

Thinker + Rodin
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Stonehenge (blue: cow in white; yellow: person; magenta: stonehenge.)

Swan + zoo (blue: gray swan; green: black swan.)

Thinker + Rodin (red: sculpture Thinker; green: sculpture Venus; blue: Van Gogh.)
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Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pump

Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe
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Consistent Shape Segmentation
[Q. Huang, F. Wang, L. Guibas, ’14]



First Build a Network

84

Use the D2 shape
descriptor and connect
each shape to its
nearest neighbors

distance histogram



Start From Noisy Shape 
Descriptor Correspondences

85

Lift to
functional form

Ci Di



The Pipeline
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Original shapes
with noisy maps

Cleaned up maps Consistent basis functions
extracted

Step 1 Step 2



Joint Map Optimization

Step 1: Convex low-rank recovery using 
robust PCA – we minimize over all X

Step 2: Perturb the above X to force the 
factorization

87

X? = ¸kXk? + min
X

∑

(i;j)2G

kXijCij ¡Dijk2;1

∑

1·i;j·N

kX?
ij ¡ Y +

j Yik2F + ¹
N∑

i=1

∑

1·k<l·L

(yTikyil)
2

kXk? =
∑

i ¾i(X)
trace norm

kAk2;1 =
∑

i k~aik

The Yi give us the desired latent spaces

Dual ADMM

Non-linear least squares
Gauss-Newton descent

convex!



Consistent Shape Segmentation

88Via 2nd order MRF on each shape independently 



Hierarchical Scaling

89

Multiple abstraction
levels

Route maps via
the abstractions



The Network is the 
Abstraction
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Mosaicking or SLAM
at the Level of Functions

91
robotics.ait.kyushu-u.ac.jp

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/proj4/www/gme/



The Network is the Abstraction

92

Plato’s cow



The Network is the Abstraction

93

a co-limit



Functional Maps and
Deep Nets

94



Learning for 3D Data

Category

…

Functionality

Parts

Mass

Size

Material

…

Build 3D knowledge base Design deep learning methods



An Issue of Representation



Extant Approaches

3DShapeNets by Z. Wu 
et al. CVPR 15

VoxNet by D. Maturana
et al. IEEE/RSJ 15

MVCNN by H. Su et al. 
ICCV 15

DeepPano by B. Shi et al. 
IEEE/SPL 15

Volumetric Multi-View



Most Popular Representations

Point cloud Mesh



Functional Maps in
Graph-Based Deep Nets



Synchronized Spectral CNN

100

Input: shape graph
equipped with vertex functions Output: semantic functions

[L, Yi, H. Su, LG, 2017]



The Difficulty of CNN Parameter 
Sharing on General Graphs  
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Grid General Graph

Shuman et al. 2013



Generalized Convolution via 
Graph Fourier Transform 

102

Convolution in the spatial domain

Multiplication in the spectral domain



Cross Domain Discrepancy

103

Spectral Domain 1 Spectral Domain 2

Spectral domains are
independently defined for

each shape graph

The same spectral function can 
induce very different spatial
functions on different graphs

Cross domain parameter sharing
is not valid



Different Domains Need to Be 
Synchronized

104

Canonical DomainSpectral Domain 1 Spectral Domain 2



Functional Maps for
Domain Synchronization

105

Functional Map C1 Functional Map C2



Spectral Transformer Network

106

Functional MapSpecTN



Synchronization Visualization
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Key Ideas Summary

Using spectral multiplication to replace spatial 
convolution, to allow parameter sharing at 
different locations on a shape.

Using spectral transformer network to generate 
functional maps and synchronize different 
spectral domains, so as to allow parameter 
sharing across different shapes.
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109

Forward Transform

Backward Transform

Spectral Multiplication

Synchronization

Basic Network Operations
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Network Architecture



111

IoU for part segmentation on 16 categories. Ours1 represents a variation of our framework 
without SpecTN and Ours2 corresponds to our full pipeline with SpecTN.

Application

Part Segmentation
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Application: Keypoint Prediction

Keypoint Prediction

113

Comparison with previous states via PCK curve Prediction Visualization



Application: Normal Prediction
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Deep Nets in the 
Computation of Functional 

Maps

[O. Litany, T. Remez, E. Rodolà , A. M. Bronstein, M. M. Bronstein, 2017]



Improving Functional Maps with 
Deep Nets

Goal: improve the descriptors 
used during the functional 
map computation to make the 
resulting map closer to point-
to-point

In ML, common to view a 
correspondence problem as a 
labeling problem

Fmaps can be thought of as 
soft correspondences
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Siamese Metric Learning

117



FMNet: Structured 
Correspondences with FMaps
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Correspondence Quality
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Horizontal and 
Vertical Networks

120



Open Problems on
Functional Maps
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Open Problems on
Functional Maps, I

Basis selection
Wavelets?
Replace regularizers by exact commutation?

Probe function selection and learning
Transport quality
Different maps for different functional subspaces?

Subclasses of functional maps
Point-to-point: how close? new projection algorithms?
Positive functional maps (soft maps)

Statistics on functional maps
Encoding map distributions
Maplets? 122



Open Problems on
Functional Maps, II

Network formation
Map processing and reconstruction
Latent spaces

Stability
Hierarchical and non-hierarchical structures
Map-based clustering

Use of supervision / learning
Functional maps and deep nets

Moving both vertically and horizontally
Nets that learn algebraic structure: “homomorphic descriptors”
Parametrizing the space of learning objectives
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Functoriality
Classical “vertical” view of data analysis:

Signals to symbols
from features, to parts, to semantics …

A new “horizontal” view based on peer-to-
peer signal relationships

so that semantics emerges from the network 124

Functions over 
data

Maps between 
data

Networks of 
data sets



Thank You
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