
Non-Crossing Tree Realizations of
Ordered Degree Sequences
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1 Collège de Guinette, Étampes, France
2 Inria Saclay, France

Abstract. We investigate the enumeration of non-crossing tree realiza-
tions of integer sequences, and we consider a special case in four parame-
ters, that can be seen as a four-dimensional tetrahedron that generalizes
Pascal’s triangle and the Catalan numbers. This work is motivated by
the study of ambiguities in categorial grammars.
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1 Introduction

A non-crossing tree t is a labeled tree on a sequence of vertices 〈v0, v1, . . . , vn〉
drawn in counterclockwise order on a circle, and whose edges are straight line
segments that do not cross. For any index 0 ≤ i ≤ n, let di stand for the number
of edges incident with vi (that is the degree of vi). Then as any other tree on n+1
vertices, t satisfies

∑n
i=0 di = 2n. Thus, the sequence 〈d0, d1, . . . , dn〉 defines a

composition of 2n into n+ 1 positive summands (two sequences of integers that
differ only in the order of their elements define distinct compositions of the same
integer). Stated otherwise, t is a non-crossing tree realization of the composition
〈d0, d1, . . . , dn〉.

For any composition c = 〈d0, d1, . . . , dn〉 of 2n into n+ 1 positive summands,
let nct(c) stand for the number of non-crossing tree realizations of c, that is the
number of non-crossing trees on n + 1 vertices 〈v0, v1, . . . , vn〉 such that vertex
vi has degree di for any index 0 ≤ i ≤ n (there always exists at least one, see
Proposition 2.3). We aim at computing nct. Note that here the input is more
specific than the degree partition, as for example in [5].

From Proof Nets to Non-Crossing Trees

Our interest for these non-crossing tree realizations comes from linguistics and
proof theory. The starting point for this work was the following linguistic prob-
lem: How many different readings can an ambiguous sentence at most have?
Particularly, which sentence of a given length has the most different readings?
When using categorial grammars based on the Lambek calculus [9] or related
systems, a parse tree is a formal proof in a deductive system. Thus, our ques-
tions become: How many different formal proofs can a formula have? Particu-
larly, which formula of a given length has the most different formal proofs? In
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Fig. 1: From parse trees via proof trees to proof nets

category theoretical terms these questions come down to the cardinality of the
Hom-sets in a free non-commutative star-autonomous category [2]. The corre-
sponding logic is a variant of non-commutative intuitionistic linear logic [17,8]
for which formal proofs can be represented as planar proof nets. It would go too
far beyond the scope of this paper to go into the details of this correspondence.
However, to give the reader an idea, we have shown in Figure 1 the transforma-
tion of a parse tree into a proof net. The first step transforms the parse tree into
a formal proof according to Lambek’s work [9]. In the second step, this proof is
embedded into a one-sided multiple conclusion system using the binary connec-
tives O and � [17]. In order not to lose the information on positive and negative
positions in the formulas we use polarities (see, e.g., [8] for details). The final
three steps show how this one-sided sequent proof is translated into a proof net
by simply drawing the flow graph on the atoms appearing in the proof (for more
details, see [8,3,15]). It is a well-known fact of linear logic that such a graph G
does indeed correspond to a sequent proof if and only if every switching (that is,
every graph obtained from G by removing for each O-node one of the two edges
that it to its children) is a connected and acyclic graph [4]. If G does not contain
any O-nodes, as in our example, then G itself has to be connected and acyclic.
Furthermore, we have that G is planar if and only if the sequent proof does not
contain the exchange rule, as it is the case for the Lambek calculus [17].
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Fig. 2: Planar O-free proof nets as non-crossing trees

To summarize, a sentence corresponds to a sequent, and a parsing of the
sentence to a planar proof net for the sequent. Thus, our question of how many
readings does a sentence have becomes:

(i) How many different planar proof nets can at most be defined over a given
sequent?

Particularly, if we are interested in sentences that are as ambiguous as possible
we have to ask:

(ii) Over which sequent of a given length can the most different planar proof
nets be defined?

In that respect, we can ignore the names of the atoms, and only O-free sequents
are of interest: on the one hand, occurrences of O lying above an occurrence of
� can moved down by the transformations

A B

O C

⊗
→ A

B C

⊗
O

and A

B C

O
⊗

→
A B

⊗ C

O

which preserve correctness without affecting linkings (see [6,7]); on the other
hand, root occurrences of O are irrelevant and can be removed. Hence, for every
sequent Γ there is a O-free sequent Γ ′, such that for Γ ′ exist at least as many
different planar proof nets as for Γ .

Finally, up to the associativity of �, planar O-free proof nets are in bijection
with non-crossing trees as shown in Figure 2.

Unfortunately, we were not able to find a closed formula for nct〈d0, d1, . . . , dn〉
depending only on the input composition 〈d0, d1, . . . , dn〉, which would be needed
to give a clear answer to Question (i) above. When investigating Question (ii),
we found through experiments that at least up to n = 25, nct is maximized for
compositions of the shape

1, 2, 2, . . . , 2︸ ︷︷ ︸
p summands

, 1, 3, 1, 3, . . . , 1, 3︸ ︷︷ ︸
2q summands

, 1, 2, 2, . . . , 2︸ ︷︷ ︸
r summands

, 1, 3, 1, 3, . . . , 1, 3︸ ︷︷ ︸
2s summands

(1)

which we write as 12p(13)q12r(13)s and are the first step of our study (composi-
tions maximizing nct for higher values of n may be of a different shape or involve
summands higher then 3). The input is now reduced to four parameters p, q, r
and s such that n+ 1 = 1 + p+ 2q+ 1 + r+ 2s. We write nct〈12p(13)q12r(13)s〉
as Np,q,r,s, and we are interested in computing Np,q,r,s.
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A Four-Dimensional Generalization of Pascal’s and Catalan’s
Triangles

Recall that Pascal’s triangle Pp,r =
(
p+r
p,r

)
can be generated recursively by:

Pp,r =

{
1 if p = 0 or r = 0

Pp,r−1 + Pp−1,r if p > 0 and r > 0
(2)

The first few values are shown below (see [14, A007318]):

r

��
p

�� 1
1

1
1

1
1

1

1
2

3
4

5
6

1
3

6
10

15

1
4

10
20

1
5

15
1

61

(3)

The Catalan numbers Cq = 1
q+1

(
2q
q,q

)
are generated recursively by C0 = 1 and

Cq+1 =
∑q

j=0 Cj ·Cq−j . A combination of Pascal’s triangle and the Catalan num-

bers is known as Catalan’s triangle Qp,q = p+1
p+q+1

(
p+2q
p+q,q

)
which can be generated

recursively by:

Qp,q =


1 if q = 0

Cq if p = 0

Qp+1,q−1 +Qp−1,q if p, q > 0

(4)

The first few values are shown below (see [14, A009766]):

q

��
p

�� 1
1

2
5

14
42

132

1
2

5
14

42
132

1
3

9
28

90

1
4

14
48

1
5

20
1

61

(5)

It is also possible to generalize the recursive formula of the Catalan numbers
into a triangle Rq,s generated by (assuming that C−1 = 0):

Rq,s =

{
1 if q = s = 0∑q

j=0

∑s
l=0 Cj+l−1 ·Rq−j,s−l if q + s > 0

(6)

http://www.research.att.com/~njas/sequences/A007318
http://www.research.att.com/~njas/sequences/A009766
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The first few values are shown below:

s

��
q

�� 1
1

2
5

14
42

132

1
3

9
28

90
297

2
9

34
123

440

5
28

123
497

14
90

440
42

297132

(7)

As an example,

R3,2 = 123

= C0 · (28 + 34) + C1 · (5 + 9 + 9) + C2 · (2 + 3 + 2) + C3 · (1 + 1) + C4 · 1

We shall establish that Np,q,r,s is a four-dimensional “tetrahedron” that gener-
alizes the three triangles P , Q and R above, insofar as:

Np,0,r,0 = Nr,0,p,0 = Pp,r, (8)

Np,q,0,0 = N0,0,p,q = Qp,q, (9)

N0,q,0,s = N0,s,0,q = Rq,s. (10)

Outline

The organization of this paper is as follows: First, in Section 2, we study the gen-
eral case of enumerating non-crossing tree realizations of integer compositions.
Then, in Sections 3–7, we concentrate on the four-parameter case. In particular,
we will prove identities (8)–(10) in Sections 4 and 5. Finally, we will provide the
generating function for Np,q,r,s in Section 7.

Missing proofs can be found in the technical report [10].

2 General Case

Any labeled tree on a sequence of vertices can be drawn in such a way that its
vertices lie in counterclockwise order on a circle and its edges are straight line
segments lying inside that circle. In that case, of course, some of its edges may
cross each other. Let us call such a labeled tree a crossing tree. The order of
summands in a composition does not matter regarding the number of its labeled
tree realizations (there are six for any composition of 2 · 4 into 4 + 1 summands
in the multiset {1, 1, 2, 2, 2}). But it does as soon as we distinguish between non-
crossing and crossing realizations. As an example, there are one non-crossing
and five crossing realizations of 〈1, 1, 2, 2, 2〉, while there are three non-crossing
and three crossing realizations of 〈1, 2, 1, 2, 2〉 (these are shown on Figure 3).
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Fig. 3: The six labeled tree realizations of 〈1, 2, 1, 2, 2〉

Remark 2.1 A proof of Cayley’s formula (see e.g., [1]), which asserts that the
number of labeled trees on n+ 1 vertices is (n+ 1)n−1 (see [14, A000272]) relies
on: ∑

〈d0,d1,...,dn〉

(
n− 1

d0 − 1, d1 − 1, . . . , dn − 1

)
= (n+ 1)n−1 (11)

where the sum ranges over the
(
2n−1
n,n−1

)
compositions of 2n into n + 1 posi-

tive summands. Noy established in [11, Corollary 1.2] that the number of non-
crossing trees on n + 1 vertices is 1

2n+1

(
3n

2n,n

)
(see [14, A001764]).) Recall that

nct〈d0, d1, . . . , dn〉 stands for the number of non-crossing tree realizations of the
composition nct〈d0, d1, . . . , dn〉. Then∑

〈d0,d1,...,dn〉

nct〈d0, d1, . . . , dn〉 =
1

2n+ 1

(
3n

2n, n

)
(12)

where the sum ranges over the
(
2n−1
n,n−1

)
compositions of 2n into n + 1 positive

summands.

The image under rotation of a non-crossing tree t on vertices 〈v0, v1, . . . , vn〉
is a non-crossing tree on vertices 〈vk+1, . . . , vn, v0, . . . , vk〉 for some k ≤ n.
Moreover, t realizes a composition 〈d0, d1, . . . , dn〉 iff its image under rotation
realizes the composition 〈dk+1, . . . , dn, d0, . . . , dk〉. Thus, for any composition
〈d0, d1, . . . , dn〉 and any k ≤ n,

nct〈d0, d1, . . . , dn〉 = nct
〈
dk+1, . . . , dn, d0, . . . , dk

〉
. (13)

We shall refer to this property as stability under rotation.3

In the same way, the mirror image of a non-crossing tree t on vertices
〈v0, v1, . . . , vn〉 is a non-crossing tree on vertices 〈vn, vn−1, . . . , v0〉, and t re-
alizes a composition 〈d0, d1, . . . , dn〉 iff its mirror image realizes the composition
〈dn, dn−1, . . . , d0〉. Thus, for any composition 〈d0, d1, . . . , dn〉,

nct〈d0, d1, . . . , dn〉 = nct〈dn, dn−1, . . . , d0〉 . (14)

3 In that respect, we may focus on necklace-compositions, i.e., compositions that are
lexicographically minimal under rotation [13].

http://www.research.att.com/~njas/sequences/A000272
http://www.research.att.com/~njas/sequences/A001764


Non-Crossing Tree Realizations of Ordered Degree Sequences 7

We shall refer to this property as stability under mirror image.4

We will now establish that for any positive integer n and any composition c
of 2n into n+ 1 positive summands, there exists a non-crossing tree realization
of c (Proposition 2.3).

Lemma 2.2 For any positive integer n and any sequence 〈1, d1, . . . , dn, dn+1〉
of n + 2 positive integers such that 1 +

∑n+1
i=1 di < 2(n + 1), there is an index

1 ≤ k < n+ 1 such that 1 +
∑k

i=1 di = 2k.

Proof For any index 1 ≤ l ≤ n+ 1, let Sl stand for 1 +
∑l

i=1 di. We prove the
following implication by induction on l: if there is no index 1 ≤ k < l such that
Sk = 2k, then Sl ≥ 2l. Since by hypothesis Sn+1 < 2(n+ 1), there must exist an
index 1 ≤ k < n+ 1 such that Sk = 2k.

Base. Since d1 ≥ 1, S1 = 1 +d1 ≥ 2 ·1 and the stated implication holds trivially.

Induction. Assume that the stated implication holds for l (IH), and that there
exists no index 1 ≤ k < l + 1 such that Sk = 2k. We reformulate the latter
hypothesis as: (i) there exists no index 1 ≤ k < l such that Sk = 2k, and (ii)
Sl 6= 2l. By (IH) we get from (i), that Sl ≥ 2l, and from (ii), that Sl > 2l, i.e.,
Sl ≥ 2l + 1. Since dl+1 ≥ 1, Sl+1 = Sl + dl+1 ≥ 2(l + 1). ut

Proposition 2.3 For any positive integer n and any composition c of 2n into
n+ 1 positive summands, there exists a non-crossing tree realization of c.

Proof We proceed by induction on n.

Base. The unique composition 〈1, 1〉 of 2 · 1 into 1 + 1 positive summands is
realized by the unique (trivially non-crossing) tree on 1 + 1 vertices.

Induction. Assume that the stated property holds for any positive integer up to
n (IH), and let 〈d0, d1, . . . , dn+1〉 be a composition of 2(n+ 1) into n+ 2 positive
summands. Since n is a positive integer, 2(n + 1) > n + 2 and there must
exist at least one summand dk > 1. By stability under rotation, we can assume
without loss of generality that d0 is such a summand, i.e. that d0 > 1. Then
1 +

∑n+1
i=1 di < 2(n+ 1) and by Lemma 2.2, there exists an index 1 ≤ k < n+ 1

such that 1 +
∑k

i=1 di = 2k. By difference, (d0 − 1) +
∑n+1

i=k+1 di = 2(n− k+ 1).
Then by (IH):

– there exists a non-crossing tree on vertices 〈t0, t1, . . . , tk〉 realizing the com-
position 〈1, d1, . . . , dk〉 of 2k into k + 1 positive summands,

– there exists a non-crossing tree on vertices 〈u0, u1, . . . , un−k+1〉 realizing the
composition 〈d0 − 1, dk+1, . . . , dn+1〉 of 2(n− k + 1) into n− k + 2 positive
summands.

Let T and U stand for the respective edge sets of these non-crossing trees (where
edges are defined as couples of vertices). We “merge” t0 and u0 into a single

4 In that respect, we may focus on bracelet-compositions, i.e., necklace-compositions
that are lexicographically minimal under mirror image [12].
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vertex v0 to get a tree on vertices 〈v0, v1, . . . , vn+1〉 which edge set is defined as{
{vi, vj} | {ti, tj} ∈ T

}
∪
{
{v0, vj+k} | {u0, uj} ∈ U

}
∪
{
{vi+k, vj+k} | {ui, uj} ∈ U, i > 0, j > 0

} (15)

This tree is non-crossing and it realizes the composition 〈d0, d1, . . . , dn, dn+1〉 of
2(n+ 1) into n+ 2 positive summands (see Figure 4 for an example). ut

t0t1

t2

u0

u1

u2

u3

→
v0

→

v0

v1

v2

v3

v4

v5

(16)

Fig. 4: Merging two non-crossing trees into a single one

The previous proof suggests a recursive definition of nct:
– The unique composition 〈1, 1〉 of 2 ·1 into 1+1 positive summands is realized

by the unique non-crossing tree on 1 + 1 vertices. Thus,

nct〈1, 1〉 = 1. (17)

– Let n be strictly greater than 1 and 〈d0, d1, . . . , dn〉 be a composition of 2n
into n+ 1 positive summands. Let k be the smallest index such that dk > 1
(there exists at least one). By stability under rotation,

nct〈1, . . . , 1, dk, . . . , dn〉 = nct〈dk, . . . , dn, 1, . . . , 1〉. (18)

Thus we can assume that d0 > 1. In that case,

nct〈d0, d1, . . . , dn〉 =
∑
k

(
nct〈1, d1, . . . , dk〉 · nct〈d0 − 1, dk+1, . . . , dn〉

)
(19)

where the sum ranges over the set of indices 1 ≤ k < n such that 1 +∑k
i=1 di = 2k (there exists at least one).

Remark 2.4 Applying the recursive formula in a row to d0, d0−1, . . . , 1, we get

nct〈d0, d1, . . . , dn〉 =
∑

〈k0,...,kd0
〉

d0∏
j=1

nct〈1, dkj−1+1, . . . , dkj
〉 (20)

where the sum ranges over the set of sequences 〈k0, . . . , kd0〉 of d0 + 1 indices
such that 0 = k0 < · · · < kd0

= n and such that for all 0 < j ≤ d0,

1 +

kj∑
i=kj−1+1

di = 2(kj − kj−1). (21)
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Remark 2.5 The construction in the proof of Proposion 2.3 is similar to the
proof of the sequentialization theorem of linear logic using the splitting tensor.
It is then easy to see that every non-crossing tree can be obtained this way as a
merging of smaller ones, as indicated in Figure 4. However, it is not clear how
this insight can be used for counting non-crossing trees since there is no unique
decomposion for a given tree.

3 The Four Parameters Case

We focus now on the special case where compositions 〈d0, d1, . . . , dn〉 are of the
shape

1, 2, 2, . . . , 2︸ ︷︷ ︸
p

, 1, 3, 1, 3, . . . , 1, 3︸ ︷︷ ︸
2q

, 1, 2, 2, . . . , 2︸ ︷︷ ︸
r

, 1, 3, 1, 3, . . . , 1, 3︸ ︷︷ ︸
2s

(22)

which we write as 12p(13)q12r(13)s. For the following, recall that Np,q,r,s stands
for nct〈12p(13)q12r(13)s〉.

Lemma 3.1 For any p, q, r and s, Np,q,r,s = Nr,q,p,s = Np,s,r,q.

Proof This follows from stability under rotation and mirror image. We give
the formal calculations here in full, because we use similar arguments later on
without showing them explicit.

Np,q,r,s = nct〈12p(13)q12r(13)s〉 by definition of N

= nct〈2p(13)q12r(13)s1〉 by stability under rotation

= nct〈2p1(31)q2r1(31)s〉 by reparenthesizing

= nct〈(13)s12r(13)q12p〉 by stability under mirror image

= nct〈12r(13)q12p(13)s〉 by stability under rotation

= Nr,q,p,s by definition of N .

The same way, Np,q,r,s = Np,s,r,q. ut

According to Lemma 3.1, so as to get a recursive definition of Np,q,r,s, we
need to consider only N0,0,0,0 on the one hand, Np+1,q,r,s and Np,q,r,s+1 on the
other hand.
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Proposition 3.2 For any p, q, r and s,

N0,0,0,0 = 1 (23)

Np+1,q,r,s = N0,0,0,0 ·Np,q,r,s +

q∑
j=1

(
N0,j,0,0 ·Np,q−j,r,s

)
+

r∑
k=1

(
N0,q,k,0 ·Np,0,r−k,s

)
+

s∑
l=1

(
N0,q,r,l ·Np,0,0,s−l

) (24)

Np,q,r,s+1 = N0,0,0,0 ·N1+p,q,r,s +

p∑
i=1

(
Ni,0,0,0 ·N1+p−i,q,r,s

)
+

q∑
j=1

(
Np,j,0,0 ·N1,q−j,r,s

) (25)

Proof We haveN0,0,0,0 = nct〈120(13)0120(13)0〉 = 1 by definition ofN and (17).
Next we have Np+1,q,r,s = nct〈12p2(13)q12r(13)s〉 = nct〈21(31)q2r(13)s12p〉 by
definition of N , reparenthesizing and stability under rotation. Applying (19) we
get

Np+1,q,r,s = nct〈11〉 · nct〈1(31)q2r(13)s12p〉
+
∑q

j=1

(
nct〈11(31)j〉 · nct〈1(31)q−j2r(13)s12p〉

)
+
∑r

k=1

(
nct〈11(31)q2k〉 · nct〈12r−k(13)s12p〉

)
+
∑s

l=1

(
nct〈11(31)q2r(13)l〉 · nct〈1(13)s−l12p〉

)
.

Notice that there is no other way to “split” 〈21(31)q2r(13)s12p〉 into two com-
positions such that the first one is of the form 〈1, d1, . . . , dk〉 and satisfies 1 +∑k

i=1di = 2k. Then we get (24) by reparenthesizing and stability under rotation.
A similar argument applies to the proof of (25). ut

We have the following immediate consequences.

Corollary 3.3 For any p and s,

Np,0,0,0 = 1 (26)

N0,0,0,s = Cs (27)

N0,0,r,s+1 = N1,0,r,s (28)

where Cs stands for the s-th Catalan number.

Proof Both (26) and (27) are easily proved by induction, and (28) follows
from (25) and (26). ut
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4 Pascal’s & Catalan’s Triangles

In this section we are going to establish identities (8) and (9) mentioned in the
introduction. First, recall Pascal’s second identity

b∑
k=0

(
a+ k

a, k

)
=

(
a+ 1 + b

a+ 1, b

)
(29)

and as a consequence for all a, b, and c

b∑
k=c+1

(
a+ k

a, k

)
=

(
a+ 1 + b

a+ 1, b

)
−
(
a+ 1 + c

a+ 1, c

)
. (30)

Proposition 4.1 For all p, r and s,

Np,0,r,0 =

(
p+ r

p, r

)
= Pp,r (31)

Np,0,0,s =

(
p+ 2s

p+ s, s

)
− s

p+ s+ 1

(
p+ 2s

p+ s, s

)
(32)

=
p+ 1

p+ s+ 1

(
p+ 2s

p+ s, s

)
= Qp,s (33)

Np,0,r,s =

(
p+ r + 2s

p+ s, r + s

)
− s

p+ r + s+ 1

(
p+ r + 2s

p+ r + s, s

)
(34)

A proof can be found in [10]. The triangles defined by Np,0,r,0 and Np,0,0,s

are known as Pascal ’s triangle and Catalan’s triangle respectively (A007318,
A009766).

Remark 4.2 We may have deduced (27) from (34). Indeed, by (34)

N0,0,0,s =

(
2s

s, s

)
− s

s+ 1

(
2s

s, s

)
=

1

s+ 1

(
2s

s, s

)
= Cs

5 A Triangular Catalan Recurrence

In this section we establish the identity (10) from the introduction. We need the
following lemma:

Lemma 5.1 For any t and u,

t∑
i=0

u∑
j=0

Ci · Cj · C(t−i)+(u−j) = Ct+u+1. (35)

http://www.research.att.com/~njas/sequences/A007318
http://www.research.att.com/~njas/sequences/A009766
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Proof By induction on u (the base case is the usual recurrence for Catalan
numbers). ut

Proposition 5.2 (A recurrence for N0,q,0,s) For any q and s,

N1,q,0,s =

q∑
j=0

s∑
l=0

Cj+l ·N0,q−j,0,s−l (36)

N2,q,0,s =

q∑
j=0

s∑
l=0

Cj · Cl ·N1,q−j,0,s−l (37)

=

q∑
j=0

s∑
l=0

Cj+l+1 ·N0,q−j,0,s−l (38)

N0,q+1,0,s+1 = N1,q+1,0,s +N1,q,0,s+1 −N2,q,0,s (39)

N0,q,0,s =

{
1 if q = s = 0∑q

j=0

∑s
l=0 Cj+l−1 ·N0,q−j,0,s−l if q + s > 0

(40)

Hence N0,q,0,s = Rq,s.

6 Triangles and Tetrahedra

The value of Np,q,r,s depends on four parameters p, q, r, s. If we fix two of them,
we can obtain triangles. For example, for q = s = 0 we get Pascal’s triangle (3),
and for r = s = 0 we get the Catalan triangle (5) (which should more precisely be
called Pascal-Catalan triangle). If we let p = r = 0, then we get the triangle (7),
which could also be called Catalan triangle.

If we fix only one parameter, we obtain a tetrahedron. For example, let s = 0,
and let us define Tp,q,r = Np,q,r,0. Then we get from (34) and Lemma 3.1:

Tp,q,r =

(
p+ r + 2q

p+ q, r + q

)
− q

p+ r + q + 1

(
p+ r + 2q

p+ r + q, q

)
(41)

This defines a tetrahedron where one side is Pascal’s triangle and the other two
sides are the Catalan triangle. Thus we can call it the Pascal-Catalan tetrahedron.
We have the following recursive identities:

Proposition 6.1 For all p, q, and r, we have

Tp+1,q+1,r+1 = Tp+1,q+1,r + Tp,q+1,r+1 + T(p+1)+(r+1),q,0 (42)

Tp+1,q,r+1 = Tp,q+1,r + T(p+1)+(r+1),q,0 (43)

Tp+1,q+1,r = Tp+2,q,r + Tp,q+1,r (44)

Proof Easy calculation using (41). ut
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For r = 0, we get the tetrahedron Vp,q,s = Np,q,0,s, which we can call the
Catalan tetrahedron, because two of its sides are the Catalan triangle (5) and
the third side is the new Catalan triangle (7). Unfortunately, we could not find
a closed formula for Vp,q,s. However, in Section 7 we will give the generating
function. We also have the following:

Proposition 6.2 For all p, q, and s, we have:

p+2∑
i=2

Vi,q,s =

q∑
j=0

Cj · Vp,q+1−j,s (45)

Observe that identities (42)–(44) establish close relationships among the tri-
angles with s = 0 (or q = 0), i.e., the triangles that live inside the tetrahe-
dron Tp,q,r. For example, from (43) we can getNp+1,q,7,0 = Np,q+1,6,0+Np+8,q,0,0.

Below, we exhibit some identities between triangles where q 6= 0 and s 6= 0.

N1,q,1,s = N0,q,0,s+1 +N0,q+1,0,s (46)

N1,q,2,s = N0,q+1,0,s+1 (47)

N1,q+1,2,s+1 = N2,q,2,s +N1,q,1,s+2 +N1,q+2,1,s (48)

N1,q+1,0,s+1 = N0,q+1,0,s+1 +N3,q,1,s (49)

N1,q+1,1,s+1 = N2,q+1,0,s+1 +N2,q,0,s (50)

Np,q,0,1 =

p+2∑
i=2

Ni,q,0,0 (51)

They can all be proved by using Lemma 3.1, (24) and (25) by easy but tedious
calculations.

Now we can derive another recurrence for the triangle in (7), i.e., different
from the one given in (6):

Proposition 6.3 For all q and s, we have

Rq,s+2 =

q∑
j=0

Cj+1 ·
(
Rq−j,s+1 +Rq+1−j,s

)
(52)

To see an example for (52) consider again the triangle (7):

s

��
q

�� 1
1

2
5

14
42

132

1
3

9
28

90
297

2
9

34
123

440

5
28

123
497

14
90

440
42

297132

(53)

We have 123 = C1 · (28 + 34) + C2 · (9 + 9) + C3 · (3 + 2).
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Remark 6.4 In the next section we will make use of the following identity:

N2,q,0,s =

q∑
j=0

N0,j,0,0 ·N0,q+1−j,0,s =

s∑
l=0

N0,0,0,l ·N0,q,0,s+1−l (54)

It is a special case of (45), but it can also be shown directly: By (37), we have

N2,q,0,s =

q∑
j=0

s∑
l=0

Cj · Cl ·N1,q−j,0,s−l

Then (54) follows immediately by (25) and (27).

In the remainder of this section we derive a closed formula for the tetrahedron
s = 1. We need the following observation:

Lemma 6.5 For any p, r, s and t,

Np,0,r,s+t +Np+r+t,0,t,s = Np+t,0,r+t,s +Np+r,0,0,s+t (55)

Proof Easy calculation, using (34). ut

For any t and n, let Ut(n) be defined as

Ut(n) =
1

t+ 2n

(
t+ 2n

t+ n, n

)
. (56)

Notice that for any t,

tUt(0) =
t

t

(
t

t, 0

)
= 1. (57)

The following two identities are called Rothe’s identities (see [16, identities 14–
15, p. 329]).

n∑
k=0

Ut(k) · Uu(n− k) =
t+ u

tu
Ut+u(n) (58)

and

n∑
k=0

kUt(k) · Uu(n− k) =
n

u
Ut+u(n). (59)

As a consequence, we get

n∑
k=0

(t+ k)Ut(k) · uUu(n− k) = (t+ u+ n)Ut+u(n) . (60)
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Lemma 6.6 For any p, r and s,

Np,0,r,s = (p+ s+ 1)Up−r+1(r + s)− sUp+r+1(s) (61)

Np,0,0,s = (p+ 1)Up+1(s) (62)

Proof The identity (61) follows immediately from (34) and (56). The iden-
tity (62) is a special case of (61). ut

Lemma 6.7 For any p, r, s and t,

s∑
l=0

Np,0,r,l ·Nt,0,0,s−l = Np+t+1,0,r,s

−
r−1∑
l=0

(p− r + 1 + l)Up−r+1(l) · (t+ 1)Ut+1(r + s− l)
(63)

Now we can give a closed formula for the Np,q,r,1 tetrahedron.

Proposition 6.8 For all p, q and r,

Np,q,r,1 = Tp,q+1,r + Tp+r+1,q+1,0 − T0,q+1,r − Tp,q+1,0 (64)

= Tp+1,q,r+1 + Tp+r,q,1 − T1,q,r − Tp,q,1 (65)

7 Generating Functions

We can use the identities (24) and (54) for calculating the generating function
for Np,q,r,s. Recall that we use the following abbreviations:

Pp,r = Np,0,r,0 Cq = N0,q,0,0

Qp,q = Np,q,0,0 Tp,q,r = Np,q,r,0

Rq,s = N0,q,0,s Vp,q,s = Np,q,0,s

(66)

Theorem 7.1 We have

(i) C(y) =
∑
q

Cqy
q =

1−
√

1− 4y

2y

(ii) P (x, z) =
∑
p,r

Pp,rx
pzr =

1

1− x− z

(iii) Q(x, y) =
∑
p,q

Qp,qx
pyq =

C(y)

1− x · C(y)

(iv) R(y, w) =
∑
q,s

Rq,sy
qws =

C(y) · C(w) · (w − y)

w · C(y)− y · C(w)

(v) T (x, y, z) =
∑
p,q,r

Tp,q,rx
pyqzr =

(1− x− z − x · z · C(y)) · C(y)

(1− x · C(y)) · (1− z · C(y)) · (1− x− z)

= P (x, z) ·
(
1 + y ·Q(x, y) ·Q(z, y)

)
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(vi) V (x, z, w) =
∑

p,q,s Vp,q,sx
pyqws

=
C(y) · C(w) ·

(
w − y − x ·

(
w · C(y)− y · C(w)

))(
w · C(y)− y · C(w)

)
·
(
1− x · C(y)

)
·
(
1− x · C(w)

)
= Q(x, y) ·Q(x,w) ·

(
R(y, w)

C(y) · C(w)
− x
)

(vii) N(x, y, z, w) =
∑

p,q,r,s

Np,q,r,sx
pyqzrws

=
C(y)C(w)((1− x− z)(w − y) + (wC(y)− yC(w))((1− x− z)(xz(C(y) + C(w))− x− z) + x2z2C(y)C(w)))

(1− xC(y))(1− xC(w))(1− zC(y))(1− zC(w))(1− x− z)(wC(y)− yC(w))

= Q(x, y)Q(x, y)Q(x, y)Q(x, y)

(
R(y, w)

C(y)2 · C(w)2
+ x2z2P (x, z)− x

C(w)Q(z, y)
− z

C(y)Q(x,w)

)

Proof The formulas in (i) and (ii) are well-known. For the others, the calculation
can be found in [10]. ut
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