
Under consideration for publication in Math. Struct. in Comp. Science

Proof nets and semi-⋆-autonomous categories

Willem Heijltjes1 and Lutz Straßburger2

1 Department of Computer Science, University of Bath
Claverton Down, Bath BA2 7AY, United Kingdom.
w.b.heijltjes@bath.ac.uk

2 Laboratoire d’Informatique, École Polytechnique
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In this paper it is proved that Girard’s proof nets for multiplicative linear logic

characterise free semi-⋆-autonomous-categories.

1. Introduction

The strong geometric intuition to monoidal categories and their relatives means that

morphisms can be effectively pictured as graphical objects, such as Kelly-MacLane graphs

(Kelly and Mac Lane, 1971), wire diagrams (Joyal and Street, 1991)—see (Selinger, 2011)

for an overview, or varieties of linear logic proof nets (Blute, 1993; Blute et al., 1996). In

some cases, for example for sum–product categories (Heijltjes, 2011), graphs exist that

are canonical : that allow the direct, syntactic construction of the free category.

In this regard, an interesting case is multiplicative linear logic (mll). Girard’s proof

nets (Girard, 1987) are canonical for mll
−, multiplicative linear logic without units.

However, in star-autonomous categories (Barr, 1991), the semantics of mll, the units

play a central role: as the dualising object, and its dual. The two cases, with and without

units, are mathematically distinct, and raise the following two questions: what notion

of proof net is canonical for star-autonomous categories, and what notion of category is

described by mll
− proof nets?

In one direction, proof nets have been extended with units to capture free star-autonomous

categories, in a series of developments (Blute et al., 1996; Lamarche and Straßburger,

2006; Hughes, 2012). These nets are however not canonical, resulting in an equivalence

over proof nets imposed by the categorical laws. Although in the formulation by Hughes

this equivalence is reduced to a simple rewiring relation, a very recent result is that

the associated decision problem—the word problem for star-autonomous categories—is

actually pspace-complete (Heijltjes and Houston, 2014).

The other direction, pursued further in this paper, concerns the question of what a

star-autonomous category without units should be, corresponding to mll
− proof nets.

Here, the challenge is to account for proof nets with a single conclusion. Such nets are

traditionally modelled by morphisms out of the unit to the tensor, which is unavailable.
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Moreover, the presence of single-conclusion nets cannot be ignored: as in the example

below, they may occur as subnets of multi-conclusion nets, which are to be interpreted

as categorical morphisms.

a⋆

a

�

b

O

b⋆

In the recent past two approaches to this problem have been put forward. One, first

explored by Lamarche and Straßburger (Lamarche and Straßburger, 2005), proposes to

replace the monoidal unit I in a star-autonomous category C by a ‘virtual unit’, a functor

I : C → set that takes the rôle of hom(I,−). This is also the direction taken in the thesis

of Houston (Houston, 2008), who defines the notion of semi-star-autonomous categories

from the more abstract perspective of monoidal bicategories and promonoidal categories

(on which more below). The present paper aims to complete this line of research, reviewing

and relating the necessary axioms, and proving that mll
− proof nets characterise free

semi-star-autonomous categories.

A second approach, ‘proof net categories’ by Došen and Petrić (Došen and Petrić, 2005),

is to omit the unit from linearly distributive categories (Cockett and Seely, 1997) and add

a natural transformation A⇒ A� (B⋆ OB). The corresponding operation on a proof net

is to endow it with a trivial single-conclusion subnet, as in the above example; non-trivial

such subnets are then constructed using associativity, symmetry, and the functoriality

of the tensor. While the approach has the advantage of presenting a regular categori-

cal structure, without the need for a virtual unit functor, it also has certain drawbacks.

Firstly, definitions of linearly distributive categories involve many coherence axioms, and

to recover the traditional structure associated with star-autonomous categories, in partic-

ular the defining adjunction connecting the tensor and the par, is non-trivial. Secondly,

proof net categories do not actually incorporate single-conclusion proof nets as individ-

ual nets, but only as subnets, which moreover are constructed in a roundabout fashion.

Without reflecting major problems, these points do mean that important intuitions about

proof nets are lost.

Promonoidal categories

The ideas behind the virtual unit functor I : C → set first appeared in the work of Day

(Day, 1970) on promonoidal categories (there called premonoidal categories). These are a

generalisation of monoidal categories where the tensor and unit are given by profunctors

P : C × C −7� C J : 1 −7� C .

Monoidal categories are then the special case where both profunctors are represented by

actual functors. In this light, semi-star-autonomous categories are a form of promonoidal

category where the tensor is representable, but the unit need not be: the unit profunctor is

exactly the virtual unit functor I. Houston in his thesis (Houston, 2008) explores this path

towards semi-star-autonomous categories in still greater generality, first developing the
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theory of monoidal bicategories, in which promonoidal categories occur as a construction

called a pseudomonoid.

The abstraction offered by promonoidal categories means that reasoning about the

virtual unit I proceeds along similar lines to standard reasoning in monoidal categories—

this in contrast to reasoning with I within the internal language of semi-star-autonomous

categories, which may often be convoluted and counterintuitive. In particular, this con-

cerns the proof that the symmetry isomorphism acts as desired on nets consisting of a

tensor of two single-conclusion nets, as illustrated schematically below.

X

�

Y

x y
σ
∼ Y

�

X

y x

While the promonoidal proof of this equation is a direct rendition of Kelly’s (Kelly,

1964) proof that the left and right unit isomorphisms λI , ρI : I � I → I commute, its

internal translation into semi-star-autonomous categories produces a proof that is far

from obvious—as witnessed by the fact that this equation was taken as an axiom in

(Lamarche and Straßburger, 2005).

What this illustrates is that the gap between promonoidal categories and proof nets

is considerable, while the abstract approach of Houston (Houston, 2008) leaves many

details implicit. In bridging this gap, this paper assumes the modest task of giving a

direct proof that proof nets characterise free semi-star-autonomous categories. While

similar proofs have been carried out for proof nets with units, some are rather indirect

(Blute et al., 1996; Hughes, 2012), and others rely heavily on the presence of the unit

in star-autonomous categories (Lamarche and Straßburger, 2006). Here, the aim is to

present a proof that is direct and clear, and on the way explicate and concretise the

results of (Houston, 2008).

2. Proof nets

The grammar below describes mll−-formulae over a set of atoms a, b, . . . ∈ A.

A := a | a⋆ | A�A | AOA

Negation A⋆ for general formulae A is via DeMorgan (see also below). Sequents will be

used in one-sided form Γ and two-sided form Γ ⊢ ∆, where Γ and ∆ are multisets of

formulae.

Let an annotated formula AV be a formula A annotated by a set of vertices V , accord-

ing to the following grammar (where ⊎ indicates union of disjoint sets).

AV := av | a⋆v
︸ ︷︷ ︸

V = {v}

| BU �v CW | BU Ov CW

︸ ︷︷ ︸

V = U ⊎ {v} ⊎W

Similarly, let an annotated sequent ΓV or ΓV ⊢ ∆W be one whose formulae are annotated

distinctly. The purpose of annotating formulae and sequents in this way is threefold.

Firstly, by naming its nodes a formula tree is made into a graphical object, to which the

axiom links of proof nets may be connected directly. Secondly, the annotation removes the
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{〈v, w〉} : [av, a
⋆
w]

AX
L : [ΓX , AV , BW ]

L : [ΓX , AV Ou BW ]
OOR

L : [ΓX , AV ] K : [∆Y , BW ]

L ∪ K : [ΓX ,∆Y , AV �u BW ]
R

Fig. 1. Constructing proof nets by the calculus LM

need to distinguish between subformulae and subformula occurrences, and allows precise

and consistent reference to the latter. Thirdly, annotation allows easy formulation of

coherence properties in mll
− as a category, addressed in Section 7.

In an annotated formula, a tensor -vertex v in AV is one annotating a tensor (�v),

a par -vertex annotates a par (Ov), and an atomic vertex annotates an atom (av) or

negated atom (a⋆v). The root vertex of an annotated (sub)formula is that of its primary

connective; the formula of a vertex v is the formula occurrence of which v is the root; and

the children of a par-vertex or tensor-vertex are the root vertices of its subformulae. The

root vertices of a sequent are also called its ports. In an annotated formula or sequent,

two vertices are called dual if their formulae are dual. In dualising an annotated formula

AV to A⋆
V , the annotation is preserved:

a⋆⋆v = av (AV �u BW )⋆ = A⋆
V Ou B

⋆
W (AV Ou BW )⋆ = A⋆

V �u B
⋆
W

Similarly, an anotated sequent ΓV can be dualised to Γ⋆
V .

Definition 2.1. A pre-proof net (or prenet) L : [ΓV ] consists of an annotated sequent ΓV

and a linking L, which is a partitioning of the atomic vertices in V into dual (unordered)

pairs.

A switching graph for a prenet L : [ΓV ] is an undirected graph (V,E ∪ L) where for

every tensor-vertex v in ΓV the set E contains all edges 〈v, w〉 connecting v to its children

w, and for every par-vertex v the set E contains exactly one edge 〈v, w〉 connecting v to

one of its children w. Note that a proof net with n par-vertices has 2n switching graphs.

Definition 2.2 ((Danos and Regnier, 1989)). A proof net is a prenet for which every

switching graph is acyclic and connected.

In Figure 1 the standard sequent calculus for mll− is adapted to make the construction

of proof nets by sequent proofs explicit. A derivation from a number of premisses to one

conclusion, consisting of several inference rules, will be abbreviated by a double horizontal

bar; a proof is a derivation from zero premisses. The net constructed by a proof Π will

be denoted JΠK.

Proposition 2.3 ((Danos and Regnier, 1989)). Proof nets are precisely the prenets

constructed by the sequent calculus LM in Figure 1 .

Describing the category of proof nets first requires to interpret nets as morphisms.

Definition 2.4. A two-sided proof net L : [ΓV ⊢ ∆W ] consists of a two-sided sequent

ΓV ⊢ ∆W plus a linking L, such that L : [Γ⋆
V ,∆W ] is a (one-sided) proof net.

A proof net of the form L : [AV ⊢ BW ] may then be interpreted as a morphism A → B.
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Γ, a a⋆, a
AX

Γ, a
Cut  

Γ, a

Γ, A ∆, B

Γ,∆, A � B
R

A⋆, B⋆,Λ

A⋆
O B⋆,Λ

OOR

Γ,∆,Λ
Cut  

Γ, A

∆, B A⋆, B⋆,Λ

A⋆,∆,Λ
Cut

Γ,∆,Λ
Cut

Fig. 2. Cut reduction steps in LM

For a proof net L : [ΓU ], over a sequent Γ of a more general form, it is not always

possible to find a single, unambiguous, corresponding morphism. This is because Γ does

not unambiguously denote a source and target object in the category, but instead a range

of possible such pairs of objects. Correspondingly, a proof net L : [ΓU ] may be interpreted

by a class of morphisms, containing precisely the following: the interpretation of each

proof net L : [AV ⊢ BW ] and L : [B⋆
W ⊢ A⋆

V ] such that L : [A⋆
V , BW ] is derivable from

L : [ΓU ] by just OOR-inferences.

Next, the primary categorical structure on proof nets, composition and identities,

will be treated. The composition of two proof nets will be defined directly via path-

composition, following Hughes (Hughes, 2012). In contrast, the approach of Girard (Gi-

rard, 1987) introduces a cut into the proof net structure, which is then eliminated via

local rewriting operations similar to those on proofs.

Definition 2.5. The composition of two proof nets is given by the rule

L : [ΓU , AV ] K : [A⋆
V ,∆W ]

L;K : [ΓU ,∆W ]
Cut (1)

where U ∩W = ∅ and where L;K contains a link 〈u,w〉 precisely when there is a path

of links 〈u, v1〉, 〈v1, v2〉, . . . , 〈vn, w〉 (alternately) from L and from K.

In the above definition the formulae A⋆
V and AV are the cut-formulae. The characteri-

sation of L;K as path-composition in L ∪ K relies on the fact that L and K share only

vertices in V , and means the composition of two nets (over given cut-formulae) is uniquely

defined.

Cut-elimination is defined by the reduction rules displayed in Figure 2 (plus the two

symmetric variants obtained by swapping the two subproofs of each). The following

proposition is well-known and straightforward to show:

Proposition 2.6 ((Girard, 1987; Hughes, 2012)). The rule Cut is admissible in

the calculus LM; moreover, cut-elimination preserves the net constructed by a proof.

Composition of nets is associative, and unitary with respect to a class of identity nets,



Willem Heijltjes and Lutz Straßburger 6

B

A⋆
··
··
··
·

f

A⋆

O

C⋆

B

�

D
··
··
··
·

f

··
··
··
·
g

A⋆

O

B⋆

O

C⋆

A

�

B

�

C
··
··
··
··
· ...

.

.

.

... ··
··
··
··
· A⋆

O

B⋆

B

�

A

.............

.............

A⋆

B⋆

A

O

�

B
··
··
··
·

..

.

..

.
..
. . .

. . . . . ...
.

B

�

C

O

B⋆

C⋆

...

..

.
..........

..
.
.

··
··
··
·

f⋆ f � g αA,B,C σA,B ηA,B ǫB,C

Fig. 3. Categorical constructions in proof nets

constructed by the axiom rule and the following composite rule.

L : [A,A⋆] K : [B,B⋆]

L ∪ K : [A�B,A⋆, B⋆]
R

L ∪K : [A�B,A⋆ OB⋆]
OOR

Further structural morphisms in the category of proof nets are illustrated in Figure 3

(note that the dotted arcs represent subnets: f (for A ⊢ B) or g (for C ⊢ D) when

indicated, and identity nets otherwise). While omitting the unit, the category of proof

nets retains much of the structure of a star-autonomous category: an associative and

symmetric tensor-bifunctor, an involutive duality functor −⋆, and an adjunction between

functors A�− and (−�A⋆)⋆. In the next section a notion of tensor–dual category with

just this structure will be defined. However, tensor–dual categories capture only a subclass

of proof nets: using just the morphisms in Figure 3, which all have both a source object

and a target object, it is impossible to construct a single-conclusion proof net L : [AV ],

nor one with single-conclusion subnets.

Definition 2.7. A prenet K : [∆W ] is a subprenet of a prenet L : [ΓV ] if

— ∆W consists of subformula occurrences of ΓV , i.e. W ⊆ V and every vertex w ∈ W

is the root of the same annotated formula in ∆W and ΓV ; and

— K is the restriction of L to W .

A subnet is a subprenet that is a proof net.

Definition 2.8. A tensor–dual net (td-net) is a two-sided proof net with exactly two

ports L : [AV ⊢ BW ], such that every subnet has at least two ports. Let tdnet(A)

denote the category of td-nets over the set of atoms A.

3. Tensor–dual categories

In the previous section the class of tensor–dual nets was identified because it has a

conventional categorical semantics, in the tensor–dual categories defined below.

Definition 3.1. A tensor–dual category (td category) (C,�,⋆ ) is a category C with a

tensor bifunctor (−�−) and a dualising functor (−)⋆ on C, with the following natural
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hom(A�B, (C �D)⋆)

Φ

Φα

hom((A�B) � C,D⋆)

Φ

−◦α

hom(A, (B � (C �D))⋆)

hom(A� (B � C), D⋆)
Φ

hom(A, ((B � C) �D)⋆)

α⋆◦−

hom(A�B,C⋆)

Φ

−⋆

hom(C⋆⋆, (A�B)⋆)
−◦∂

Φσ

hom(C, (A�B)⋆)

hom(A, (B � C)⋆)

σ⋆◦−

hom(C �A,B⋆)

Φ

hom(A, (C �B)⋆)
Φ−1

hom(A� C,B⋆)

−◦σ

Fig. 4. Coherence axioms for tensor–dual categories

isomorphisms,

α : A� (B � C) ∼= (A�B) � C σ : A�B ∼= B �A

∂ : A ∼= A⋆⋆ Φ: hom(A�B,C⋆) ∼= hom(A, (B � C)⋆)

satisfying the familiar pentagon and hexagon diagrams for associativity (α) and symme-

try (σ), plus those in Figure 4 for Φ and −⋆. A tensor–dual functor (td functor) is a

functor between td categories preserving the structure induced by the functors −�−

and −⋆ up to isomorphism.

The illustration in Figure 3 then shows the following.

Proposition 3.2. For any set A the category tdnet(A) is a td category.

In the category tdnet(A) the isomorphism ∂ is strict, i.e. ∂ = id , due to the treatment

of negation via the notation (A�B)⋆ = A⋆ OB⋆—as opposed to maintaining (−)⋆ as a

syntactic primitive, as for example in (Hughes, 2012). Alternative formulations of mll−

correspond to various kinds of strictness in tensor–dual categories. The isomorphism α

is made strict by using an n-ary tensor, and requiring tensor and par to alternate in the

construction of a formula. Strictness in σ is induced by using, instead of an annotated

formula AV , the graph it generates over the vertices V . The isomorphism Φ could be made

strict by using one-sided rather than two-sided sequents. Note that these adaptations

already apply to sequents; however, these are used only during the construction of proof

nets, not in the resulting nets that are taken to represent categorical maps. Therefore the

category tdnet(A) is strict only in ∂, but not in α, σ, nor Φ. From here on, ∂-strictness

will be assumed throughout, except when indicated otherwise, and A O B will be used

to abbreviate (A⋆ �B⋆)⋆.
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Note that the central adjunction of td-categories is generated by the following unit and

co-unit, and that only in the ∂-strict case Φ itself is the isomorphism of the adjunction.

ηA,B = Φ(∂A�B) : A→ (B � (A�B)⋆)⋆

ǫB,C = Φ(id (B�C)⋆) : (B � C)⋆ �B → C⋆

Tensor–dual nets characterise free ∂-strict td categories. This is formalised as follows,

where i : A → tdnet(A) is the inclusion taking the atoms in A into tdnet(A).

Theorem 3.3. Any functor F : A → C into a ∂-strict td category C factors uniquely

(up to natural isomorphism) as F = G ◦ i, where G : tdnet(A) → C is a td functor, as

illustrated by the following diagram.

A
i

F

tdnet(A)

G

(C,�,⋆ )

The proof of this theorem will be treated in Sections 6 through 9.

4. The virtual unit

The natural way of modelling a proof net with a single port A would be by a categorical

map from the monoidal unit I into A. Lacking units, tensor–dual categories generally

cannot describe such proof nets, or nets that have subnets with a single port. However,

adding a monoidal unit to a tensor–dual category would make it ⋆-autonomous. Thus,

the challenge is to capture single-port proof nets in another way.

The approach proposed by Lamarche and Strassburger in (Lamarche and Straßburger,

2005), and deepened by Houston in (Houston, 2008), is to add a virtual unit, a con-

struction that can be axiomatised to act like a unit, but is not itself an object in the

tensor–dual category. The virtual unit I for a td category C will be an object in the

category set
C of set-valued functors from C. The objects of this category may be seen

as generalised C-objects via the Yoneda Lemma, by which C embeds into set
C by the

contravariant Yoneda functor h−, defined on objects and morphisms as follows.

hA = hom(A,−) : C → set hf :A→B = (− ◦ f) : hom(B,−) ⇒ hom(A,−)

A proof net corresponding to a map A → B in C is represented in set
C by a natural

transformation hB ⇒ hA; similarly, I will be axiomatised such that a proof net for a

sequent ⊢B, with a single port, is represented by a natural transformation hB ⇒ I. Via

Yoneda, any such natural transformation is uniquely determined by an element x of I(B).

Although traditionally such transformations are denoted simply as x, here instead the

notation I−(x) will be used, to emphasise their use as a syntactic construct in proof

nets and sequent calculus presentations. The functor I may thus be seen as a unary

hom-functor, taking an object B to the set of proof nets for ⊢B.

In the functor category set
C , the tensor of C may be analysed in terms of composition
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A⋆

X

�

B

x
··
··
··
··
··
·

f

A⋆

B

�

X

x
··
··
··
··
··
·

f

X

�

Y

x y

x f f x x y

Fig. 5. Virtual tensor constructions

with the internal hom-functor H−, as given by

HB = (B � −⋆)⋆
∂
= (B⋆ O −) ,

in the following way:

hA�B = hom(A�B,−)
Φ
∼= hom(A,B⋆ O −) = hA ◦HB .

Remark. The above is a special case of the Day convolution tensor (Day, 1970). The

general construction gives a tensor product in the functor category set
C , by the following

coend formula. For two functors F,G : C → set,

F ⋆ G =

∫ C,D∈C

FC ×GD × hom(C �D,−) .

For hA and hB this gives:

hA ⋆ hB =

∫ C,D∈C

hom(C,A) × hom(D,B)× hom(C �D,−) .

This is isomorphic to hom(A�B,−) by the co-Yoneda lemma, which gives:
∫ C

hom(C,−)× FC ∼= F .

In order to make I a left unit to the tensor in set
C , the following natural isomorphism

λ is needed:

λ : I ◦H− ∼= h− λA : I(A⋆ O −) ∼= hom(A,−) .

This is exactly what one would expect: in a free setting, I(A⋆ OB) and hom(A,B) should

both be (isomorphic to) the set of proof nets for the sequent ⊢A⋆, B. Naturality of λ is

illustrated in the following diagram.

I(A⋆
OB)

λA,B

∼=

I(f⋆Og)

hom(A,B)

g◦−◦fnat(λ)

I(X⋆
O Y )

λX,Y

∼=
hom(X,Y )

To represent proof nets with one-port subnets, it must be possible to combine proof

nets for ⊢ X and A ⊢ B with a tensor, into a net for A ⊢ X�B. For this a virtual tensor
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operation is needed, taking x ∈ I(X) and f : A→ B to

x f : A→ X �B .

It can be defined via the Day tensor in set
C , whose action on morphisms is horizontal

composition of natural transformations. For I−(x) : hX ⇒ I and H f : HB ⇒ HA there

is the diagram below, with its composite natural transformation given below right.

C C setH
f I−(x)

Φ

λ

H
B

H
A

h
X

I

h
X�B

h
A

λ(I((f⋆ O id) ◦ Φ−)(x))

By Yoneda, this natural transformation gives a map A→ X �B when appied to idX�B.

The virtual tensor is then defined as follows (using naturality of λ to increase readability).

x f
∆

= λ(I((f⋆ O id) ◦ Φ(id))(x))

= λ(I((f⋆ O id) ◦ η)(x))

= λ(I(η)(x)) ◦ f

IX
− f

Iη

hom(A,X �B)

∆

I(B⋆
O (X �B))

λ
hom(B,X �B)

−◦f

Two further virtual tensor operations can be derived from this: the first is a virtual

tensor whose one-port argument is on the right, rather than on the left, obtained via

symmetry, and the second combines two one-port arguments, x ∈ I(X) and y ∈ I(Y ),

and is illustrated by the diagram below.

f x
∆

= σ ◦ (x f)

x y
∆

= I(x idY )(y)

IX × IY hom(Y,X � Y )× IY

I(X � Y ) hom(IY, I(X � Y ))× IY

∆− −

(− id)×IY

I×IY

apply

How the three virtual tensors are used to interpret proof nets is illustrated in Figure 5.

The present section is concluded by noting a central property of the virtual tensor.

Lemma 4.1. The diagram ǫ below commutes.

hom(B,C) I(B⋆
O C)

hom(B,C) hom(B, (B⋆
O C) �B)

ǫ

λ 1

id − B

ǫ◦−

Proof. By the diagram below. The unmarked regions commute by invertibility and
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I((AOB) O C) I(AO (B O C))

hom(A⋆
�B⋆, C) hom(A⋆, B O C)

λα
⋆

Iα⋆

λ λ

Φ

I(AOB) I(B OA)

hom(A⋆, B) hom(B⋆, A)

λσ
⋆

Iσ⋆

λ λ

−⋆

Fig. 6. Alternative axioms for semi-⋆-autonomous categories

naturality of λ, and ηǫ-cancellation.

hom(B,C) I(B⋆
O C)

I(B⋆
O C) I(B⋆

O ((B⋆
O C) �B))

hom(B,C) hom(B, (B⋆
O C) �B)

∆

λ 1

id

id Iη

− B

λ λ

I(B⋆Oǫ)

ǫ◦−

5. Semi-⋆-autonomous categories

To establish the correspondence with proof nets, tensor–dual categories with a virtual

unit need to satisfy the additional coherence axiom α, shown below. Corresponding

diagrams in Houston’s thesis (Houston, 2008) are (8.3.1) (a simplified diagram appears

just below it) and (λαχ) (on page 187).

A�B

X � (A�B) (X �A) �B

α

x (A�B) (x A)�B

α

Definition 5.1 ((Lamarche and Straßburger, 2005, Definition 2.1.2), (Hous-

ton, 2008, Definition 8.8)). A semi-⋆-autonomous ( ssa) category (C,�,⋆ , I, λ) is a

td category (C,�,⋆ ) with a virtual unit functor I : C → set and a natural isomorphism

λA,B : I(A⋆ OB) ∼= homC(A,B) such that the diagram α commutes.

In Definition 2.1.2 of Lamarche and Strassburger (Lamarche and Straßburger, 2005), an

additional axiom—equation (2) in that paper—is asked for. The corresponding diagram

is σ in Figure 8. Proposition 5.6 will show that it follows from the other axioms.

An alternative formulation of semi-⋆-autonomous categories replaces the diagramsΦα,

Φσ, and α with the diagrams λα
⋆ and λσ

⋆ in Figure 6. Equivalence of both defini-

tions is shown by Proposition 5.3 and Proposition 5.4 below. The two diagrams λα
⋆

and λσ
⋆ allow to omit the isomorphisms Φ and ∂ (respectively) from the data, instead

defining them via Iα⋆ and Iσ⋆. Doing so gives the following simplified definition of semi-

⋆-autonomous categories:
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Proposition 5.2 ((Houston, 2008, Proposition 8.9)). An ssa-category C is charac-

terised by an associative, symmetric tensor �, an involutive duality ⋆, and a virtual unit

functor I : C → set with a natural isomorphism λA,B : I(A⋆ OB) ∼= hom(A,B).

In the following, note that in larger diagrams an alternative, more concise notation is

used.

A := A⋆ AB := A�B

A,B := AOB AŻB := hom(A,B)

Proposition 5.3 ((Houston, 2008, Lemmata 8.5–8.7)). In the definition of semi-

⋆-autonomous categories, the axiom pair Φα and α is interchangeable with the axiom

λα
⋆, independently of the axiom Φσ.

While the Lemmata 8.5–8.7 In Houston’s thesis (Houston, 2008) prove a moral equivalent

of the above proposition, the corresponding axioms—(αφ), (λαχ), and (λχψ)—and the

technical exposition are sufficiently different that proving the proposition here is worth

wile.

Proof. Firstly, given λα
⋆, the diagram Φα follows directly by applying λ to each

corner of the associativity pentagon for α⋆. (The other direction is not immediate since

the diagram just described uses multiple instances of λα⋆). The diagram below proves

α from λα
⋆ and Φα, the latter of which is the circumference of the diagram.

hom(A�B,C⋆
OD) hom((A�B)�C,D) hom(A�(B�C), D)

hom(A,B⋆
O(C⋆

OD)) hom(A, (B⋆
OC⋆)OD)

I(B⋆
O(C⋆

OD)) I((B⋆
OC⋆)OD)

hom(B,C⋆
OD) hom(B�C,D)

α

∆ λα
⋆

∆Φ

−◦x B

−◦αΦ

−◦(x B)�C

Φ

−◦x (B�C)

α⋆ 1◦−

I−(x) I−(x)
Iα⋆ 1

λ λ

Φ 1

This proves one direction. The other direction, that λα
⋆ follows from α and Φα, is

proven by the first diagram in Figure 7. The outside of the diagram commutes by func-

toriality of the tensor, and the unlabelled interior regions commute either trivially, by

naturality, or by η-ǫ cancellation. The region marked (1) commutes by tracing Φα, in

the second and third diagram in Figure 7.

Proposition 5.4. In the definition of semi-⋆-autonomous categories, the axiom Φσ is

interchangeable with the axiom λσ
⋆.

Proof. In the diagram below, the outside is the diagram Φσ, while the far left region is

λσ
⋆. The central region is the hexagon for σ⋆ and α⋆, and the two remaining unlabelled
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AŻ((A,B),C)A I(A,((A,B),C)A) I(A,(B,C))

ABŻ(((A,B),C)A)B

AŻB,C

ABŻ(B,C)B

I((A,B),(((A,B),C)A)B) I((A,B),(B,C)B)

I((A,B),C)

I((A,B),((A,B),C)(AB))

ABŻ((A,B),C)(AB)

I((A,B),C)

ABŻC

∆

λα
⋆

α

∆

(1)

Iη

− (AB)

− A η Iα⋆

id

λ

I((A,B),α)

−◦α

−�B

λ I(A,ǫ◦α⋆A)

λ 1

I((A,B),(ǫ◦α⋆A)B)

I((A,B),ǫ)

λ 1

ǫ◦−

−�B

Φ 1

λ

λ 1

DŻ(A,B),C DŻA,(B,C)

DAŻB,C

(DA)BŻCD(AB)ŻC

Φα

α⋆◦−

Φ 1

Φ 1

−◦α

Φ

id α⋆

ǫ ◦ α⋆A

ǫ ◦ (ǫ ◦ α⋆A)Bǫ ◦ (ǫ ◦ α⋆A)B ◦ α

(AB)(ǫ ◦ (ǫ ◦ α⋆A)B ◦ α) ◦ η
=

Fig. 7. Diagrams for Proposition 5.3

regions commute by naturality. This shows that Φσ follows from λσ
⋆.

hom(A�B,C)

hom(C⋆, A⋆
OB⋆)

hom(A,B⋆
OC)

hom(C�A⋆, B⋆)

hom(A,COB⋆)

hom(A�C⋆, B⋆)

I((A⋆
OB⋆)OC)

I(CO(A⋆
OB⋆))

I(A⋆
O(B⋆

OC))

I((COA⋆)OB⋆)

I(A⋆
O(COB⋆))

I((A⋆
OC)OB⋆)

λα
⋆

λσ
⋆

λα
⋆

λα
⋆

Φ

λ 1
−⋆

σ⋆◦−

λ 1

Φ 1λ 1

Iα⋆

Iσ⋆

I(A⋆Oσ⋆)

Iα⋆ 1

Iα⋆ 1

λ

I(σ⋆OB⋆)

λ λ

Φ 1 −◦σ
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A�B

A�(B�C) (A�B)�C

α

A�(B c) (A�B) c

α

A�C

A�(B�C) (A�B)�C

A�(b C) (A b)�C

α

1

I(A�B) I(B�A)

σ

a b b a

Iσ

Fig. 8. Coherence diagrams for the virtual tensors

In the other direction, first let f⊥ denote λ(Iσ⋆(λ 1(f))); the diagram λσ
⋆ then expresses

the equation f⊥ = f⋆. Since all arrows are invertible in the above diagram, it shows that

f⊥ = f⋆ follows from Φσ in the restricted case where f : A � B → C; in particular,

ǫ⊥ = ǫ⋆. Secondly, the following diagram shows that (g ◦ f)⊥ = f⋆ ◦ g⊥; all three regions

commute by naturality.

hom(B,C) I(B⋆
O C) I(C OB⋆) hom(C⋆, B⋆)

hom(A,C) I(A⋆
O C) I(C OA⋆) hom(C⋆, A⋆)

λ 1

−◦f

Iσ⋆

I(f⋆OC)

λ

I(COf⋆) f⋆◦−

λ 1 Iσ⋆ λ

Using the equation ǫ in Lemma 4.1, f = ǫ ◦ (λ 1(f) id), there is the following series

of equations, proving the statemement.

f⊥ = (ǫ ◦ (λ 1(f) id))⊥

= (λ 1(f) id)⋆ ◦ ǫ⊥

= (λ 1(f) id)⋆ ◦ ǫ⋆

= (ǫ ◦ (λ 1(f) id))⋆ = f⋆

The virtual tensor

It will be shown that the diagrams in Figure 8 commute (note that 1 denotes the terminal

object in set). That these appear structurally similar to the familiar diagrams for the

monoidal unit and its left and right unit isomorphisms, is no coincidence, as will be

explained next.

One difficulty with semi-⋆-autonomous categories is that on first sight there appears to

be no virtual equivalent to an object such as I�I. However, the promonoidal perspective

shows that there is one: it is given by the following coend formula.
∫ A,B

IA× IB × hom(A�B,−)

This is a set-valued functor, taking an object C to an equivalence class of triples

( a ∈ IA, b ∈ IB, f : A�B → C )

—for details see Kelly’s book (Kelly, 1982). In the present setting, such triples are in
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A�(B�C)

A�(C�B)

(C�B)�A

(A�B)�C

C�(A�B)

C�(B�A)

B�A

A�B

α

α

α 1

C�σσ

σA�σ

α

(c B)�A c (B�A)

A�(c B) c (A�B)

A�(B c) (A�B) c

σ

B�(C�A)(B�C)�A

B�(A�C)A�(B�C)

(B�A)�C(A�B)�C

C�A

A�C α

α

α

σ B�σ

α 1α 1

σ�C

b (C�A)(b C)�A

b (A�C)A�(b C)

(b A)�C(A b)�C

σ

Fig. 9. Diagrams proving that α and commute

one-to-one correspondence with morphisms

If(a b) ,

where the practical consequence of the equivalence relation induced by the coend formula

is that a and b (and A and B) should be considered arbitrary.

All this is to say that for reasoning within semi-⋆-autonomous categories, it is not

λ : I(A⋆ OB) → hom(A,B) that behaves most like a monoidal left unit isomorphism, but

instead it is the virtual tensor,

a B : B → A�B

for arbitrary a and A. Crucially, the virtual tensor is invertible, by taking the special

case a = λ 1(idB) and composing with ǫ:

ǫ ◦ (λ 1(idB) B) = idB .

The equation is a special case of the diagram ǫ of Lemma 4.1, which shows the more

general case for f : B → C rather than idB. With this in mind, the diagrams in Figure 8

can be shown to commute by interpreting the standard coherence proofs for the monoidal

unit, where the right-virtual tensor, , corresponds to the right unit isomorphism ρ.

Proposition 5.5. The diagrams α and in Figure 8 commute.

Proof. By the two diagrams in Figure 9. For both diagrams the outside commutes

by α–σ coherence, while unlabelled internal regions commute by naturality or by the

definition of .

The third diagram, σ, corresponds to the equation λI = ρI in monoidal categories,
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illustrated below left.

I � I I � I

I

σ

λ λ

I(A�B) I(B �A)

IB IA1

σ

Iσ

I(b A)I(a B)

b a

Shown above right, first the unit I corresponds to an equivalence class over all virtual

morphisms a ∈ IA, for arbitrary a and A. To close the diagram with a left-virtual tensor

and a right-virtual tensor, in one case a is chosen to represent this equivalence class, but

in the other, b.

With this interpretation, the standard proof of λI = ρI can be adapted to show σ.

A useful ingredient here is a virtual equivalent to the morphism ρI ◦ λ 1
I : I → I. For

arbitrary c ∈ IC, let the element “c” ∈ IC be defined as “c” = I(ǫ ◦ σ)(c λ 1(idC)), as

in the following diagram.

IC I(C � (C⋆
O C))

I((C⋆
O C) � C)IC

“∆”“−”

− λ 1(idC)

Iσ

Iǫ

While the equation Iǫ(λ 1(idC) c) = c is immediate from ǫ, to show “c” = c requires

the symmetry on the virtual tensor. This will now be proved.

Proposition 5.6 (Due to Houston, in private communication). The diagram σ

in Figure 8 commutes.

Proof. The first diagram in Figure 10 shows the equation

Iσ(c a) = a “c” .

Its regions commute by naturality, ηǫ-cancellation, and by the definition of the virtual

tensor. In the second diagram, the two squares labelled (1) commute by the equation

above, while the unlabelled regions commute by naturality of and . The diagram gives

the equation

c (b a) = c Iσ(a b) .

Then by choosing c = λ 1(idB�A) and applying Iǫ, the statement follows by Lemma 4.1

(the diagram ǫ):

(b a) = Iǫ(λ 1(idB�A) (b a))

= Iǫ(λ 1(idB�A) Iσ(a b)) = Iσ(a b) .

The main theorem

In Section 3 it was discussed how td categories represent proof nets with at least two

ports. The virtual unit allows ssa categories to capture also the proof nets with a single
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1

IA

I(C�A)

I(A�C)

I(C⋆
O(A�C))

I(C�(C⋆
O(A�C)))

I((C⋆
O(A�C))�C)

I(A�C)

I(C⋆
OC)

I(C�(C⋆
OC))

I((C⋆
OC)�C)

IC

a

λ 1(a C)

λ 1(idC)

Iη

I(c A)

I(C⋆Oa C)

Ic (C⋆OC)

I(c (C⋆OA�C))

Iσ

I(C�η)

I(C�(C⋆Oa C))

Iσ

Iσ

I(η�C)

Iǫ

Iǫ

I(a C)

I(B �A) IA 1 IB I(B �A)

I(C � (B �A))

I(C �A) IC I(C �B)

I(C � (B �A))I((C �B) �A)

(1) (1)

α

a b

“c”

Ib A

Ic A

IB a

Ic B

Ic (B�A) Ic (B�A)

IC a IC b

IC�(b A)

I(C b)�A

IC�(B a)I(C�B) a

Iα Iα

Fig. 10. Diagrams for Proposition 5.6



Willem Heijltjes and Lutz Straßburger 18

port A, as the elements of I(A). On formulae of the form A⋆ O B, the action of λ is to

remove the O-vertex at the root of a proof net for ⊢A⋆ O B, as illustrated below; the

inverse λ 1 replaces it, similar to an application of a OOR-inference to ⊢A⋆, B.

A⋆

O

B
.
..
...

........
.

f

Then in the following let the category net(A) be the category of proof nets L : [AV ⊢ BW ]

and L : [⊢ AV ] over the atoms A (viewed as a discrete category).

Proposition 5.7. The category net(A) is a semi-⋆-autonomous category.

Proof. The illustrations in Figure 3 show how the category net(A) forms a td-category.

The isomorphism λ is that taking a net L : [A⋆ O B] to the net L : [A ⊢ B], while I is

the composition of a net L : [⊢ AV ] and one K : [AV ⊢ BW ] to form L;K : [⊢ BW ]. The

axiom α is then routinely verified.

It will be shown that net(A) is, in fact, the free ∂-strict ssa category generated

by A. For making this precise, a notion of semi-⋆-autonomous functor is needed. To

preserve the semi-⋆-autonomous structure, a functor G between ssa categories C and

D with virtual units I and J must not only take homC(A,B) to homD(GA,GB), but

should in addition take I(A) to J(GA). It should thus come equipped with a natural

transformation γ : I ⇒ JG. The combined ssa functor (G, γ) must then preserve the

virtual tensor construction, in the way illustrated below.

IX

γX

− f
hom(A,X �B)

G

JGX
− Gf

hom(GA,GX �GB)

G(x f) = γ(x) Gf (2)

This is achieved by the following definition.

Definition 5.8. An ssa-functor is a pair

(G, γ) : (C,�C ,
⋆ , I, λC) → (D,�D,

⋆ , J, λD)

such that G : C → D is a td-functor and γ : I → JG is a natural transformation, satisfying

the equation

G(λ(x)) = λ(γ(x)) . (3)

Proposition 5.9. The two conditions (2) and (3) are equivalent.

Proof. That (3) implies (2) follows simply by unfolding the definition of the virtual

tensor; the other direction follows from the equation ( ǫ) of Lemma 4.1, f = ǫ◦(λ 1f) id :

G(λx) = G(Iǫ ◦ (x id)) = JGǫ ◦ (γ(x) Gid) = λ(γx) .
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The main theorem is then stated as follows, where i : A → net(A) is the inclusion

functor taking the atoms in A into net(A).

Theorem 5.10. Let F : A → C be an arbitrary functor into a ∂-strict ssa category C.

Then there is a unique (up to natural isomorphism) ssa functor (G, γ) : net(A) → C

such that F = G ◦ i.

A

F

i
net(A)

(G,γ)

(C,�,⋆ , I, λ)

As before, this theorem may be seen as the coherence theorem for semi-⋆-autonomous

categories. The remainder of this paper will be devoted to proving it.

6. A sequent calculus for categorical maps

The one-sided sequents used for the sequent calculus constructing proof nets, in Figure 1,

leave the structural isomorphisms α, σ, Φ and λ implicit. In general, a sequent calculus

of this kind is underdetermined: it cannot distinguish, for instance, between the identity

and the symmetry on A�A. While the use of annotated formulae alleviates this problem,

this section will present a sequent calculus that goes a step further, making all structural

isomorphisms explicit. To this effect, first a notion of tree-sequent is introduced, an

annotated sequent structured as a tree rather than a multiset, defined below left. To

identify a subtree of such a tree, one-hole contexts are used, defined below right.

t := AV | (t, t) t{−} := {−} | (t, t{−}) | (t{−}, t)

A tree-context t{−} is a tree-sequent containing a unique identifier {−}, the hole. Then

t{s} denotes the tree-sequent obtained by replacing the hole in t{−} with a tree-sequent s.

For readability, outer parentheses and vertex-annotation will be omitted where possible.

The function ⌊−⌋, defined below, retrieves the underlying annotated sequent of a tree-

sequent t.

⌊AV ⌋ = {AV } ⌊(s, t)⌋ = ⌊s⌋ ⊎ ⌊t⌋

Here, ⊎ denotes multiset union; we will require that ⌊t⌋ is an annotated sequent, so that

vertices in t are unique. A tree-sequent t also indicates an mll
−-formula, denoted as

� t, obtained by changing the formal tree t into a tree of tensors, and forgetting the

annotation of its leaves.

�(AV ) = A �(s, t) = (� s) � (� t)

The dual of a tree t⋆ is obtained by dualising its leaves, via (s, t)⋆ = (s⋆, t⋆). Then let

O t denote (� t⋆)⋆.

The purpose of tree-sequents is to facilitate the explicit treatment of the structural

isomorphisms. The isomorphisms α and σ can be applied ‘deeply’, i.e. within a given

context, by inserting them into the hole of a tree-context t{−}, giving t{α} or t{σ}. The

notation � t{α} and � t{σ} then indicates the corresponding morphisms, as illustrated
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for � t{σ} below.

� t{σ} : � t{(r, s)} → � t{(s, r)}

�{σ} = σ

�(s, t{σ}) = (id�s) � (� t{σ})

�(t{σ}, s) = (� t{σ}) � (id�s)

To make Φ and λ explicit a notion of two-sided tree-sequent is needed, written as s § t,

where s and t are tree-sequents. A two-sided sequent with empty antecedent is written §t.

We write s?§ t to denote a tree-sequent with a possibly empty antecedent. A tree-sequent

s? § t has an underlying annotated sequent ⌊s? § t⌋, and indicates a hom-set or virtual

unit object hom(s? § t), as defined below.

⌊§ t⌋ = ⌊t⌋ hom(§ t) = I(O t)

⌊s § t⌋ = ⌊s⋆⌋ ⊎ ⌊t⌋ hom(s § t) = hom(� s,O t)

The structured sequent calculus LT, in Figure 11, employs two-sided tree-sequents to

make the structural isomorphisms of semi-⋆-autonomous categories explicit. This calculus

serves as an intermediate between proof nets and categorical maps. On the one hand, each

proof π directly constructs a morphism in an arbitrary semi-⋆-autonomous category C:

Definition 6.1. Given a functor F : A → C, the denotation LπMF in C of an LT-proof π

is the C-morphism it constructs. Two LT-proofs π and ρ are parallel if they have the same

conclusion, and they are equivalent if they have the same denotation, i.e., LπMF = LρMF
for every F and C.

Here, the functor F : A → C is the interpretation of the atoms in A as objects in C—note

that in the calculus (in Figure 11) the identity axiom for an atomic mll
− formula a

constructs the identity map on Fa.

On the other hand, by forgetting the tree-structure of its tree-sequents, every struc-

tured proof π indicates a proof in the regular calculus LM, denoted ⌊π⌋, which in turn

constructs the proof net J⌊π⌋K. The translation from LT-proofs to LM-proofs is a straight-

forward induction,

⌊

q1 § r1 · · · qn § rn

s § t
ρ

⌋

=

⌊

q1 § r1

⌋

· · ·

⌊

qn § rn

⌋

⌊s § t⌋
⌊ρ⌋

where the translation of an inference ρ is given by the table below. Note that each LT-

inference maps onto one LM-inference with the exception of structural isomorphisms,

which are implicit in LM. Note that as with LM-proofs, a double line will indicate a

derivation consisting of zero, one, or multiple inferences, from multiple premisses.
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Logical rules

av § aw

idFa

§ AV t § BW

t § AV �u BW

s § AV t § BW

(s, t) § AV �u BW

�

s § AV § BW

s § AV �u BW

§ AV § BW

§ AV �u BW

s § t{AV , BW }

s § t{AV Ou BW }
=

§ AV , BW

§ AV Ou BW

=

Structural isomorphisms

(r, s) § t

r § (s⋆, t)
Φ

r § (s, t)

(r, s⋆) § t
Φ−1

s § t

t⋆ § s⋆
−⋆

§ (s, t)

s⋆§ t
λ

s § t

§ (s⋆, t)
λ−1

s{((p, q), r)} § t

s{(p, (q, r))} § t
−◦(�s{α})

s § t{((p, q), r)}

s § t{(p, (q, r))}
(Ot{α⋆})◦−

§ t{((p, q), r)}

§ t{(p, (q, r))}
I(Ot{α⋆})

s{(p, (q, r))} § t

s{((p, q), r)} § t
−◦(�s{α 1})

s § t{(p, (q, r))}

s § t{((p, q), r)}
(Ot{α⋆ })◦−

§ t{(p, (q, r))}

§ t{((p, q), r)}
I(Ot{α⋆ })

s{(q, r)} § t

s{(r, q)} § t
−◦(�s{σ})

s § t{(q, r)}

s § t{(r, q)}
(Ot{σ⋆})◦−

§ t{(q, r)}

§ t{(r, q)}
I(Ot{σ⋆})

Composition

s § AV AV § t

s § t
◦

§ AV AV § t

§ t
I

Fig. 11. The structured sequent calculus LT
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ρ ⌊ρ⌋

idFa AX

�, , , R

= OOR

◦, I Cut

structural isomorphism n/a

The ssa-structure of the category of proof nets is nicely made explicit by using LT-

proofs to construct morphisms in net(A): for the inclusion functor i : A → net(A), the

denotation LπMi of a proof π in net(A) is the net constructed by it,

LπMi = J⌊π⌋K .

Proving the main theorem

Proving the main theorem requires to construct the ssa-functor (G, γ) in the diagram

repeated below.

A

F

i
net(A)

(G,γ)

(C,�,⋆ , I, λ)

It will be constructed from three parts: a function G0 on objects, a relation G1 on

morphisms, and a relation γ on virtual unit morphisms. Define G0 by

G0a = Fa G0(A�B) = G0A�G0B

G0a
⋆ = (Fa)⋆ G0(AOB) = G0AOG0B ,

and let G1 and γ be given by the following composite arrow (in the category of sets and

relations).

net(A)
J−K 1

LM
⌊−⌋ 1

LT
L−MF

C

Thus, G1 and γ each take a net N (with 2 ports respectively 1 port) to the set

{LπMF | J⌊π⌋K = N} .

In the sections to come it will be shown that G1 and γ are representable by functions

(Proposition 9.2). Anticipating this fact, the proof of the main theorem is completed

below.

Proof of Theorem 5.10 Firstly, by Proposition 9.2 (G, γ) is a function on morphisms

and virtual morphisms (that it is functional on objects is immediate). Secondly, given

an LT-proof π, by definition (G, γ) takes J⌊π⌋K to LπMF . Since J⌊π⌋K = LπMi, this means

that (G, γ) takes LπMi to LπMF . These two points suffice to make (G, γ) an ssa-functor,

since the calculus LT captures precisely the structure that must be preserved. Next, let

(H, θ) : net(A) → C be an arbitrary ssa-functor such that F = H ◦ i. For a given LT-

proof π, that (H, θ) preserves ssa-structure means it must take a proof net LπMi to a map
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canonically isomorphic to LπMF . Since (G, γ) takes LπMi to LπMF , it follows that (H, θ) and

(G, γ) are canonically isomorphic.

A proof of Theorem 3.3, the corresponding theorem for tensor–dual categories, is con-

tained within the proof of the main theorem, and essentially consists of a selection of

the cases treated there. Those cases relevant to the tensor–dual case will be highlighted

throughout the coming sections, and will be proven without making use of I and λ.

7. Equivariance

The first step in proving the main theorem will be a coherence result for the structural

rules of the calculus LT. These rules are exactly what is made explicit in LT, compared to

LM, and they allow to alternate between different tree-sequents with the same underlying

annotated sequent. A sequence of structural rules will be called a structural derivation.

The coherence result of this section will be that if two structural derivations have the

same premiss and the same conclusion, they have the same categorical denotation.

Definition 7.1. Two tree-sequents s?§ t and q?§r are equivariant if they have the same

underlying annotated sequent, ⌊s? § t⌋ = ⌊q? § r⌋. An equivariance isomorphism ν is a

natural isomorphism in set constructed by a structural derivation in LT,

q? § r

s? § t
ν .

Extending the terminology for proofs, two structural derivations are parallel if they

share the same premiss and conclusion, and equivalent if they construct the same equiv-

ariance isomorphism. The following is a generalisation of coherence for α and σ (see

(Mac Lane, 1963)), but weaker than full coherence for td-categories or ssa-categories.

Proposition 7.2. Any two parallel structural derivations

q? § r

s? § t
ν

q? § r

s? § t
µ

are equivalent, i.e. ν = µ.

The proof is standard, but included for completeness. In diagrams, coherence isomor-

phisms for α and σ may be drawn as double lines, and left unlabelled.

Proof. Let us call structural inferences over α or σ auxiliary, and those of the following

kinds atomic:

(r, AV ) § t

r § (A⋆
V , t)

Φ
r § (AV , t)

(r, A⋆
V ) § t

Φ−1
AV §BW

B⋆
W §A⋆

V

−⋆
§ (AV , t)

A⋆
V § t

λ
AV § t

§ (A⋆
V , t)

λ−1

i.e., in an atomic inference only single formulae are allowed to change sides. Let an

auxiliary derivation be one over only auxiliary inferences, and an atomic derivation be

one that may also include atomic inferences. Let the distance between two equivariant

tree-sequents be the number of annotated formulae that are on opposite sides of the

separator; e.g.AV counts for 1 butBW for 0 towards the distance between s§t{(AV , BW )}
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QŻR

ABŻC DBŻE

AŻB,C DŻB,E

SŻT

coh

(1)

IH

µ0 ν0

µ′
ν′

QŻR

ABŻC DŻE,F

AŻB,C DEŻF

Z

SŻT

coh

(2)

IH IH

µ0 ν0

µZµ′
ν′

QŻR

ABŻC DEŻF

AŻB,C DŻE,F

Z

SŻT

coh

(3)

IH IH

µ0 ν0

µZµ′
ν′

Fig. 12. Diagrams for equivariance I

and q{A⋆
V } § r{BW }. Let the distance of an equivariance derivation be that between its

premiss and conclusion, and call a derivation decreasing if it has no subderivations of

equal or greater distance. Note that between any two equivariant tree-sequents there is

at least one atomic, decreasing derivation.

Narrowing down the possibilities, firstly, by the diagrams Φα, Φσ, λα⋆, and λσ
⋆

each equivariance derivation is equivalent to an atomic one. Secondly, only tree-sequents

with three or more annotated formulae need be considered: for sequents containing just

two formulae the structural inferences that apply are λ, λ 1, −⋆ and Iσ⋆, whose only

non-trivial interactions are described by the diagram λσ
⋆. In particular, this means the

inference rule −⋆ may be ignored, since it is only atomic for tree-sequents AV §BW , with

single-formula antecedent and consequent. Thirdly, λ- and λ 1-inferences may be ignored:

by λα
⋆ consecutive λ- and λ 1-inferences may be replaced by Φ- and Φ 1-inferences,

and two derivations starting (or ending) with a one-sided sequent § t have equivalent

derivations starting (resp. ending) with the same λ-inference (resp. λ 1-inference).

Next, it is shown that two atomic, decreasing derivations µ and ν, not involving −⋆,

λ, or λ 1, are equivalent. The proof proceeds by induction on the distance of derivations.

Let µ0 and ν0 be the first atomic inferences in µ and ν, respectively. There are three

cases.

— Both µ0 and ν0 move BV from left to right (or from right to left),

— µ0 moves BV from left to right, while ν0 moves EW from right to left,

— µ0 and ν0 respectively move BV and EW from left to right (or from right to left).

These cases correspond to the three diagrams shown in Figure 12. In the first case,

the upper triangle commutes by coherence of symmetric monoidal categories; note that

A and D are ασ-isomorphic, as are C and E. The rectangle (1) commutes by naturality

of Φ, and the lower triangle commutes by the induction hypothesis. In the second case,

again the upper triangle commutes by coherence, while the lower two lozenges commute

by the induction hypothesis. The central pentagon (2) commutes by the first diagram

in Figure 13, modulo coherence in monoidal categories. In the third case, there are two
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cases for the central pentagon (3): when there are more than two objects on the left,

and when there are exactly two objects on the left. The first is again covered by the first

diagram in Figure 13, this time read from left to right instead of from top to bottom.

The second case is covered by the second diagram, read from left to right (or from top

right to bottom left, or from bottom right to top left).

Finally, it will be shown that, given the above, every derivation is equivalent to a

decreasing one. The argument will assume a longest subderivation with a decreasing

equivalent, and show by contradiction that it must encompass the entire derivation. Given

a derivation with target s? § t, let µ be its longest subderivation, including the target

s?§ t, that is equivalent to a decreasing derivation—for simplicity, assume that µ itself is

decreasing. If an atomic inference µ0 precedes µ, as below left, then there is a decreasing

derivation ν ◦ µ 1
0 as below right.

q0? § r0

q? § r
µ0

s? § t
µ

q? § r

q0? § r0
µ 1

0

s? § t
ν

But if parallel decreasing derivations are equivalent, µ is equivalent to ν ◦µ 1
0 , and µ ◦µ0

must be equivalent to ν. As ν is decreasing, this contradicts the assumption that µ is

the longest subderivation with a decreasing equivalent; hence, there can be no µ0, and µ

must be the whole derivation.

Combining the above, for any two parallel derivations there are equivalent decreasing

derivations, which must then be equivalent, proving the statement.

Proposition 7.3. Let π and ρ be two parallel LT-proofs. If ⌊π⌋ = ⌊ρ⌋ then π and ρ are

equivalent, i.e., LπMF = LρMF for any F .

Proof. By induction on ⌊π⌋ = ⌊ρ⌋. One case, illustrated below, is treated explicitly;

the other cases are similar. Let ⌊π⌋ = ⌊ρ⌋, π, and ρ be respectively:

L : [Γ, A] K : [∆, B]

L ⊎K : [Γ,∆, A�B]
R

s §A
f

s′ §A
µ

t §B
g

t′ §B
ν

(s′, t′) §A�B
�

s §A
f ′

t §B
g′

(s, t) §A�B
�

(s′, t′) §A�B
κ

(Note that, without loss of generality, possible equivariance inferences at the end of π

and ρ are ignored.) By the induction hypothesis f = f ′ and g = g′. Since ⌊s⌋ = ⌊s′⌋ and

⌊t⌋ = ⌊t′⌋, by Proposition 7.2 the equivariance isomorphisms µ and ν are of the form

− ◦ k and −◦ k′ respectively, where k and k′ are composed over α, σ and inverses. Then

by the same proposition κ = − ◦ k � k′, and

(f ◦ k) � (g ◦ k′) = (f � g) ◦ (k � k′) = (f ′ � g′) ◦ κ .
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XBŻA,Y

Φ

(XB)AŻY

Φ

Φα

XŻB,(A,Y )

X(BA)ŻY

−◦α

−◦Xσ

Φ
XŻ(B,A),Y

σ⋆,Y ◦−

α⋆◦−

X(AB)ŻY

−◦α

Φ

Φα

XŻ(A,B),Y

α⋆◦−

(XA)BŻY

Φ

XŻA,(B,Y )

XAŻB,Y

Φ

BŻC,A
Φ−1

BCŻA

−◦σ

BŻA,C

σ⋆◦−

Φσ CBŻA

Φ

BAŻC

Φ

−⋆

−◦σ

CŻB,A

σ⋆◦−

ABŻC

Φ

−⋆
CŻA,B

AŻB,C

σ⋆◦−

Φσ CAŻB

Φ

AŻC,B
Φ−1

ACŻB

−◦σ

Φα2 Φσ2

Fig. 13. Diagrams for equivariance II

r § A
f

(s, C⋆) § B
g

(r, (s,C⋆)) § A � B
�

((r, s), A⋆
O B⋆) § C t § D

h

(((r, s), A⋆
O B⋆), t) § C � D

�

((r, s), t) § (A � B,C � D)

r § A
f

(s,B⋆) § C
g′

t § D
h

((s,B⋆), t) § C � D
�

((s, t), C⋆
O D⋆) § B

(r, ((s, t), A⋆
O B⋆)) § C � D

�

(r, (s, t)) § (A � B,C � D)

−
→

⌊−⌋

−
→

⌊−⌋

Γ, A ∆, B,C

Γ,∆, A � B,C
R

Λ, D

Γ,∆,Λ, A � B,C � D
R ∼

Γ, A

∆, B,C Λ, D

Γ,∆, B,C � D
R

Γ,∆,Λ, A � B,C � D
R

Fig. 14. A permutation in LT and LM

8. Permutations

A permutation in the sequent calculus LM is the exchange of two adjacent inferences.

Proofs equal up to permutations, written Π ∼ Π′, construct the same proof net. For

structured proofs, it must then be shown that parallel proofs π and π′ construct the

same morphism whenever ⌊π⌋ ∼ ⌊π′⌋. A permutation on LT-proofs will be one on the

corresponding LM-proofs, as illustrated in Figure 14. In such permutations, the logical

inferences that are permuted may be separated by equivariance derivations.

In working with permutations, since there are many inference rules in LT, there are
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Cut-cut permutations Tensor-tensor permutations

(4)
r? § (A,B) s § A⋆ t § B⋆

p? § q

r? § (A,C) s? § B t? § D

q? § (A � B,C � D)
(7)

(5)
r? § A s? § (A⋆, B) t § B⋆

p? § q

r? § A s? § (B,C) t? § D

q? § (A � B,C � D)
(8)

(6)
r? § A s? § B t? § (A⋆, B⋆)

p? § q

r? § A s? § C t? § (B,D)

q? § (A � B,C � D)
(9)

Tensor-cut permutations

(10)
r? § (A,B) s § A⋆ t? § C

q? § B � C

r? § A s? § (B,C) t § C⋆

q? § A � B
(12)

(11)
r? § A s? § (A⋆, B) t? § C

q? § B � C

r? § A s? § C t? § (B,C⋆)

q? § A � B
(13)

Fig. 15. Main permutation cases

potentially very many cases to verify. Narrowing these down, a first observation is that the

=-inference rules in LT, corresponding to the OOR-rule in LM, leave the map constructed

by a proof unchanged; permutations involving these rules then trivially preserve this

morphism. The focus is then on the binary LM-rules R and Cut. Permutation cases

will be listed as abbreviated derivations from three premisses, one of which contains an

active formula from both inferences. The example below corresponds to the permutation

in Figure 14. What will be proved is that the possible ways of making the derivation

concrete, are equivalent.

r §A s § (B,C) t §D

(r, (s, t)) § (A�B,C �D)

The main cases are listed in Figure 15, in three categories: tensor–tensor permutations,

cut–cut permutations, and tensor–cut permutations. Within each category there are sev-

eral cases, where the premiss containing two active formulae combines either the two

left active formulae of both inferences, or one left and one right active formula, or both

right active formulae. This generates all possible cases; however, there will be several

sub-cases for each of the main cases (7)–(13), since for most premisses the antecedent

may be empty or not—the exception being the right premiss of a composition (I or ◦),

which must contain more than one formula. The reason for differentiating cases in this

way is that a permutation may, for example, change a tensor-inference into a virtual

tensor-inference, as in case (11b), preventing the use of a simple list of permutations of
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(14)
§ s{A} A § t

§ s{t}
I(Os{−})−

r § s{A} A § t

r § s{t}
(Os{−})◦− (15)

(16)
§ t{A} § B

§ t{A � B}
I(Ot{A −})

s § t{A} § B

s § t{A � B}
−◦(Ot{A −}) (17)

(18)
§ A (A, s) § t

s § t
−◦(− id)

r § (t, A) s § B

(r, s) § (t,A � B)
sw◦(−�−) (19)

Fig. 16. Shorthand derivations

LT-inferences. Note that in Figure 15 the tree-sequents q? and p? § q are understood to

contain the same annotated formulae as r?, s?, and t? combined.

Abbreviations

To simplify the presentation of permutation cases, several common derivations will be

written in shortened form, as displayed in Figure 16. Tree-contexts t{−} are used to

generalise sequents such asA§B and A§(s,B) to A§t{B}. That the abbrivations (14)–(17)

construct the correct maps is a straightforward induction on s{−} or t{−}; for example,

the following two proofs construct the same morphism Φ(g′ ◦ Φ 1(f)) = (id O g′) ◦ f ,

where g′ = O s{g}.

q § (r, s{A})
f

A § t
g

q § (r, s{t})
O(r,s{−})◦−

q § (r, s{A})
f

(q, r) § s{A}
Φ−1

A § t
g

(q, r) § s{t}
(Os{−})◦−

q § (r, s{t})
Φ

The derivation (18) constructs the correct morphism by the definition of the virtual tensor.

Finally, the derivation (19) uses the switch natural transformation (sw ), also known as

linear distributivity (Cockett and Seely, 1997) or dissociativity (Došen and Petrić, 2005),

given by the below diagram—this makes the abbreviation (19) correct by definition.

(AOB) � C AO ((AOB) � C) �A⋆

AO (B � C) AO ((AOB) �A⋆) � C

sw

η

sw AO(α 1◦(id�σ)◦α)

AO(ǫ�C)

The transpose of the switch map, Φ(sw ), is a map id O η (up to associativity and

symmetry), as is demonstrated by the diagram Φ(sw) in Figure 17. In the diagram, the

path along the top right is Φ(sw), and that along the bottom left is id O η followed by

a coherence isomorphism for O. The big triangle in the diagram commutes by tracing

the diagram Φα2 in Figure 13; the unnamed regions commute by naturality and ηǫ-

cancellation.
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AOB C⋆
O((AOB)�C)

C⋆
O(AO((AOB)�C)�A⋆)

AO((AOB)�A⋆)

C⋆
O(AO(((AOB)�A⋆)�C))

AO(C⋆
O(((AOB)�A⋆)�C))

AOB AO(C⋆
O(B�C)) C⋆

O(AO(B�C))

trace

Φα2

sw

η

η

id

C⋆Oη

C⋆Osw

AOǫ
AOη

C⋆O(AO(ǫ�C))

AO(C⋆O(ǫ�C))

AOη

Φ(sw)

Fig. 17. The transpose of the switch map

(4a)
A⋆

§ B A § s B § t

s⋆ § t

r § (A,B) A § s B § t

r § (s, t)
(4b)

(5a)
§ A A § B B § t

§ t

r § A A § B B § t

r § t
(5b)

(5c)
§ A A § (s,B) B § t

§ (s, t)

r § A A § (s,B) B § t

r § (s, t)
(5d)

§ A § B (A,B) § t

§ t
(6a)

(6b)
r § A § B B § A⋆

§ r⋆

r § A § B (A,B) § t

r § t
(6c)

(6d)
r § A s § B B § A⋆

s § r⋆

r § A s § B (A,B) § t

(r, s) § t
(6e)

Fig. 18. Cut-cut permutation cases

Cut-cut permutations

Lemma 8.1. The permutation of two cuts in an LT-proof preserves its denotation.

Proof. For each of the subcases of equations (4)–(6) in Figure 18, it must be shown that

different instantiations of the derivation are equivalent. (The missing case in Figure 18 is

that with premisses §A, §B, and B §A⋆, whose conclusion would be empty.) By duality

of composition,

s §A A § t

s § t
◦

t⋆ §A⋆ A⋆
§ s⋆

t⋆ § s⋆
◦ ,
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(7a)
§ A,C § B § D

§ (A � B,C � D)

r § A,C § B § D

r § (A � B,C � D)
(7d)

(7b)
§ A,C § B t § D

t § (A � B,C � D)

r § A,C § B t § D

(r, t) § (A � B,C � D)
(7e)

(7c)
§ A,C s § B t § D

(s, t) § (A � B,C � D)

r § A,C s § B t § D

((r, s), t) § (A � B,C � D)
(7f)

Fig. 19. Tensor-tensor permutation cases

the cases (4a) and (6d) are dual to (5b), cases (4b) and (6e) are dual to (5d), case (6b) is

dual to (5a), and case (6c) is dual to (5c). This leaves five cases to be treated explicitly.

Note that of these, only 5b and 5d apply to tensor–dual categories.

5a, 5c The following proofs construct the same map by functoriality of I.

§A
x

A § s{B}
f

§ s{B}
I

B § t
g

§ s{t}
I(Os{−})− ∼

§A
x

A § s{B}
f

B § t
g

A § s{t}
(Os{−})◦−

§ s{t}
I

5b, 5d The following proofs have the same denotation by associativity of composi-

tion.

r §A
f

A § s{B}
g

r § s{B}
◦

B § t
h

r § s{t}
(Os{−})◦− ∼

r §A
f

A § s{B}
g

B § t
h

A § s{t}
(Os{−})◦−

r § s{t}
◦

6a The following proofs have respective denotations I(g ◦ σ)(y x) and Ig(x y),

which are equal by the diagram σ (the symmetry of ).

§A
x

§B
y

(A,B) § t
g

A § t
−◦(id −)

§ t
I ∼

§B
y

§A
x

(A,B) § t
g

B § t
−◦(− id)

§ t
I

Tensor-tensor permutations

Lemma 8.2. The permutation of two tensor-inferences in an LT-proof preserves its

denotation.

Proof. Figure 19 lists the subcases for derivation (7). The two other main cases for

tensor-tensor permutations, (8) and (9), follow by symmetry of the tensor. Note that

only (7c) and (7f) apply to tensor–dual categories.
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7a Both proofs below construct I((A y) O (C z))(x).

§ (A,C)
x

§B
y

§ (A�B,C)
I((id −)Oid)

§D
z

§ (A�B,C �D)
I(idO(id −)) ∼

§ (A,C)
x

§D
z

§ (A,C �D)
I(idO(id −))

§B
y

§ (A�B,C �D)
I((id −)Oid)

7b The maps constructed by the two following proofs are equal by the diagram

below. The left region commutes by naturality of η; the equation that makes the right

region commute, (A y) ◦ λ(x) = λ(I(A y O C)(x)), is an instance of naturality of λ.

The first proof corresponds to the path along the top of the diagram, the second to the

path along the bottom.

T (A�B)O((A⋆
OB⋆)�T )

AO(A⋆
�T ) (A�B)O(A⋆

�T ) (A�B)O(C�D)

(AOσ)◦η

((A�B)Oσ)◦η

(A�B)O((A y)⋆�T )

(A�B)O(λ(I(A yOC)(x))�h)

(A y)O(A⋆�T ) (A�B)O(λ(x)�h)

§ (A,C)
x

§B
y

§ (A�B,C)
I((id −)Oid)

(A� B)⋆ §C
λ

t §D
h

((A�B)⋆, t) § C �D
�

t § (A�B,C �D)
Φ(−◦σ) ∼

§ (A,C)
x

A⋆
§ C

λ
t §D

h

(A⋆, t) § C �D
�

t § (A,C �D)
Φ(−◦σ)

§B
y

t § (A�B,C �D)
((id −)Oid)◦−

7c The two proofs below construct the following maps, denoted π and ρ, where the

identities on A⋆, B and D are taken for the maps f , g, and h respectively.

π = sw ◦ ((σ⋆ ◦ Φ((A�B) ◦ σ)) �D)

= sw ◦ ((σ⋆ ◦ (A⋆ � σ) ◦ ηA) �D)

ρ = σ⋆ ◦ sw ◦ ((σ⋆ ◦ Φ((A⋆ �D) ◦ σ)) �B) ◦ σ

= σ⋆ ◦ sw ◦ ((σ⋆ ◦ (AO σ)) � B) ◦ σ ◦ (B � η)

The main diagram in Figure 20 shows the equation Φ(π) = Φ(ρ), from which π = ρ is

immediate; equivalence for the general case (where f , g, and h need not be identities) fol-

lows by naturality. The path along the top of the main diagram denotes Φ(π), while that

along the left, bottom, and right denotes Φ(ρ). The region (1) commutes by naturality

of ηA,B : B → A⋆ OB �A in A, i.e. the equation

(f⋆ OB �A) ◦ η = (C OB � f) ◦ η
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D,BD D,(A,BA)D D,(AB,A)D D,(AB,AD)

A,BA AB,A AB,(D,AD)

B (D,AD),BA

D,BD

D,B(A,DA)

D,(AD,AB)(D,AD),B(D(A,D))

D,(AD,(D(A,D))B)

D,(AD,(BD)(A,D))

W

D,(AD,A)B

Y

X

Z

D,(AD,AB)

Φ(sw)

(1)

Φα

(2)

sw

η

η

η

η

D,ηD

D,η

D,Bη

η

η,BA

η

AB,η

D,sw

D,η

(D,AD),Bη⋆

D,(AD,(Bη)(A,D))

D,(AD,η⋆B)

D,(AD,(η(A,D))B)

D,(AD,ǫB)

D,sw

W = D,(AD,(B(A,DA))(A,D))

X = D,(AD,((A,DA)(A,D))B)

Y = D,(AD,((AD,A)B)(A,D))

Z = D,(AD,((AD,A)(A,D))B)

A(C,A)ŻC CŻA,CA

AŻCA,C CAŻCA

AŻC,CA ACŻCA

Φσ

Φ

−⋆

−◦σ

Φ

σ⋆◦−

φ 1

ǫ ◦ (σ⋆ ◦ (C⋆
O σ) ◦ η)C⋆ η

σ⋆ ◦ (C⋆
O σ) ◦ η id

(C⋆
O σ) ◦ η σ

(2)

Φ

−⋆

−◦σ

Φ

σ⋆◦−

φ 1

Fig. 20. Diagrams for permutation case (7c)
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(where f : C → A) applied to f = η⋆. The region (2) commutes by tracing the diagram

Φσ, as illustrated below the main diagram.

A⋆
§ C

f

C⋆
§A

−⋆

s §B
g

(C⋆, s) §A�B
�

s § (A�B,C)
σ⋆◦Φ(−◦σ)

t §D
h

(s, t) § (A�B,C �D)
sw◦(−�−) ∼

A⋆
§ C

f
t §D

h

(A⋆, t) § C �D
�

t § (C �D,A)
σ⋆◦Φ(−◦σ)

s §B
g

(t, s) § (C �D,A�B)
sw◦(−�−)

(s, t) § (A�B,C �D)
σ⋆◦−◦σ

7d Both proofs below construct the map (A y OB z) ◦ f .

r § (A,C)
f

§B
y

r § (A�B,C)
((id −)Oid)◦−

§D
z

r § (A�B,C �D)
(idO(id −))◦− ∼

r § (A,C)
f

§D
z

r § (A,C �D)
(idO(id −))◦−

§B
y

r § (A�B,C �D)
((id −)Oid)◦−

7e The maps constructed by the proofs below are equal by naturality of the switch

map.

r § (A,C)
f

§B
y

r § (A�B,C)
((id −)Oid)◦−

t §D
h

(r, t) § (A�B,C �D)
sw◦(−�−) ∼

r § (A,C)
f

t §D
h

(r, t) § (A,C �D)
sw◦(−�−)

§B
y

(r, t) § (A�B,C �D)
((id −)Oid)◦−

7f Equivalence of the proofs below is shown for the special case where f = idAOC ,

g = idB, and h = idD; the general case follows by naturality. The diagram in Figure 21

displays the transpose of the first proof along the top and right edges. The diagram

shows that, up to coherence for the par (O), this map is equal to the map η O η, along

the left edge. By a similar argument also the map constructed by the second proof is the
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A,C BD,(A,C)(BD)

C,A B,((C,A)B) B,(D,((C,A)B)D)

C,(B,AB) B,(C,AB) B,(D,(C,AB)D)

B,(AB,C) B,(D,(AB,C)D)

(D,CD),(B,AB) B,(AB,(D,CD)) B,(D,(AB,CD))

Φα

Φ(sw)

Φ(sw)

η

η B,η

C,η B,sw B,(D,swD)

B,η

η,(B,AB)

B,η B,(D,sw)

Fig. 21. The diagram for permutation case (7f)

transpose of η O η (up to O-coherence).

r § (A,C)
f

r § (C,A)
σ⋆◦−

s §B
g

(r, s) § C,A�B)
sw◦(−�−)

(r, s) § (A�B,C)
σ⋆◦−

t §D
h

((r, s), t) § (A�B,C �D)
sw◦(−�−) ∼

r § (A,C)
f

t §D
h

(r, t) § (A,C �D)
sw◦(−�−)

(r, t) § (C �D,A)
σ⋆◦−

s §B
g

((r, t), s) § (C �D,A�B)
sw◦(−�−)

((r, t), s) § (A�B,C �D)
σ⋆◦−

Tensor-cut permutations

Lemma 8.3. The permutation of a tensor-inference with a cut in an LT-proof preserves

its denotation.

Proof. Figure 22 displays the subcases of permutations (10) and (11). The other two

main cases, (12) and (13), follow from these two (respectively) by the symmetry of the

tensor. By duality of composition, also (10a) follows from (11e), (10b) from (11f), (10c)

from (11g), and (10d) from (11h). The subcases of (11) are treated below; for tensor–dual

categories only the cases (11f) and (11h) apply.
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(10a)
A⋆

§ B A § s § C

s⋆ § B � C

A⋆
§ B A § s t § C

(s⋆, t) § B � C
(10b)

(10c)
r § (A,B) A § s § C

r § (s,B � C)

r § (A,B) A § s t § C

(r, t) § (s,B � C)
(10d)

(11a)
§ A A § B § C

§ B � C

§ A A § B t § C

t § B � C
(11b)

(11c)
§ A (A, s) § B § C

s § B � C

§ A (A, s) § B t § C

(s, t) § B � C
(11d)

(11e)
r § A A § B § C

r § B � C

r § A A § B t § C

(r, t) § B � C
(11f)

(11g)
r § A (A, s) § B § C

(r, s) § B � C

r § A (A, s) § B t § C

((r, s), t) § B � C
(11h)

Fig. 22. Tensor-cut permutation cases

11a The following proofs are equivalent by the definition of ( ).

§A
x

A §B
g

§B
I

§ C
z

§B � C
∼

§A
x

A §B
g

§ C
z

A §B � C

§B � C
I

11b The proofs below construct Ig(x) h and (g � h) ◦ (x id) respectively, which

are equal by naturality for the virtual tensor.

§A
x

A §B
g

§B
I

t § C
h

t §B � C
∼

§A
x

A §B
g

t § C
h

(A, t) §B � C
�

t §B � C
−◦(− id)

11c By naturality of the two virtual tensor operations, the maps constructed by

both proofs are equal to (id z) ◦ g ◦ (x id).

§A
x

(A, s) §B
g

s §B
−◦(− id)

§ C
z

s §B � C
∼

§A
x

(A, s) §B
g

§ C
z

(A, s) §B � C

s §B � C
−◦(− id)

11d By naturality of Φ the map constructed by the second proof below, Φ 1(Φ(f �

g) ◦ (x S)), is equal to Φ 1(Φ(f � g)) ◦ ((x S) � T ), which after removing Φ 1 ◦ Φ is

the map constructed by the first proof (note that S and T stand for the objects � s and
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(20a)
§ A § B (A,B) § t

§ t

§ (A,B) § A t § B

§ t
(21a)

(20b)
§ A s § B (A,B) § t

s § t

§ (A,B) s § A t § B

§ (s, t)
(21b)

(20c)
r § A s § B (A,B) § t

(r, s) § t

r § (A⋆, B⋆) § A t § B

r § t⋆
(21c)

r § (A⋆, B⋆) s § A t § B

r § (s⋆, t⋆)
(21d)

Fig. 23. Cut-elimination cases

� t).

§A
x

(A, s) §B
f

s §B
−◦(− id)

t § C
g

(s, t) §B � C
� ∼

§A
x

(A, s) §B
f

t § C
g

((A, s), t) §B � C
�

(A, s) § (t⋆, B � C)
Φ

s § (t⋆, B � C)
−◦(− id)

(s, t) §B � C
Φ−1

11e, 11g The following proofs are equivalent by the definition of ( ).

r §A
f

s{A} §B
g

s{r} §B
−◦(�s{−})

§ C
z

s{r} §B � C
∼

r §A
f

s{A} §B
g

§ C
z

s{A} §B � C

s{r} §B � C
−◦(�s{−})

11f, 11h The following proofs are equivalent by functoriality of the tensor.

r §A
f

s{A} §B
g

s{r} §B
−◦(�s{−})

t § C
h

(s{r}, t) §B � C
� ∼

r §A
f

s{A} §B
g

t § C
h

(s{A}, t) §B � C
�

(s{r}, t) §B � C
−◦�(s{−},t)

9. Cut-elimination

Cut elimination in LM, the calculus constructing proof nets, proceeds by the reduction

steps in Figure 2, and preserves the net constructed by a proof. Here, it will be shown

that the corresponding proof transformations in the structured calculus LT preserve the

morphisms constructed by proofs.

Lemma 9.1. Cut-elimination steps preserve the denotation of LT-proofs.

Proof. Cuts in the calculus LT may be divided into three kinds, depending on whether

the cut-formula is atomic, a tensor-formula, or a par-formula. For atomic cut formulae
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there are two cases, below, which are immediate.

s § a
f

a § a
id

s § a
◦  

s § a
f

a § a
id

a § t
g

a § t
◦  

a § t
g

Figure 23 lists the cases for cuts on tensor-formula, (20a)–(20c), and for par-formulae,

(21a)–(21d). Up to permutations there are two ways to instantiate each derivation: by

two cuts, on the two active formulae A and B; or by first combining the two derivations

with one active formula by a tensor-inference. For each case these must be shown to be

equivariant. The case (21d) is immediate from (20c) by duality; note that for tensor–dual

categories only these two cases apply.

20a The following proofs are equivalent by the definition of ( ).

§A
x

§B
y

§A�B

(A,B) § t
h

A�B § t
=

§ t
I ∼

§A
x

§B
y

(A,B) § t
h

A § t
−◦(id −)

§ t
I

20b The following proofs are equivalent by naturality of ( ).

§A
x

s §B
g

s §A�B

(A,B) § t
h

A�B § t
=

s § t
◦ ∼

§A
x

s §B
g

(A,B) § t
h

(A, s) § t
−◦(id�−)

s § t
−◦(− id)

20c The following proofs are equivalent by functoriality of the tensor.

r §A
f

s §B
g

(r, s) §A�B
�

(A,B) § t
h

A�B § t
=

(r, s) § t
◦ ∼

r §A
f

s §B
g

(A,B) § t
h

(A, s) § t
−◦(id�−)

(r, s) § t
−◦(−�id)

21a The main diagram in Figure 24 demonstrates that the map constructed by the

first proof below, corresponding to the path along the top right of the diagram, is equal

to the following map, along the left and bottom.

I(h⋆ ◦ ǫ ◦ σ)(y x)

The unnamed regions in the diagram commute by naturality, functoriality, and by the

definition of the virtual tensor. The region (1) is justified by tracing the diagram Φσ for

the identity on A�B, as is done in the two diagrams below the main diagram. The above

morphism is shown equal to that constructed by the second proof below, I(h⋆ ◦ λ(x))(y),

by the final diagram in Figure 24.

§ (A⋆, B⋆)
x

§A⋆ OB⋆
=

§A
y

t §B
h

t §A�B

A⋆ OB⋆
§ t⋆

−⋆

§ t⋆
I ∼

§A
y

§ (A⋆, B⋆)
x

A §B⋆
λ

§B⋆
I

t §B
h

B⋆
§ t⋆

−⋆

§ t⋆
I
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IA I(B,AB) BŻAB T ŻAB

I(AB,A(A,B)) I(AB,B)

A,BŻB A,BŻTA,BŻA(A,B)

IB ITI(A(A,B))

(1)
λσ

⋆

− h

− x

Iη λ −◦h

Iη Iσ⋆

−⋆ −⋆

λ

h⋆◦−

I(ABOǫσ)

λ

I−(x) I−(x)

ǫσ◦−

Ih⋆

I−(x)

Iǫσ

ABŻAB A,BŻA,B

AŻB,AB (A,B)AŻB

AŻAB,B A(A,B)ŻB

Φσ

−⋆

Φ Φ 1

σ⋆◦− −◦σ

Φ

id id

η ǫ

σ⋆η =
(id O ǫσ)η

ǫσ

Φσ

−⋆

Φ Φ 1

σ⋆◦− −◦σ

Φ

I(A⋆
OB⋆) hom(A,B⋆)

I(A�(A⋆
OB⋆)) I((A⋆

OB⋆)�A) IB⋆

σ
ǫ

λ

y − − y I−(y)

Iσ Iǫ

Fig. 24. Diagrams for elimination case (21a)

21b The following proofs are equivalent by functoriality of (O).

§ (A,B)
x

§AOB
=

s⋆ §A⋆
f⋆

t⋆ §B⋆
g⋆

(s⋆, t⋆) §A⋆ �B⋆
�

A⋆ OB⋆
§ (s, t)

−⋆

§ (s, t)
I ∼

§ (A,B)
x

A § s
f

§ (s,B)
I(−Oid)(−)

B § t
g

§ (s, t)
I(idO−)(−)
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21c The case is dual to (20b): the map constructed by the first proof below is equal

to the dual of f⋆ ◦ (y h), which is equal to the map constructed by the second proof by

naturality of the virtual tensor ( ).

r § (A⋆, B⋆)
f

r §A⋆ OB⋆
=

§A
y

t §B
h

t §A�B

A⋆ OB⋆
§ t⋆

−⋆

r § t⋆
◦ ∼

§A
y

t §B
h

(A,B) § r⋆
f⋆

(A, t) § r⋆
−◦(id�−)

t § r⋆
−◦(− id)

r § t⋆
−⋆

To conclude, it follows from the previous lemmata that proof nets factor out exactly

permutations and cut-elimination in LT. The following proposition shows that G1 and γ,

in the proof of Theorem 5.10, are representable by functions from proof nets to morphisms,

respectively vitual morphisms, in an ssa-category.

Proposition 9.2. If two LT-proofs π and π′ construct the same proof net, i.e., J⌊π⌋K =

J⌊π′⌋K (for a sequent ⊢A or A ⊢ B), then they construct the same ssa-morphism, i.e.,

LπMF = Lπ′MF for any functor F : A → C into a (∂-strict) ssa-category C.

Proof. It is standard (see e.g. (Lafont, 1995)) that two LM-proofs construct the same

proof net if and only if they are equal up to permutations and cut-elimination. Corre-

spondingly, two parallel LT-proofs π and π′ construct the same proof net if and only if

there is a sequence π = π1, π2, . . . , πn = π′ such that for each πi, πi+1 either ⌊πi⌋ = ⌊πi+1⌋

or πi and πi+1 are equal up to a permutation. In that case, π and π′ are equivalent by

Proposition 7.3 and Lemmata 8.1, 8.2, 8.3, and 9.1. It follows that J⌊π⌋K = J⌊π′⌋K implies

LπMF = Lπ′MF .
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