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Abstract. Focusing is a general technique for transforming a sequent
proof system into one with a syntactic separation of non-deterministic
choices without sacrificing completeness. This not only improves proof
search, but also has the representational benefit of distilling sequent proofs
into synthetic normal forms. We show how to apply the focusing technique
to nested sequent calculi, a generalization of ordinary sequent calculi
to tree-like instead of list-like structures. We thus improve the reach of
focusing to the most commonly studied modal logics, the logics of the
modal S5 cube. Among our key contributions is a focused cut-elimination
theorem for focused nested sequents.

1 Introduction

The focusing technique has its origin in the foundations of logic programming [22,
1] and is now increasingly relevant in structural proof theory because it improves
proof search procedures [11, 21] and because focused proofs have clearly iden-
tifiable and semantically meaningful synthetic normal forms [31, 6, 10, 8]. The
essential idea of focusing is to identify and coalesce the non-deterministic choices
in a proof, so that a proof can be seen as an alternation of negative phases, where
invertible rules are applied eagerly, and positive phases, where applications of the
other rules are confined and controlled. This, in turn, lets us abstract from the
usual unary and binary logical connectives by collapsing whole phases into n-ary
synthetic connectives. The full theory of focusing was initially developed for the
sequent calculus for linear logic [1], but it has since been extended to a wide
variety of logics [11, 19, 27] and proof systems [7, 4]. This generality suggests that
the ability to transform a proof system into a focused form is a good indication
of its syntactic quality, in a manner similar to how admissibility of cut shows
that a proof system is syntactically consistent.

It is natural to ask whether the focusing technique works as well for modal
logics. Traditionally, modal logics are specified in terms of Hilbert-style axiomatic
systems, but such systems are not particularly suitable since axioms reveal
none of the structure of logical reasoning. It is well known that certain modal
logics, S5 in particular, are not representable in a variant of Gentzen’s sequent
calculus without sacrificing analyticity. There are two principal ways to overcome
this problem. The first is based on labeled proof systems that reify the Kripke
semantics—the frame conditions—directly as formulas in the sequents [24, 29].
These “semantic formulas” are not subformulas of the end-sequent and they cause
the interpretation of sequents to fall outside the class of propositional modal
formulas, and for this reason, such calculi are also called external.
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The second way is to use so-called internal calculi, that enrich the sequent
structure such that analyticity is preserved and such that every sequent has an
interpretation that stays inside the modal language. Well-known examples are
hypersequents [2] and display calculi [3]. A more recent development are nested
sequents [14, 5, 26, 12], which generalize the notion of context from a list-like
structure (familiar from Gentzen’s sequent calculus) to a tree-like structure. Like
ordinary sequents, nested sequents have a straightforward interpretation in the
language of the logic, and enjoy cut admissibility (with a cut-elimination proof
that stays wholly internal to the system) and hence the usual subformula property.
Moreover, nested proof systems can be built modularly for every modal logic in
the S5 cube, in both classical and intuitionistic variants [5, 20].

In this paper, we build a focused variant, with its concomitant benefits, for all
modal logics of the classical S5 cube. For simplicity we use a polarized syntax [15]
consisting of two classes of positive and negative formulas and a pair of shift
connectives to move back and forth between the classes. Crucially, we interpret
3 as positive and 2 as negative, which differs from the polarity that would
be assigned to these connectives if they were interpreted in terms of ? and !,
respectively, from linear logic [25]. Our key technical contributions are: (1) a
purely internal proof of cut-elimination for the focused nested calculus, given
in terms of a traditional rewriting procedure to eliminate cuts (which shows
that our system is compositional and suitably continuous), and (2) a proof of
completeness of the focused system with respect to the non-focused system (and
hence to the Kripke semantics) by showing that the focused system admits the
rules of the non-focused system. It generalizes similar proofs of cut-elimination
and focusing completeness for (non-nested) sequent calculi [11, 19].

To our knowledge there have been only two other attempts to apply the
focusing technique to modal logics. The first uses a labeled system [23], using
the work in [24] on geometric axioms to obtain systems that extend the basic
modal logic K. The cut-elimination and completeness results in [23] are obtained
externally as a reduction to LKF, a focused system for first-order logic [19].
Therefore, the polarities of the modalities are inherited from the associated
quantifiers, i.e., 2 is negative and 3 is positive, similar to our setting. The second
approach [18] also uses nested sequents, but in a restricted form, in which the
tree-structure is reduced to a single branch. This efficiently simulates the standard
sequent system for the modal logic K, but makes both modalities positive.

Our approach uses the full power of nested sequents. and is intended as a
prototype for how similar focused systems may be built for other modal logic
formalisms. After some preliminaries (Section 2), we start with a weakly focused
proof system (Section 3), where negative rules may be applied everywhere,
including in the middle of focused phases. From this system, we extract a strongly
focused system (also Section 3) and a synthetic system (Section 4) where the
logical content of the phases of focusing are abstracted from the level of formulas
to the level of nested sequents. We also sketch the cut-elimination theorem for
this synthetic variant. The synthetic design generalizes similar designs for the
sequent calculus [6, 31].
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d : 2A ⊃ 3A
t : A ⊃ 3A
b : A ⊃ 23A
4 : 33A ⊃ 3A
5 : 3A ⊃ 23A

◦S4 ◦S5

◦T ◦
TB

◦D4 ◦D45

◦
D5

◦D ◦DB

◦K4 ◦
K45

◦
KB5

◦
K5

◦
K

◦
KB

Fig. 1. Left: Some standard modal axioms Right: Modal S5 cube

2 Modal Logics and the Nested Sequent Calculus KN

Classical modal logic is obtained from classical propositional logic by adding the
modal connectives 2 and 3. Starting with a countable set of atoms (a, b, . . . ),
the formulas (A,B, . . . ) of modal logic are given by the following grammar:

A,B, ... ::= a | ā | A ∧B | A ∨B | 2A | 3A (1)

To avoid excessive syntax, formulas are kept in negation-normal form, so the only
formally negated formulas are the atoms. The negation Ā of an arbitrary formula
A is given by the De Morgan laws: ¯̄A = A, A ∧B = Ā ∨ B̄ and 2A = 3Ā. We
also define A ⊃ B as Ā ∨B, A ≡ B as (A ⊃ B) ∧ (B ⊃ A), > as a ∨ ā, and ⊥ as
a ∧ ā (for some atom a).

Modal logics are traditionally specified using Hilbert-style axiom schemata.
The basic modal logic K, for instance, is obtained by adding the following k axiom
to the ordinary Hilbert axioms for propositional logic.

k : 2(A ⊃ B) ⊃ (2A ⊃ 2B) (2)

To obtain the theorems of K, we then also add two inference rules of modus
ponens and necessitation.

A A ⊃ B
mp −−−−−−−−−−−−

B

A
nec −−−−

2A
(3)

Stronger modal logics can be obtained by adding to K other axioms mentioning
the modal connectives. In this paper, we consider the most common five axioms
d, t, b, 4 and 5, which are shown on the left in Figure 1. Picking subsets of
these axioms lets us define thirty-two modal logics, but only fifteen of them are
non-redundant. For example, the sets {b, 4} and {t, 5} both yield the modal logic
S5. The fifteen distinct modal logics follow chains of extension from K to S5 and
can be arranged as a pair of nested cubes depicted on the right in Figure 1; this
is sometimes called the S5 cube [13].

Let us recall the notion of nested sequents, first defined by Kashima [14]
and then independently rediscovered by Poggiolesi [26] (who called them tree-
hypersequents) and Brünnler [5]. In Gentzen’s one-sided sequent calculus, a
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id −−−−−−−−−
Γ{a, ā}

Γ{A,B}
∨ −−−−−−−−−−−−
Γ{A ∨B}

Γ{A} Γ{B}
∧ −−−−−−−−−−−−−−−−−

Γ{A ∧B}
Γ{[A]}

2 −−−−−−−−−
Γ{2A}

Γ{3A, [A,∆]}
k3 −−−−−−−−−−−−−−−−−−

Γ{3A, [∆]}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ{3A, [A]}
d3 −−−−−−−−−−−−−−

Γ{3A}
Γ{3A,A}

t3 −−−−−−−−−−−−
Γ{3A}

Γ{[∆,3A], A}
b3 −−−−−−−−−−−−−−−−−−

Γ{[∆,3A]}
Γ{3A, [3A,∆]}

43 −−−−−−−−−−−−−−−−−−−−
Γ{3A, [∆]}

Γ{3A}{3A}
53 −−−−−−−−−−−−−−−− dp(Γ{ }{∅}) ≥ 1

Γ{3A}{∅}

Fig. 2. Rules for KN + X3. The first row constitutes KN.

sequent is just a multiset of formulas; nested sequents generalize this notion to a
multiset of formulas and boxed sequents, resulting in a tree structure.

Definition 2.1 A nested sequent (Γ,∆, . . . ) is a finite multiset of formulas and
boxed sequents of the form [∆], where ∆ is itself a nested sequent. In other words,
nested sequents have the following grammar:

Γ,∆, . . . ::= A1, . . . , Am, [Γ1], . . . , [Γn] (4)

Both m and n may be 0, in which case the sequent is empty ; when we need to
be explicit, we will use the notation ∅ to stand for an empty sequent. As is usual
in sequent calculi, we consider the comma to be associative and commutative.

Definition 2.2 (Corresponding Formulas) For any nested sequent Γ , a
corresponding formula, written fm(Γ ), gives an interpretation of Γ as a modal
logic formula. Corresponding formulas obey the following equivalences: fm(∅) ≡ ⊥,
fm(A) ≡ A, fm([Γ ]) ≡ 2fm(Γ ), and fm(Γ1, Γ2) ≡ fm(Γ1) ∨ fm(Γ2).

Definition 2.3 (Context) An n-holed context is like a nested sequent but
contains n pairwise distinct numbered holes of the form { }i (for 1 ≤ i ≤ n) in
place of formulas. (No hole can occur inside a formula.) We depict such a context
as Γ{ }1 · · · { }n. Given such a context and n nested sequents ∆1, . . . ,∆n, we
write Γ{∆1}1 · · · {∆n}n to stand for the nested sequent where the hole { }i (for
1 ≤ i ≤ n) in the context has been replaced by ∆i, with the understanding that
if ∆i is empty then the hole is simply removed. Unless there is any ambiguity,
we will omit the hole index subscripts in this paper to keep the notation light.

Definition 2.4 The depth of Γ{ }, written dp(Γ{ }), is given inductively by:
dp({ }) = 0, dp(∆,Γ{ }) = dp(Γ{ }), and dp([Γ{ }]) = dp(Γ{ }) + 1.

Example 2.5 Let Γ{ }{ } = A, [B, { }, [{ }], C]. For the sequents ∆1 = D
and ∆2 = A, [C], we get: Γ{∆1}{∆2} = A, [B,D, [A, [C]], C] and Γ{∅}{∆2} =
A, [B, [A, [C]], C]. We also have that dp(Γ{ }{∆1}) = 1 and dp(Γ{∆1}{ }) = 2.

The basic modal logic K (as presented in [5]) is captured using nested sequents
as the cut-free proof system KN shown in the first row in Figure 2. The deductive
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system corresponding to each normal extension K + X, where X ⊆ {d, t, b, 4, 5} is
a set of modal axioms (Figure 1), can be obtained by adding the corresponding
diamond rules X3 ⊆ {d3, t3, b3, 43, 53} (final two rows of Figure 2) to KN. The
53 rule has a side condition that the context in which the principal 3-formula
occurs has non-zero depth, i.e., that it does not occur at the root of the conclusion
sequent.

To make the correspondence between extensions of K and the proof systems
precise, we need the following additional notion:

Definition 2.6 (45-Closure) We say that X ⊆ {d, t, b, 4, 5} is 45-closed, if:

– whenever 4 is derivable in K + X, 4 ∈ X
– whenever 5 is derivable in K + X, 5 ∈ X.

In this paper, we will always work with 45-closed axiom sets. The reason is that,
for example, the axiom 4 is not provable (without cut) in KN + {t3, 53} even
though 4 is a theorem of the logic K + {t, 5} (which is S5). Note that this is not
a real restriction, since for every logic in the modal cube (Figure 1) there is a
45-closed set of axioms defining it (see [5] for details). We can now state the
soundness, completeness, and cut-admissibility for KN and its extensions.

Theorem 2.7 Let cut be the following rule:

Γ{A} Γ{Ā}
cut −−−−−−−−−−−−−−−−

Γ{∅}

Let X ⊆ {d, t, b, 4, 5} be 45-closed. For any formula A, the following are equivalent.

1. A is a theorem of K + X.
2. A is provable in KN + X3 + cut.
3. A is provable in KN + X3.

The proof that 1 =⇒ 2 =⇒ 3 =⇒ 1 can be found in [5]. ut

3 The Focused Systems KNwF and KNF

The essence of the focusing technique [1] is to classify formulas into positive
formulas, whose rules are not invertible, and negative whose rules are invertible.
(As usual, we consider a rule to be invertible if whenever the conclusion of the rule
is derivable then so are each of its premises.) Due to invertibility, when searching
for a proof it is always safe to apply—reading from conclusion to premises—a rule
for a negative formula, so these may be applied at any time. On the other hand,
rules for positive formulas may require rules on other formulas to be applied first.
For example, the KN sequent 2ā,3a can only be proved by first applying the
2 rule, showing that 3-formulas are positive. A focused proof is one where the
decision to apply a rule to a positive formula has to be explicitly taken, which
then commits the proof to continue applying rules to this focused positive formula
and its immediate positive descendants (and no other formula in the sequent),
which drastically reduces the search space. The main theorem of focusing is that
this strategy is complete, i.e., every theorem has a focused proof.
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We will now build such a focused version of KN. To simplify the meta-theorems
about this system, we will adopt a polarized syntax [15] where the positive and
negative formulas are grouped together in different syntactic categories and
explicitly mediated by shift connectives (↑ and ↓). As already mentioned, 3 is
in the positive class, and its dual 2 is in the negative class, unlike what would
be expected if they were interpreted in terms of the linear logic modalities ?
and ! respectively. One way of explaining this phenomenon is that the standard
shallow rule k in sequent calculus (corresponding to the promotion rule of linear
logic) realises two steps at once: accessing the formula under a 2 and moving
the 3-formulas from the context next to that formula. These two steps are done
by two different rules 2 and k3 in nested sequent systems like KN.

The rest of the formulas have ambiguous polarities and the choice does not
alter the focusing result — some reasons to pick certain polarizations can be found
in [11, 19]. We arbitrarily assign all atoms to be positive (and their negations
to be negative), and present the system in the strongest form, i.e., split the
conjunctions and disjunctions into positive and negative versions. Thus, polarized
formulas have the following grammar:

positive: P,Q, . . . ::= a | P +

∧Q | P +

∨Q | 3P | ↓N
negative: N,M, . . . ::= ā | N −

∨M | N −

∧M | 2N | ↑P (5)

Each column in the grammar above defines a De Morgan dual pair; note that the
negation of a positive formula is a negative formula, and vice versa. Units are
definable similarly to the non-focused case, so we have t+ = a

+

∨ ↓ā, f+ = a
+

∧ ↓ā,
and dually for f−/t−. When the polarity of a formula is not important, we write
it as A,B, . . . . A polarized nested sequent is the same as in the non-focused
setting, with the difference that all formulas are polarized. Likewise, a polarized
context is a polarized nested sequent where some formulas have been replaced by
holes. In the rest of this paper, we will drop the adjective “polarized” and treat
all constructs implicitly as polarized, unless otherwise indicated.

Definition 3.1 (Neutral) A formula is said to be neutral if it is a positive
formula or a negated atom. A nested sequent is neutral if it is built from multisets
of neutral formulas and boxed neutral sequents. A context Γ{ } · · · { } is neutral
if Γ{∅} · · · {∅} is neutral.

Definition 3.2 A focused sequent is of the form Γ{〈P 〉} where Γ{ } is a
context and P is a positive formula. The formula P is called its focus. The notion
of corresponding formula (Def. 2.2) is extended with fm(〈P 〉) ≡ fm(P ).

The inference rules of the focused system KNwF (w for “weak”) are shown
in the first three rows in Figure 3 (the basic system for K). Then, for a set
X ⊆ {d, t, b, 4, 5}, we write X3

f ⊆ {d3

f , t
3

f , b
3

f , 4
3

f , 5
3

f } for the corresponding subset
of the focused diamond rules in the last two rows. Observe that the rules for
negative formulas are exactly the same as in the unfocused system, while the
rules for positive formulas can only be applied if the principal formula is in focus.
Mediating between ordinary and focused sequents are the rules dec (“decide”),
that chooses a positive formula in the conclusion and focuses on a copy of it
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Γ{P}
sto −−−−−−−−

Γ{↑P}
Γ{N}

rel −−−−−−−−−−−
Γ{〈↓N〉}

Γ{P, 〈P 〉}
dec −−−−−−−−−−−−−

Γ{P}
Γ{A} Γ{B}

−
∧ −−−−−−−−−−−−−−−−−

Γ{A −
∧B}

Γ{A,B}
−
∨ −−−−−−−−−−−−
Γ{A −

∨B}
Γ{[A]}

2 −−−−−−−−−
Γ{2A}

id −−−−−−−−−−−−
Γ{ā, 〈a〉}

Γ{〈A〉} Γ{〈B〉}
+

∧−−−−−−−−−−−−−−−−−−−−−−−
Γ{〈A +

∧B〉}
Γ{〈A〉}

+

∨1 −−−−−−−−−−−−−−−
Γ{〈A +

∨B〉}
Γ{〈B〉}

+

∨2 −−−−−−−−−−−−−−−
Γ{〈A +

∨B〉}
Γ{[〈A〉 ,∆]}

k3f −−−−−−−−−−−−−−−−−
Γ{〈3A〉 , [∆]}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ{[〈A〉 ]}
d3
f −−−−−−−−−−−−
Γ{〈3A〉}

Γ{〈A〉}
t3f −−−−−−−−−−−−
Γ{〈3A〉}

Γ{[∆], 〈A〉}
b3
f −−−−−−−−−−−−−−−−−
Γ{[∆, 〈3A〉 ]}

Γ{[〈3A〉 ,∆]}
43f −−−−−−−−−−−−−−−−−
Γ{〈3A〉 , [∆]}

Γ{∅}{〈3A〉}
53f −−−−−−−−−−−−−−−− dp(Γ{ }{∅}) ≥ 1
Γ{〈3A〉}{∅}

Fig. 3. Focused Rules for KNF + X3
f and KNwF + X3

f . The first three rows constitute
KNwF and KNF.

in the premise, and rel (“release”) that drops the focus on a shifted formula.
Since dec keeps the original positive formula in the context, there is no need
to incorporate contraction in every positive rule, like in KN. The sto (“store”)
rule removes a shift in front of a positive formula and is used to produce neutral
premises from non-neutral conclusions.

We define the system KNF to be a restriction of KNwF where the conclusion
of the dec rule is required to be neutral, as well as the contexts surrounding
the focus in all rules involving focused sequents. Thus, in KNF, the dec rule is
only applicable when no other rule is applicable (no negative rule as there is
no negative formula in a neutral sequent and no positive rule as there is no
focus), and hence we sometimes call it strongly focused. We immediately have
the following proposition:

Proposition 3.3 Let X ⊆ {d, t, b, 4, 5}. A formula A is provable in KNF + X3

f

if and only if it is provable in KNwF + X3

f .

Proof A derivation in KNF + X3

f is by definition also a derivation in KNwF + X3

f .
Conversely, to convert a derivation in KNwF + X3

f into one in KNF + X3

f , we first
have to replace all instances of id with a sequence of applications of {2, −∧, +

∧, sto}
followed (reading from conclusion upwards) by id, to ensure that the conclusion
of the id rule is neutral. Then, the negative rules {−∧, −∨,2} can be permuted down
by straightforward rule permutations to ensure that dec only applies to neutral
sequents. ut

In order to establish the soundness and completeness of KNwF, we use the
obvious forgetful injection of the polarized syntax into the unpolarized syntax.

Definition 3.4 (Depolarization) If A is a polarized formula, then we write
bAc for the unpolarized formula obtained from A by erasing the shifts ↑ and ↓,
collapsing

+

∧ and
−

∧ into ∧, and collapsing
+

∨ and
−

∨ into ∨.
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Γ{∅}
weak −−−−−−−

Γ{∆}
Γ{∅}{〈P 〉}

weakf −−−−−−−−−−−−−−−
Γ{∆}{〈P 〉}

Γ{ā, ā}
cont −−−−−−−−−

Γ{ā}
Γ{[∆], [Σ]}

k[ ] −−−−−−−−−−−−−−
Γ{[∆,Σ]}

Fig. 4. Structural rules.

Γ{[ ]}
d[ ] −−−−−−−

Γ{∅}
Γ{[∆]}

t[ ] −−−−−−−−−
Γ{∆}

Γ{[Σ, [∆]]}
b[ ] −−−−−−−−−−−−−−

Γ{[Σ],∆}
Γ{[∆], [Σ]}

4[ ] −−−−−−−−−−−−−−
Γ{[[∆], Σ]}

Γ{[∆]}{∅}
5[ ] −−−−−−−−−−−−−

Γ{∅}{[∆]}

Fig. 5. Structural modal rules for axioms d, t, b, 4, 5 (where dp(Γ{ }{[∆]}) ≥ 1 in 5[ ])

Theorem 3.5 (Soundness) Let X ⊆ {d, t, b, 4, 5}. If a formula A is provable
in KNF + X3

f , then bAc is provable in KN + X3.

Proof By forgetting the polarity information, every KNF + X3

f proof of A is
transformed into a KN + X3 proof of bAc. ut

Completeness is considerably trickier. We use a technique pioneered by Laurent
for linear logic [16] and proceed via cut-elimination in KNwF.

3.1 Cut Elimination

In this section we will show that a collection of cuts is admissible for KNwF+X3

f .
As usual, a rule is said to be admissible if it is the case that whenever any instance
of all its premises is derivable, so is the corresponding instance of the conclusion.
In order to show the admissibility of the cut rules, it will be very useful to appeal
to a collection of other admissible and invertible rules.

Lemma 3.6 Let X ⊆ {d, t, b, 4, 5}. The rules weak, weakf , cont, and m[ ] (shown
in Figure 4) are admissible for KNwF + X3

f . Moreover, the rules sto, 2,
−

∧, and
−

∨
are invertible for KNwF + X3

f .

Proof By straightforward induction on the height of the derivation. ut

Note that here we use contraction only on negated atoms because that is
all that is needed in the cut-elimination proof below. One can indeed show that
the general contraction rule on arbitrary sequents (and not just formulas) is
admissible, but this requires a complicated argument for focused sequents. The
corresponding result for KN is shown in [5].

Lemma 3.7 Let X ⊆ {d, t, b, 4, 5}. If X is 45-closed, then any rule x[ ] in X[ ]

(shown in Figure 5) is admissible for KNwF + X3

f .

Proof Analogous to the corresponding lemma for KN in [5, Lemma 9]. The full
proof can be found in [9, Lemma 3.7]. ut

We are now ready to prove the admissibility of cuts. Specifically, we show
all the cuts in Figure 6 are simultaneously admissible. The cut1 rule is our
standard cut between ordinary nested sequents, while cut2 defines a principal
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Γ{P} Γ{P̄}
cut1 −−−−−−−−−−−−−−−−−

Γ{∅}
Γ{〈P 〉} Γ{P̄}

cut2 −−−−−−−−−−−−−−−−−−−−
Γ{∅}

Γ{〈Q〉}{P} Γ{∅}{P̄}
cut3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{〈Q〉}{∅}

Fig. 6. The various cuts in KNwF + X3
f

cut between a focus and its dual as cut formulas. Finally, cut3 is a commutative
cut for situations where the positive cut formula is not principal. Note that this
collection of cuts is just sufficiently large to make the standard cuts admissible.
It is easy to imagine many other cut-like rules, but it is not necessary—and may
not even be possible—to admit them.

Definition 3.8 The height of a formula A, written ht(A), is computed induc-
tively as follows: ht(a) = ht(ā) = 1, ht(A ? B) = max(ht(A),ht(B)) + 1 where
? ∈ {+

∧,
−

∧,
+

∨,
−

∨}, and ht(©A) = ht(A) + 1 where © ∈ {3,2, ↑, ↓}. The rank of an
instance of one of the cut rules is the height of its cut formula (the P in Figure 6).

Lemma 3.9 (Cut Reduction) Let X ⊆ {d, t, b, 4, 5} be 45-closed. For every
derivation

D1

Γ1

D2

Γ2
cuti −−−−−−−−−−−−−−−

Γ0

(6)

in KNwF+X3

f +{cut1, cut2, cut3}, where D1 and D2 are cut-free, there is a cut-free
derivation of Γ0 in KNwF + X3

f .

Proof Let D1 always stand for the derivation with the positive cut formula. We
proceed by lexicographic induction: the induction hypothesis may be applied
whenever (1) the rank of the cut decreases, or (2) the rank stays the same and a
cut1 is replaced by a cut2, or (3) the rank stays the same and the height of D1

decreases. The height of D2 does not matter for the induction. The proof is then
given in terms of a terminating rewrite sequence, written with ;.

Most cases of this rewrite are standard, so we show here only certain cases
characteristic of focusing; the full list of cases can be found in [9, Lemma 3.9].
– The commutative cases are simple, relying on the invertibility of the negative

rules (Lemma 3.7). Here we show the case of rel above a cut3:

D′1

Γ{N}{P}
rel −−−−−−−−−−−−−−−−

Γ{〈↓N〉}{P}
D2

Γ{∅}{P̄}
cut3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{〈↓N〉}{∅}
;

D′1

Γ{N}{P}

D2

Γ{∅}{P̄}
weak −−−−−−−−−−−−

Γ{N}{P̄}
cut1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{N}{∅}
rel −−−−−−−−−−−−−−−

Γ{〈↓N〉}{∅}

The resulting cut1 can then be reduced because it has a smaller height.
– The case of dec with the cut formula being principal:

D′1

Γ{P, 〈P 〉}
dec −−−−−−−−−−−−

Γ{P}
D2

Γ{P̄}
cut1 −−−−−−−−−−−−−−−−−−−−

Γ{∅}
;

D′1

Γ{P, 〈P 〉}
D2

Γ{P̄}
cut3 −−−−−−−−−−−−−−−−−−−−−−−

Γ{〈P 〉}
D2

Γ{P̄}
cut2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}
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In the resulting derivation, we first reduce the upper cut3, which is allowed
because the height is smaller. Then, we reduce the lower cut, which is allowed
because a cut2 can be used to justify a cut1 of the same rank.

– Finally, here is a characteristic case for the modal axioms, for the 43

f rule:

D′1

Γ{[〈3P 〉 , ∆]}
43 −−−−−−−−−−−−−−−−
Γ{〈3P 〉 , [∆]}

D2

Γ{2P̄ , [∆]}
cut2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[∆]}
;

D′1

Γ{[〈3P 〉 , ∆]}

D2

Γ{2P̄ , [∆]}
2−1 ........................

Γ{[P̄ ], [∆]}
4[ ] .......................

Γ{[[P̄ ], ∆]}
2 −−−−−−−−−−−−−−
Γ{[2P̄ ,∆]}

cut2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{[∆]}

The resulting cut2 can be reduced because it has a smaller height. In the
right branch, the 2−1 rule is the admissible inverse of the 2 rule (Lemma 3.6)
and the 4[ ] rule is given by Lemma 3.7. ut

Theorem 3.10 Let X ⊆ {d, t, b, 4, 5} be 45-closed. If a sequent Γ is provable in
KNF + X3

f + {cut1, cut2, cut3}, then it is also provable in KNF + X3

f .

Proof Apply Lemma 3.9 to all cut instances in the derivation, starting with a
topmost one. This gives us a cut-free proof in KNwF + X3

f , from which we get a
cut-free proof in KNF + X3

f using Proposition 3.3. ut

3.2 Completeness

We can now use Theorem 3.10 to show completeness of the focused systems
KNF + X3

f (and hence KNwF + X3

f ) with respect to KN + X3. As an intermediate
step, we consider a variant of KN that can deal with polarized formulas. Let KN′

denote the system that is obtained from KN by adding the rules

Γ{N}
rel −−−−−−−−

Γ{↓N}
Γ{P}

sto −−−−−−−−
Γ{↑P}

and by duplicating the rules for ∧ and ∨ such that there is a variant for each of
+

∧ and
−

∧, and
+

∨ and
−

∨, respectively. We immediately have the following lemma:

Lemma 3.11 A formula A is provable in KN′+X3 if and only if bAc is provable
in KN + X3. ut

We are now going to simulate KN′ + X3 in KNwF + X3

f . For this, we need
another property of KNwF:

Lemma 3.12 (Identity Reduction) The following rule is derivable in KNwF:

gid −−−−−−−−−−−−
Γ{〈P 〉 , P̄}

Proof By straightforward induction on the height of P . Details can be found
in [9, Lemma 3.12]. ut

Lemma 3.13 (Simulation) Let X ⊆ {d, t, b, 4, 5} and let A be a formula that
is provable in KN′ + X3. Then A is provable in KNwF + X3

f + cut1.
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Proof We show that each rule in KN′ + X3 is derivable in KNwF + X3

f + cut1.
Then the lemma follows by replacing in the proof of A in KN′ + X3 each instance
of a rule by the corresponding derivation in KNwF + X3

f . For the rules sto,2,
−

∧,
−

∨
this is trivial. We show below the cases for

+

∨, d3, and 43. The others are similar,
and a full list can be found in [9, Lemma 3.13].

Γ{P,Q}
weak ...............................

Γ{P +

∨Q,P,Q}

gid ========================

Γ{P +

∨Q, 〈Q〉 , P, Q̄}
+

∨ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{P +

∨Q, 〈P +

∨Q〉 , P, Q̄}
dec −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{P +

∨Q,P, Q̄}
cut1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{P +

∨Q,P}

gid =====================

Γ{P +

∨Q, 〈P 〉 , P̄}
+

∨ −−−−−−−−−−−−−−−−−−−−−−−−−
Γ{P +

∨Q, 〈P +

∨Q〉 , P̄}
dec −−−−−−−−−−−−−−−−−−−−−−−−−

Γ{P +

∨Q, P̄}
cut1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{P +

∨Q}

Γ{3P, [P ]}
sto −−−−−−−−−−−−−−−

Γ{3P, [↑P ]}
2 −−−−−−−−−−−−−−−
Γ{3P,2↑P}

gid ===========================

Γ{3P, [〈P 〉 , P̄ ],3↓P̄}
k3

f
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{3P, 〈3P 〉 , [P̄ ],3↓P̄}

dec −−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{3P, [P̄ ],3↓P̄}

rel −−−−−−−−−−−−−−−−−−−−−−−−
Γ{3P, [〈↓P̄ 〉 ],3↓P̄}

d3

f
−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{3P, 〈3↓P̄ 〉 ,3↓P̄}

dec −−−−−−−−−−−−−−−−−−−−−−−−−
Γ{3P,3↓P̄}

cut1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{3P}

Γ{3P, [3P,∆]}

gid ============================

Γ{3P, [〈3P 〉 ,2P̄ ,∆]}
43

f
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{3P, 〈3P 〉 , [2P̄ ,∆]}

dec −−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{3P, [2P̄ ,∆]}

cut1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{3P, [∆]}

Note that we make a crucial use of cut1 and Lemma 3.12. ut

Theorem 3.14 (Completeness) Let X ⊆ {d, t, b, 4, 5} be 45-closed. For any
A, if bAc is provable in KN + X3, then A is provable in KNF + X3

f .

Proof Suppose that we have a proof of bAc in KN + X3. By Lemma 3.11, there
is a proof of A in KN′ + X3. Then, by Lemma 3.13, there is also a proof of A in
KNwF + X3

f + cut1. Finally, using Theorem 3.10, we get a proof in KNF + X3

f . ut

4 The Synthetic System

As already mentioned, the strongly focused system KNF is given as a restriction
of KNwF where the dec rule is restricted to neutral contexts. However, the cut-
elimination and admissibility theorems (3.9 and 3.10) were proved in the KNwF
system and made essential use of the admissibility of weakening by arbitrary
formulas, including negative formulas, and of the possibility of applying negative
rules even within a positive phase. This freedom simplifies the proofs of the meta-
theorems, and leaves them at least a recognizable variant of similar proofs in
the non-focused system KN. Of course, thanks to Proposition 3.3, we also have a
cut-elimination proof for KNF+X3

f , but this is not entirely satisfactory: it is not an
internal proof, i.e., a sequence of cut reductions for KNF+X3

f + {cut1, cut2, cut3}
that stays inside the system.

One possible response to this issue might be to try to redo the cut-elimination
using just KNF+X3

f , but this quickly gets rather complicated because we no longer
have access to the weakening rules (Figure 4) in the case where the weakened
structure contains negative formulas. Indeed, published proofs of similar attempts
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Γ 4M ∆ 4 N
4
−
∨ −−−−−−−−−−−−−−−−−−−−
Γ,∆ 4M

−
∨N

Γ 4M
4
−
∧1 −−−−−−−−−−−−−−
Γ 4M

−
∧N

Γ 4 N
4
−
∧2 −−−−−−−−−−−−−−
Γ 4M

−
∧N

Γ 4 N
42 −−−−−−−−−−−−

[Γ ] 4 2N

4↑ −−−−−−−−−
P 4 ↑P

4id −−−−−−
ā 4 ā

Fig. 7. Synthetic substructure matching

for the sequent calculus usually solve this problem by adding additional cut rules,
which greatly complicates the cut-elimination argument [11, 19, 28].

To avoid this complexity, it is better to consider the focused proof system
in a synthetic form where the logical inference rules for the various connectives
are composed as much as possible, so that the proof system itself contains
exactly two logical rules: one for a positive and one for a negative synthetic
connective [31, 6]. This synthetic view moreover improves the concept of focusing
itself by showing that a focused proof consists of: (1) a selection of a certain
substructure (the generalization of subformula) of the principal formula, and
(2) the contextualization of that substructure. For positive principal formulas,
this contextualization is in the form of a check in the surrounding context for
other structures, such as dual atoms or nested sequents. For negative principal
formulas, on the other hand, contextualization amounts to asserting the presence
of additional structure in the surrounding context. This design will become
clear in the explicit formulation of the synthetic version of KNF—which we call
KNS—in the rest of this section.

4.1 Synthetic Substructures

For any negative formula, there is a collection of corresponding nested sequents
that represents one of the possible branches taken in a sequence of negative rules
applied to the formula. This correspondence is formally given below.

Definition 4.1 (Matching) The nested sequence Γ matches the negative
formula N , written Γ 4 N , if it is derivable from the rules in Figure 7.

For the system to follow, we will use two additional sequent-like structures
that are not themselves neutral sequents.

Definition 4.2 (Extended Sequents)

– An inversion sequent is a structure of the form Γ{N} where Γ{ } is a neutral
sequent context.

– A focused sequent is a structure of the form Γ{〈∆〉} where Γ{ } is a neutral
sequent context and ∆ is a neutral sequent.

Note that in Γ{N}, there is exactly one occurrence of N as a top-level formula
anywhere; likewise, in Γ{〈∆〉}, there is a single occurrence of the sub-structure
〈∆〉 . Hence, these extended sequent forms uniquely determine their decomposition
into context (the Γ{ }) and the extended entity (the N or the 〈∆〉).
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∆ 4 P̄ Γ{P, 〈∆〉}
pos〈〉 −−−−−−−−−−−−−−−−−−−−−−−−

Γ{P}

{
Γ{∆}

}
∆4N

neg〈〉 −−−−−−−−−−−−−−−−
Γ{N}

Γ{〈∆1〉} Γ{〈∆2〉}
split〈〉 −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{〈∆1,∆2〉}
id〈〉 −−−−−−−−−−−−

Γ{ā, 〈ā〉}
Γ{P̄}

rel〈〉 −−−−−−−−−−
Γ{〈P 〉}

Γ{[Ω, 〈∆〉 ]}
k〈〉 −−−−−−−−−−−−−−−−−

Γ{[Ω], 〈[∆]〉}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ{[〈∆〉 ]}
d〈〉 −−−−−−−−−−−

Γ{〈[∆]〉}
Γ{〈∆〉}

t〈〉 −−−−−−−−−−−
Γ{〈[∆]〉}

Γ{[Ω], 〈∆〉}
b〈〉 −−−−−−−−−−−−−−−−−

Γ{[Ω, 〈[∆]〉 ]}

Γ{[Ω, 〈[∆]〉 ]}
4〈〉 −−−−−−−−−−−−−−−−−

Γ{[Ω], 〈[∆]〉}
Γ{〈[∆]〉}{∅}

5〈〉 −−−−−−−−−−−−−−−− dp(Γ{∅}{ }) ≥ 1
Γ{∅}{〈[∆]〉}

Fig. 8. Synthetic rules for KNS + X〈〉. The first two rows constitute KNS.

Definition 4.3 (Corresponding Formula) A corresponding formula of a
neutral or extended sequent Γ , denoted as fm̄(Γ ), is a negative formula satisfying:

fm̄(Γ,∆) ≡ fm̄(Γ )
−

∨ fm̄(∆) fm̄(P ) ≡ ↑P fm̄(N) ≡ N

fm̄([Γ ]) ≡ 2fm̄(Γ ) fm̄(〈∆〉) ≡ ↑
(

fm̄(∆)
)

where N ≡M stands for (↑N̄ −

∨M)
−

∧ (↑M̄ −

∨N).

The system KNS consists of the rules in the first two lines of Figure 8. For a
set X ⊆ {d, t, b, 4, 5}, we write X〈〉 ⊆ {d〈〉, t〈〉, b〈〉, 4〈〉, 5〈〉} for the corresponding
structural rules in Figure 8, and KNS + X〈〉 for the corresponding system. It
becomes clearer that the duality between positive and negative synthetic rules
amounts to a meta-quantification over substructures: the positive rule pos〈〉

quantifies existentially over the substructures of P̄ and pick one such ∆ as a
focus in the unique premise, while the negative rule quantifies universally, and so
the rule actually consists of one premise for each way in which to prove ∆ 4 N .
Thus, for example, if N is ā

−

∧2(b̄
−

∨↑P ), then we know that ā 4 N and [b̄, P ] 4 N ,
so the rule instance in this case is:

Γ{ā} Γ{[b̄, P ]}
neg〈〉 −−−−−−−−−−−−−−−−−−−−

Γ{ā −

∧2(b̄
−

∨ ↑P )}

It is instructive to compare KNS + X〈〉 with KNwF + X3

f (and hence also
KNF+X3

f ). In the latter system, the focus 〈3P 〉 is used to drive the modal rules
{k3

f , d
3

f , t
3

f , b
3

f , 4
3

f , 5
3

f }. Such modal rules can be applied only a fixed number of
times before 〈3P 〉 needs to be reduced to 〈P 〉 , and logical rules or the identity to
be used — which is necessary to finish the proof since foci can never be weakened.
Thus, the analysis of P is forced to be interleaved with the modal rules for 3P ,
as shown by the alternation of k3

f and
+

∨ in the derivation on the left below. In
KNS+X〈〉, in contrast, the pos〈〉 rule itself performs the analysis of P up front to
produce a synthetic substructure; the modal rules {k〈〉, d〈〉, t〈〉, b〈〉, 4〈〉, 5〈〉} then
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Γ{P} Γ{P̄}
cut〈〉1 −−−−−−−−−−−−−−−−−

Γ{∅}
Γ{〈∆〉} Γ{∆}

cut〈〉2 −−−−−−−−−−−−−−−−−−−−
Γ{∅}

Γ{〈∆〉}{P} Γ{∅}{P̄}
cut〈〉3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{〈∆〉}{∅}

Fig. 9. Synthetic variants of the cut rule (cf. Figure 6)

work entirely at the level of focused substructures, as in the derivation on the
right below.

id =======================

3(p
+

∨3p), [[〈p〉 , p̄]]
k3

f
−−−−−−−−−−−−−−−−−−−−−−−−
3(p

+

∨3p), [〈3p〉 , [p̄]]
+

∨ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
3(p

+

∨3p), [〈p +

∨3p〉 , [p̄]]
k3

f
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3(p

+

∨3p), 〈3(p
+

∨3p)〉 , [[p̄]]
dec −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3(p
+

∨3p), [[p̄]]

[[p̄]] 4 3(p
+

∨3p)

id〈〉 =======================

3(p
+

∨3p), [[〈p̄〉 , p̄]]
k〈〉 −−−−−−−−−−−−−−−−−−−−−−−−

3(p
+

∨3p), [〈[p̄]〉 , [p̄]]
k〈〉 −−−−−−−−−−−−−−−−−−−−−−−−−

3(p
+

∨3p), 〈[[p̄]]〉 , [[p̄]]
pos〈〉 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3(p
+

∨3p), [[p̄]]

Thus, the modal rules of KNS + X〈〉 are properly seen as structural rules rather
than logical rules.

4.2 Cut Elimination

Cut elimination for KNS+X〈〉 is achieved in a similar way to that for KNwF+X3

f .

Lemma 4.4 (Admissible Rules) The rules weak, weakf , cont, m
[ ] (shown

in Figure 4), restricted to neutral and extended sequents (as appropriate) are
admissible in KNS + X〈〉. Moreover, if X ⊆ {d, t, b, 4, 5} is 45-closed, then any
rule x[ ] ∈ X[ ] (see Figure 5) is admissible in KNS + X〈〉.

Proof By induction on the height of the derivation, analogous to the proofs of
Lemmas 3.6 and 3.7. ut

Note that we do not allow, e.g., weakening Γ{〈∆〉}{∅} to Γ{〈∆〉}{N}; the
latter is, in fact, not even a well-formed KNS focused sequent. Like with KNwF,
we have three cut rules for KNS, which are shown in Figure 9. We can now give
the synthetic variant of the cut-elimination theorem.

Theorem 4.5 Let X ⊆ {d, t, b, 4, 5} be 45-closed. Each rule of {cut〈〉1 , cut
〈〉
2 , cut

〈〉
3 }

is admissible in KNS + X〈〉.

Proof The idea of the proof is similar to that of Theorem 3.10, using a reduction
similar to that of Lemma 3.9. However, in the synthetic case there is a complication
because the inverse of the negative rule neg〈〉 is not admissible in KNS+X〈〉. The
cut reduction argument therefore has to work at the level of synthetic derivations.
We show two illustrative examples here. The first is the case where the cut
formula is principal in both derivations:

∆ 4 P̄

D

Γ{P, 〈∆〉}
pos〈〉 −−−−−−−−−−−−−−−−−−−−−−−

Γ{P}

 D∆

Γ{∆}


∆4P̄

neg〈〉 −−−−−−−−−−−−−−−−−−−
Γ{P̄}

cut〈〉1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ{∅}
;

D

Γ{P, 〈∆〉}
D2

Γ{P̄}
cut〈〉3 −−−−−−−−−−−−−−−−−−−−−−−Γ{〈∆〉}

D∆

Γ{∆}
cut〈〉2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ{∅}
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The instance of cut〈〉3 can be reduced because the height is smaller, while that
of cut〈〉2 can be reduced because a cut〈〉2 can justify a cut〈〉1 of the same rank. The
other illustrative case is for permuting a cut〈〉3 past a rel〈〉.

 D∆

Γ{∆}{P}


∆4Q̄

neg〈〉 −−−−−−−−−−−−−−−−−−−−−−
Γ{Q̄}{P}

rel〈〉 −−−−−−−−−−−−−−
Γ{〈Q〉}{P}

D2

Γ{∅}{P̄}
cut〈〉3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ;

Γ{〈Q〉}{∅}


D∆

Γ{∆}{P}

D2

Γ{∅}{P̄}
weak .....................

Γ{∆}{P̄}
cut〈〉1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ{∆}{∅}


∆4Q̄

neg〈〉 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{Q̄}{∅}

rel〈〉 −−−−−−−−−−−−−
Γ{〈Q〉}{∅}

The instance of weak is justified by Lemma 4.4. The remainder of the cases
of the proof have to be adjusted similarly. The full proof can be found in [9,
Theorem 4.5]. ut

It is worth remarking that this cut-elimination proof did not have to mention
any logical connectives, and was instead able to factorize all logical reasoning in
terms of the matching. This means that the matching judgement can be modified
at will without affecting the nature of the cut argument, as long as it leaves the
structure of nested sequents untouched. This makes our result modular in yet
another way, in addition to the modularity obtained by means of the structural
rules for foci. Indeed, we can obtain a similarly synthetic version of identity
reduction (Lemma 3.12).

Lemma 4.6 (Identity Reduction) The following rule is derivable in KNS.

sid〈〉 −−−−−−−−−−−−−
Γ{〈∆〉 , ∆}

Proof By induction on the structure of the focus, 〈∆〉 . The full proof can be
found in [9, Lemma 4.6]. ut

Showing KNS + X〈〉 sound and complete with respect to KN + X3 is fairly
straightforward and the details are omitted here. Soundness follows directly

from replacing the KNS sequent Γ{〈∆〉} with the KNF sequent Γ{〈fm̄(∆)〉} and
then interpreting the KNS + X〈〉 proof in KNF + X3

f , using matching derivation
(Figure 7) to determine how to choose between the two

+

∨ rules. For completeness,
we can follow the strategy of Lemma 3.13 nearly unchanged. However, like with
the cut-elimination proof, we have to avoid appeals to weakening with negative
formulas by using the synthetic form of neg〈〉.

5 Perspectives

We have presented strongly focused and synthetic systems for all modal logics
in the classical S5-cube. We used the formalism of nested sequents as carrier,
but we are confident that something similar can be achieved for hypersequents,
for example based on the work of Lellmann [17]. We chose nested sequents over
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hypersequents for two reasons. First, the formula interpretation of a nested
sequent is the same for all logics in the S5-cube, which simplifies the presentation
of the meta-theory. Second, due to the close correspondence between nested
sequents and prefixed tableaux [12] we can from our work directly extract focused
tableau systems for modal logics. Furthermore, even though we spoke in this
paper only about classical modal logic, we are confident that the same results
can also be obtained for the intuitionistic variant of the modal S5-cube [29], if
we start from the non-focused systems in [30].

One extension that would be worth considering would be relaxing the re-
striction that there can be at most one focus in a KNF or KNS proof. Allowing
multiple foci would take us from ordinary focusing to multi-focusing, which is
well known to reveal more parallelism in sequent proofs [10]. It has been shown
that a certain well chosen multi-focusing system can yield syntactically canonical
representatives of equivalence classes of sequent proofs for classical predicate
logic [8]. Extending this approach to the modal case seems promising.
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