
Combinatorial Flows and their Normalisation
Lutz Straßburger

Inria

Abstract
This paper introduces combinatorial flows that generalize combinatorial proofs such that they
also include cut and substitution as methods of proof compression. We show a normalization
procedure for combinatorial flows, and how syntactic proofs are translated into combinatorial
flows and vice versa.

1998 ACM Subject Classification F.4.1 Mathematical Logic – Proof theory

Keywords and phrases proof equivalence, cut elimination, substitution, deep inference

Digital Object Identifier 10.4230/LIPIcs.FSCD.2017.31

1 Introduction

Proof theory is a central area of theoretical computer science, as it can provide the found-
ations not only for logic programming and functional programming, but also for the formal
verification of software. Yet, despite the crucial role played by formal proofs, we have no
proper notion of proof identity telling us when two proofs are “the same”. This is very different
from other areas of mathematics, like group theory, where two groups are “the same” if they
are isomorphic, or topology, where two spaces are “the same” if they are homeomorphic.

The problem is that proofs are usually presented by syntactic means, and depending on
the chosen syntactic formalism, “the same” proof can look very different. In fact, one can
say that at the current state of art, proof theory is not a theory of proofs but a theory of
proof formalisms. This means that the first step must be to find ways to describe proofs
independent of the formalisms, i.e., we need “canonical representations” which do not rely
on some particular syntax of a chosen deductive formalism. For this reason, we also speak
of “syntax-free” presentation of proofs.

The earliest attempts for such “syntax-free” proof presentations were Andrews’ matings [1]
and Bibel’s matrix proofs [3] for propositional logic. However, checking correctness of a
mating or matrix proof is exponential, and thus not more efficient than starting a proof
search from scratch. Furthermore, matings and matrix proofs are not able to address proof
normalization procedures like cut elimination.

Girard’s proof-nets for linear logic [11] were the first syntax-free proof presentation able
to address these two issues. Proof nets can be seen as graphs that abstract away from the
syntax of the sequent calculus, such that it is decidable in polynomial time whether a given
such graph is indeed a correct proof, and such that the normalization of proofs via cut
elimination is simpler in proof-nets than in the sequent calculus.

Clearly, it became a research question whether such a notion of proof-net is also possible
for classical logic. An immediate idea is to use exactly the same notion of proof-net as
for linear logic [22, 28]. However, these proof-nets depend on a specific form of Gentzen’s
sequent calculus. They are neither able to capture proofs written in other sequent calculi,
like G3c [32], nor other formalisms, like analytic tableaux or resolution.

This problem was addressed by B-nets [21], which exhibit a confluent cut elimination pro-
cedure and can capture proofs in most standard proof formalisms. However, their correctness

© Lutz Straßburger;
licensed under Creative Commons License CC-BY

2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017).
Editor: Dale Miller; Article No. 31; pp. 31:1–31:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Combinatorial Flows and their Normalisation

criterion is exponential and the cut elimination cannot be lifted to the sequent calculus.
This issue has been addressed by atomic flows [12, 13] that are more fine-grained than

Boolean nets and that have a number of different cut elimination procedures that can all
be lifted to a deep inference proof system. However, atomic flows do not have a correctness
criterion. In fact, the work by Das [9] shows that there cannot be a polynomial correctness
criterion for atomic flows, if integer factoring is hard for P/poly. The C-nets of [29], which
are similar to atomic flows, but additionally form a closed category, have same problem.

Only the combinatorial proofs by Hughes [16] have a polynomial correctness criterion and
are independent of any syntactic formalism. Cuts in combinatorial proofs are represented by
formulas of the shape A ^ Ā in the conclusion [17]. The cut elimination in [17] is then based
on a form of projection combined with atomic substitution, and this construction largely
inspired our vertical composition in Section 6.

Anyway, none of the existing “syntax-free” proof presentations can deal with proofs using
extension or substitution [6, 20], which are, like the cut, methods of proof compression. They
are mainly studied in the area of proof complexity, and only recently have received attention
from structural proof theory [5, 30, 25].

The main contribution of this paper is a notion of “syntax-free” proof presentation that
(1) comes with a polynomial correctness criterion, (2) is independent of the syntax of proof
formalisms (like sequent calculi, tableaux systems, resolution, Frege systems, or deep inference
systems), and (3) can handle cut and substitution, and their elimination. The main idea is
to combine the advantages of combinatorial proofs and of atomic flows, and add a notion of
substitution. Point (1) above is stated in Theorem 22, Point (3) is carried out in Sections 5
and 6. For Point (2), we sketch in Section 8 how deep inference proofs are translated into
combinatorial flows. The technical report [31] also sketches how sequent proofs and Frege
proofs can be translated into combinatorial flows.1 In a future work we will show how this
can be done for other fomalisms, like analytic tableaux or resolution. The proposed notion
of proof identity here is that “two proofs are the same if they have the same combinatorial
flow”.

2 Preliminaries on combinatorial proofs

Combinatorial proofs have been introduced by Hughes in [16] as a way to present proofs of
classical logic independent of a syntactic proof system. To make our paper self-contained, we
recall here the basic definitions.

We consider formulas (denoted by capital Latin letters A,B,C, . . .) in negation normal
form (NNF), generated from a countable set V “ ta, b, c, . . .u of (propositional) variables by
the following grammar:

A,B ::“ a | ā | A ^B | A _B (1)

where ā is the negation of a. The negation can then be defined for all formulas via ¯̄a “ a

and the De Morgan laws A _B “ Ā ^ B̄ and A ^B “ Ā _ B̄. Then it follows that ¯̄A “ A

for all formulas A. An atom is a variable or its negation. We use A to denote the set of all
atoms. Sometimes we use AñB as abbreviation for Ā _B, and AôB as abbreviation for
pAñBq ^ pB ñAq.

A sequent Γ is a multiset of formulas, written as a list separated by comma:

Γ “ A1, A2, . . . , An (2)

1 The report [31] also contains more technical details and missing proofs.

Lutz Straßburger 31:3

We write Γ̄ to denote the sequent Ā1, Ā2, . . . , Ān. We define the size of a sequent Γ, denoted
by |Γ|, to be the number of atom occurrences in it. We write ŹΓ (resp. ŽΓ) for the conjunction
(resp. disjunction) of the formulas in Γ.
§ Remark. For simplicity we do not include the constants J and K (for truth and falsum,
respectively) into the language. We can always recover them by letting J “ a0 _ ā0 and
K “ a0 ^ ā0 for some fresh variable a0. Note that in this respect, classical logic is different
from linear logic, where the removal of the constants does indeed change the logic.

Before we can discus the notion of combinatorial proof, we need some preliminary
definitions.

§ Definition 1. A (simple) graph G “ xVG, EGy consists of a set of vertices VG and a set of
edges EG which are two-element subsets of VG. If EG is not a set but a multiset, we call G a
multigraph. We omit the index G when it is clear from context. For v, w P V we write vw
for tv, wu. The size of a graph G, denoted by |G| is |VG| ` |EG|. A graph homomorphism
f : G Ñ G1 is a function from VG to VG1 such that vw P EG implies fpvqfpwq P EG1 . A
simple graph G is called a cograph if it does not contain four distinct vertices u, v, w, z with
uv, vw,wz P E and vz, zu, uw R E. For a set L, a graph G is L-labeled if every vertex of
G is associated with an element in L, called its label. For two disjoint graphs G “ xV,Ey

and G1 “ xV 1, E1y, we define the operations union G _G1 “ xV Y V 1, E Y E1y and join
G ^G1 “ xV Y V 1, E Y E1 Y tvv1 | v P V, v1 P V 1uy. If G and G1 are L-labeled graphs,
then so are G _G1 and G ^G1 where every vertex keeps its original label. For a simple
graph G “ xV,Ey, also define its negation Ḡ “ xV, tvw | v ‰ w, vw R Euy. If G is an
A-labeled graph (where A is the set of atoms) then all labels are negated in Ḡ. For two
homomorphisms f1 : G1 Ñ G11 and f2 : G2 Ñ G12 such that VG1 X VG2 “ H, we define
f1 _ f2 : G1 _G2 Ñ G11 _G12 to be the union of the two homomorphisms f1 and f2, and
f1 ^ f2 : G1 ^G2 Ñ G11 ^G12 to be their join.

§ Construction 2. If we associate to each atom a a single vertex labeled with a then every
formula A uniquely determines a graph GpAq that is constructed via the operations ^ and _.
For a sequent Γ “ A1, A2, . . . , An, we define GpΓq “ Gp

ŽΓq “ GpA1q _GpA2q _ ¨ ¨ ¨ _GpAnq.
Note that this construction entails that GpAq “ GpĀq.

§ Lemma 3. For two formulas A and B, we have GpAq “ GpBq iff A and B are equivalent
modulo associativity and commutativity of ^ and _:

A ^ pB ^ Cq “ pA ^Bq ^ C A ^B “ B ^A

A _ pB _ Cq “ pA _Bq _ C A _B “ B _A
(3)

Proof. Immediately from Construction 2. đ

§ Example 4. Let A “ pa ^ pb _ c̄qq _ pc ^ d̄q then Ā “ pā _ pb̄ ^ cqq ^ pc̄ _ dq. Below are the
two graphs GpAq and GpĀq “ GpAq:

b c

a

c̄ d̄

b̄ c̄

ā

c d

(4)

The following is well-known. It can already be found in [10] (see also [24, 26]).

§ Proposition 5. A graph G is a cograph iff it can be constructed from a formula via
Construction 2.

FSCD 2017

31:4 Combinatorial Flows and their Normalisation

An important consequence of this and Lemma 3 is that for each cograph G there is a
unique (up to associativity and commutativity) formula tree determining G. We denote this
formula tree by F pGq.

§ Definition 6. Let G “ xV,Ey be a cograph, let V 1 Ď V , and let E1 be the restriction of E
to V 1. We say that G1 “ xV 1, E1y is a subcograph of G iff for all v P V 1 and w1, w2 P V zV

1

we have vw1 P E iff vw2 P E. In this case we also say that V 1 induces a subcograph.

It follows immediately from the definition that any subcograph is indeed a cograph.
Furthermore, G1 is a subcograph of G iff F pG1q is a subformula of F pGq.

§ Definition 7. Let G “ xVG, EGy be a multigraph. A set BG Ď EG of edges is called a
matching if no two edges in BG are adjacent. A matching BG is perfect if every vertex
v P VG is incident to an edge in BG. An R&B-graph G “ xVG, RG, BGy is a triple such
that xVG, RG ZBGy is a multigraph such that BG is a perfect matching and xVG, RGy is a
simple graph (i.e., RG is not allowed to have multiple edges). We will use the notation GÓ

for the simple graph xVG, RGy. An R&B-cograph is an R&B-graph G “ xVG, RG, BGy where
GÓ “ xVG, RGy is a cograph.

As before, we omit the index G when it is clear from context. Following [27] we will draw
B-edges in blue/bold, and R-edges in red/regular. Below are four examples:

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

(5)

Also the next two definitions are taken from [27].

§ Definition 8. A path (resp. cycle) in a multigraph is said to be elementary if it does not
contain two equal vertices (resp. but the first and last one). A path P in a graph with a
matching B is alternating if the edges of P are alternately in B and not in B. Let G “

xV,R,By be an R&B-graph. An æ-path in G is an elementary alternating path in xV,RZBy.
An æ-cycle in G is an elementary alternating cycle of even length in xV,RZBy, so that when
turning around the cycle, the edges are still alternately in B and not in B. A chord of a path
(resp. cycle) is an edge that is not part of the path (resp. cycle) but connects two vertices of the
path (resp. cycle). An æ-path (resp. æ-cycle) is called chordless iff it does not have any chords.

Note that chords for æ-paths, resp. æ-cycles, are always R-edges because B is a perfect
matching. We are now ready to present a central concept for R&B-cographs:

§ Definition 9. An R&B-cograph G “ xV,R,By is critically chorded if xV,RZBy does not
contain any chordless æ-cycle, and any two vertices in V are connected by a chordless æ-path.

In the examples in (5), the first one is not an R&B-cograph, the other three are. The
second one has a chordless æ-cycle, and the third one has no chordless æ-path between the
lowermost vertices. Only the last one is a critically chorded R&B-cograph.

§ Definition 10. Let C “ xV,R,By be an R&B-graph and f : CÓ Ñ G be a graph-homo-
morphism and let G be A-labeled (where A is the set of atoms). We say f is axiom-preserving
iff wv P B implies that the labels of fpwq and fpvq are dual to each other.

§ Definition 11. A graph homomorphism f is a skew fibration, denoted as f : G � G1, if
for every v P VG and w1 P VG1 with fpvqw1 P E1G there is a w P VG with vw P EG and
fpwqw1 R E1G.

Lutz Straßburger 31:5

‚ ^ ‚, ‚ ^ ‚, ‚, ‚, ‚ ^ ‚, ‚ ^ ‚

ā ^ c, pc̄ ^ āq _ b̄ _ c, pb _ bq ^ a

c̄ ^ b ^ pa _ cq, c̄ _ a

‚, ‚, ‚ _ ‚, ‚ _ ‚

‚ ^ ‚, ‚ ^ ‚

pb _ bq ^ a

a _ c, c̄ _ a

‚ _ ‚, ‚ _ ‚

‚, ‚, ‚ ^ ‚, ‚ ^ ‚

b̄ _ c, pb _ bq ^ a

Figure 1 Examples of simple combinatorial flows (the cographs are obtained via Construction 2)

We are now ready to give the definition of a combinatorial proof together with the main
result of [16].

§ Definition 12. A combinatorial proof of a sequent Γ consists of a non-empty critically
chorded R&B-cograph C and an axiom-preserving skew-fibration f : CÓ � GpΓq.

§ Remark. Our presentation of the condition on the cograph in a combinatorial proof deters
from Hughes’ [16] and follows Retoré’s [27] instead. The reason is that Retoré makes the
relation to proof nets of linear logic [8] explicit. Also note, that the condition on the cograph
CÓ given by Hughes [16, 17] is weaker than ours. It is equivalent to our condition of C not
containing any chordless æ-cycle. In terms of linear logic, this is equivalent to the correctness
condition for MLL proof nets with the mix-rule [27]. In our presentation here we also add
the connectedness via chordless æ-paths in order to reject mix.

The two main results of [16] are that combinatorial proofs are sound and complete with
respect to classical logic, and that they form a proof system in the sense of Cook and
Reckhow [6].

§ Theorem 13 ([16]). A formula is a theorem of classical propositional logic iff it has a
combinatorial proof.

§ Theorem 14 ([16]). Given a formula A, some R&B-graph C, and some mapping f : CÓ Ñ
GpAq, we can decide in polynomial time in the size of the input that C and f form a
combinatorial proof of A.

3 Combinatorial flows

§ Definition 15. Given two sequents Γ and ∆, a simple (combinatorial) flow φ from Γ to
∆, denoted by φ : Γ $ ∆, is a combinatorial proof for the sequent Γ̄,∆. We write φ : ˝ $ ∆
(resp. φ : Γ $ ˝) if Γ (resp. ∆) is empty.2 Let φ be given by the R&B-cograph C and skew
fibration f : CÓ � GpΓ̄,∆q. Then the size of φ, denoted by |φ|, is defined to be |CÓ|`|Γ|`|∆|.

§ Lemma 16. Let C, G1, and G2 be cographs and let f : C � G1 _G2 be a skew fibration.
Then there are cographs C1 and C2 and graph homomorphisms f1 : C1 � G1 and f2 : C2 � G2
such that C “ C1 _ C2 and f “ f1 _ f2.

§ Notation 17. This lemma allows us to depict simple combinatorial flows in the following
way. Let φ : Γ $ ∆ be given, let f : CÓ � GpΓq _Gp∆q be the defining skew fibration, and let

2 Note that it cannot happen that both Γ and ∆ are empty.

FSCD 2017

31:6 Combinatorial Flows and their Normalisation

CΓ and C∆ be the cographs determined by Lemma 16 (i.e., CÓ “ CΓ _C∆). If we write F pCΓq

and F pC∆q for the formula trees corresponding to the cographs CΓ and C∆, respectively,
then we can write φ by writing Γ, F pCΓq, F pC∆q, and ∆ above each other, draw the B-edges
and indicate the mapping f by thin (thistle) arrows. Figure 1 shows some examples. For
better readability, we allow in F pCΓq outermost ^ to be replaced by comma, and in F pC∆q

outermost _ to be replaced by comma. Note that the three flows in Figure 1 are just “flipped
variants” of each other, i.e., are defined by the same R&B-cograph and skew fibration.

Schematically we can depict simple combinatorial flows as follows:

Γ

∆

or

∆

or

Γ

where the middle and the right picture are used to indicate that Γ or ∆, respectively, are
empty.

§ Lemma 18. Let Γ,∆,Σ be sequents. There is a one-to-one correspondence between the
simple combinatorial flows Γ $ Σ,∆ and Σ̄,Γ $ ∆. In particular, for any three formulas
A,B,C, there is a one-to-one correspondence between the simple combinatorial flows A $
B _ C and B̄ ^A $ C.

Proof. This follows immediately from Definition 15. đ

§ Observation 19. For every formula A, we have a simple combinatorial flow idA : A $ A, that
we call the identity flow and that is defined by the identity skew fibration GpAq _GpAq�
GpĀ, Aq where the matching is defined such that it pairs each vertex in VGpAq to itself in
the copy V

GpAq
. When applying Lemma 18 to idA we get two simple combinatorial flows

id^

A : A ^ Ā $ ˝ and id_

A : ˝ $ Ā _A, as depicted below:

idA :

A

‚̈‚

‚̈‚

A

Ñ id^

A :

A ^ Ā

‚̈‚ ^ ‚̈‚

id_

A :
‚̈‚ _ ‚̈‚

Ā _A

(6)

§ Definition 20. A substitution is a mapping σ from propositional variables to formulas such
that σpaq ‰ a for only finitely many a.

We write Aσ for the formula obtained from applying the substitution σ to the formula A.
If σ “ ta1 ÞÑ B1, . . . , an ÞÑ Bnu we also write Ara1{B1, . . . , an{Bns for Aσ. This normally
means that not only is each occurrence of ai in A is replaced by Bi in A, but also each
occurrence of āi is replaced by B̄i. Then, for substitution proof into proofs, we also need a
notation for formula substitutions in which a variable a and its dual ā are not replaced by
dual formulas. In this case we write Ara1{B1, ā1{C1, . . . , an{Bn, ān{Cns for the formula that
is obtained from A by simultaneously replacing every ai by Bi and every āi by Ci for each
i P t1, . . . , nu.

§ Definition 21. The set of combinatorial flows is defined inductively as follows:

A simple combinatorial flow φ : A $ B is a combinatorial flow.

Lutz Straßburger 31:7

If φ : A $ B and ψ : C $ D are combinatorial flows then so are φ ^ ψ : A ^B $ C ^D

and φ _ ψ : A _ C $ B _D. This operation is called horizontal composition.
If φ : Γ $ A and ψ : A $ ∆ are combinatorial flows then φ ˛ ψ : Γ $ ∆ is a combinatorial
flow. This operation is called vertical composition, concatenation, or cut.
If φ : Γ $ ∆ and ψ : C $ D are combinatorial flows then φra{ψs : Γra{C, ā{D̄s $ ∆ra{
D, ā{C̄s is a combinatorial flow. This operation is called substitution.

The size of a combinatorial flow φ, denoted by |φ|, is defined to be the sum of the sizes of all
simple combinatorial flows occurring in φ.

§ Theorem 22. Combinatorial flows form a proof system (in the sense of [6]). In particular,
checking correctness of a combinatorial flow can be done is polynomial time.

Proof. This follows immediately from Theorem 14, Definition 15, and Definition 21. đ

§ Remark. Theorem22 provides the main advantage of combinatorial flows over B-nets and
N-nets [21] and atomic flows [12, 13]. For a simple combinatorial flow φ : ˝ $ Γ, we can
immediately obtain the corresponding N-net by forgetting the cograph xV,Ry and connecting
the atoms of Γ according to the (undirected) paths given by f and B. The example below is
obtained from the first flow in Figure 1:

ā ^ c, pc̄ ^ āq _ b̄ _ c, pb _ bq ^ a

(7)

The corresponding B-net is obtained by forgetting the multiplicity of the edges. In the
example in (7), the B-net is identical to the N-net. For translating a simple combinatorial
flow φ : ∆ $ Γ into an atomic flow, we not only forget the cograph xV,Ry but also the
structure of Γ and the order of the atoms in Γ. We only look at the paths given by f and B
and keep track of which atoms are in Γ and which ones are in ∆. Here is the third example
in Figure 1 translated into an atomic flow:

b̄ c b b a

c c̄a a

A substitution-free combinatorial flow can straightforwardly translated into atomic flows
since they can be composed horizontally and vertically. However, in each translation, critical
information is lost, such that it becomes impossible to recover the proof from an N-net or an
atomic flow in polynomial time.

§ Definition 23. A combinatorial flow is normal if it is a simple combinatorial flow. It is
cut-free if the composition operation ˛ is not used in it, and it is substitution-free if the
substitution operation is not used in it.

Normalization of a combinatorial flow means therefore to remove the operations defined
in Definition 21. The following four sections are dedicated to this.

4 Normalization I: Binary Connectives

§ Lemma 24. Let φ : A1 $ A2 and ψ : B1 $ B2 be simple combinatorial flows. Then there
are simple combinatorial flows χ : A1 ^B1 $ A2 ^B2 and ξ : A1 _B1 $ A2 _B2, such that
|χ| ď |φ| ` |ψ| and |ξ| ď |φ| ` |ψ|.

FSCD 2017

31:8 Combinatorial Flows and their Normalisation

A1

A2

^

B1

B2

Ñ

A1 ^B1

A2 ^B2

A1

A2

^

B1

B2

Ñ

A1 ^B1

A2 ^B2

A1

A2

^

B1

B2

Ñ

A1 ^B1

A2 ^B2

Figure 2 Conjunction of simple combinatorial flows

Proof. Let C and D be the R&B-cographs for φ and ψ, respectively, and let f : CÓ �
GpĀ1q _GpA2q and g : DÓ � GpB̄1q _GpB2q be their defining skew fibrations. Then, let
C1 and C2 be the subgraphs of CÓ, and f1 : C1 Ñ GpĀ1q and f2 : C2 Ñ GpA2q be the
corresponding restrictions of f , obtained via Lemma 16. Similarly, let D1 and D2 be the
corresponding subgraphs of DÓ, and g1 and g2 the corresponding restrictions of g.

The simple flow χ : A1 ^B1 $ A2 ^B2 can now be given by the R&B-cograph H and
skew fibration h : HÓ � GpA1 ^B1, A2 ^B2q which are defined as follows:

If C2 and D2 are both not empty, then we define HÓ “ D1 _ C1 _ pC2 ^D2q, and
BH “ BC Y BD, and h “ g1 _ f1 _ pf2 ^ g2q. To see that this is well-defined, note
that GpA1 ^B1, A2 ^B2q is the same as GpB̄1q _GpĀ1q _ pGpA2q ^GpB2qq.
If C2 is empty then C1 “ CÓ and we define H “ C and let h “ f .
If D2 is empty and C2 is not, then then D1 “ DÓ and we define H “ D and let h “ g.

Then, H is an R&B-cograph (by construction) and it is critically chorded. In the first case
the situation is the same as in the �-rule for MLL-proof nets (see [27]) and in the other
two cases it is trivial. It also trivially follows that h is axiom preserving. Therefore it only
remains to show that h is indeed a skew fibration. For this, observe that g1 _ f1 _ pf2 ^ g2q

fails to be a skew fibration only if one of C2 or D2 is empty. On the other hand, f is a
skew-fibration from CÓ to GpB̄1q _GpĀ1q _ pGpA2q ^GpB2qq if no vertex of C is mapped to
GpA2q, i.e., C2 is empty. Dually, we can define the simple flow ξ : A1 _B1 $ A2 _B2. đ

§ Remark. Note that it is crucial to check whether C2 or D2 are empty, whereas for C1 and
D1, this is irrelevant. The difference is shown in Figure 2. Note also that there is an arbitrary
choice to make when both C2 and D2 are empty.

5 Normalization II: Substitution

§ Lemma 25. Let φ : Γ $ ∆ and ψ : C $ D be simple combinatorial flows. Then there is a
simple combinatorial flow φ1 : Γra{C, ā{D̄s $ ∆ra{D, ā{C̄s.

This is depicted on the left of Figure 3. The basic idea of the construction is as follows:
The simple combinatorial flow φ : Γ $ ∆ consists of simple paths , and each simple
path in φ whose endpoints are occurrences of a or ā are replaced according to Figure 4. To
define this more formally, we first need the notion of substitution in a graph.

§ Construction 26. Let C and D be disjoint graphs, and let x be a vertex in C. With
Crx{Ds we denote the graph whose vertex set is V “ VCztxu Y VD and whose edge set is
E “ ECztxz | z P VCu Y tyz | y P VD, xz P ECu. In other words, we remove x from C and
replace it by D, such that we have an edge from a remaining vertex y in C to all vertices in
D, whenever there was an edge from y to x in C before.

§ Lemma 27. If C and D are cographs and x P VC, then Crx{Ds is also a cograph.

Lutz Straßburger 31:9

Γ

∆

»

—

—

—

—

—

—

—

—

–

a

O

C

D

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

Γ
“

a{C, ā{D̄
‰

∆
“

a{D, ā{C̄
‰

Γ

A

∆

Ñ

Γ

∆

Figure 3 Left: Substitution elimination Right: cut elimination

Proof. If we take the formula tree for C, remove the leaf x, and replace it by the formula tree
of D, we obtain a formula tree for Crx{Ds, which is therefore a cograph by Proposition 5. đ

§ Construction 28. In Construction 26 we substituted graphs for vertexes in other graphs.
Now we use this to substitute R&B-graphs for B-edges in other R&B-graphs. Let C and D

be disjoint R&B-graphs, and let x, y P VC with xy P BC. Furthermore, let DÓ “ D1 _D2.
We now define the R&B-graph H “ Crxy{xD1 _D2, BDys “ xVH, RH, BHy as follows. We let
xVH, RHy “ CÓrx{D1sry{D2s, applying Construction 26 twice, and let BH “ BCztxyu YBD.
In other words, x is replaced by D1 and y by D2, and the B-edge xy is removed and replaced
by the matching BD.

§ Lemma 29. If C and D are R&B-cographs with xy P BC and DÓ “ D1 _ D2 then
H “ Crxy{xD1 _D2, BDys also is an R&B-cograph. Furthermore, if C and D are both
critically chorded, then so is H.

Proof. The graph H is a cograph for the same reason as in Lemma 27. Now assume by way
of contradiction that H is not critically chorded. First, assume there is a chordless æ-cycle C.
If all vertices of C are inside VC or all inside VD, we have immediately a contradiction to C

and D having no chordless æ-cycle. So, the cycle C must contain vertices from VC and VD.
Since by construction all B-edges are fully contained in C or in D, we must have an R-edge
participating in C and connecting a vertex u P VC to a vertex z P VD. Let v P VC be the
unique vertex with uv P BC. However, since uz P RH, we must by construction also have
vz P RH which is a chord for C. Contradiction. For showing that that any two vertices in H

are connected by a chordless path, we can proceed similarly. đ

Proof of Lemma 25. Let φ and ψ as above and let Γ1 “ Γ
“

a{C, ā{D̄
‰

and ∆1 “ ∆
“

a{D, ā{C̄
‰

.
For constructing the simple flow φ1 : Γ1 $ ∆1, let C and D be the R&B-cographs for φ and ψ,
respectively, and let f : CÓ � GpΓ̄,∆q and g : DÓ � GpC̄,Dq be their corresponding skew
fibrations. For brevity, we write G for GpΓ̄,∆q, and G1 for GpΓ̄1,∆1q. Next, let DC̄ and DD

be the two cographs obtained from DÓ via Lemma 16, and let x1, . . . , xn P VC be the vertexes
that f maps to a vertex labeled ā in G, and and let y1, . . . , yn P VC be all the vertexes that
f maps to a vertex labeled a in G — their number has to be identical, otherwise f could not
be axiom preserving. Without loss of generality, we can assume that tx1y1, . . . , xnynu Ď BC.
We can now give the R&B-cograph C1 for φ1 as follows:

C1 “ Crx1y1{xDC̄
_DD, BDys ¨ ¨ ¨ rxnyn{xDC̄

_DD, BDys

applying Construction 28 for each B-edge in C connecting an a and an ā in G. Finally, we
define the map f 1 : C1 � G1 as follows: For every z P VCztx1, . . . , xn, y1, . . . , ynu, we have

FSCD 2017

31:10 Combinatorial Flows and their Normalisation

a

‚

‚

a

;

C

D

‚ ‚

a ā

;

D C̄

ā

‚

‚

ā

;

D̄

C̄

a ā

‚ ‚

;

C D̄

Figure 4 Substitution of simple combinatorial flows

f 1pzq “ fpzq. For each xi that is mapped by f to a ā, we use g to map the substituted
copy of DC̄ in C1 to the corresponding substituted copy of GpC̄q in G1. We proceed similarly
for each yi. It is easy to see that the so defined f 1 is indeed a skew fibration and axiom
preserving. đ

6 Normalization III: Cut

In this section, we show how cuts are eliminated, as indicated on the right of Figure 3. This
is done via “projection + atomic substitution”, as introduced in [17], but refined in such a
way that we do not need mix and the notion of “laxness”.

§ Lemma 30. Let φ : Γ $ A and ψ : A $ ∆ be simple combinatorial flows. Then there is a
simple combinatorial flow χ : Γ $ ∆.

Before we give the construction of χ, we need first to establish some preliminary properties
on skew fibrations and the composition of R&B-cographs.

§ Lemma 31. Let C, D, G, H be cographs.

1. If f : C � G is an isomorphism, then it is also a skew fibration.
2. The map w : C � C _D, which behaves like the identity on C, is a skew fibration.
3. The map c : C _ C � C, which maps both copies of C in the domain like the identity to

the C in the codomain, is a skew fibration.
4. The map m : pC ^Dq _ pG ^ Hq� pC _Gq ^ pD _ Hq, which maps each of C, D, G, and H

identically to itself, is a skew fibration.
5. If f : C � G and g : D � H are skew fibrations, then so are f _ g : C _D � G _ H and

f ^ g : C ^D � G ^ H.
6. If f : C � G and g : G � H are skew fibrations, then so is g ˝ f : C � H.

Proof. Straightforward. đ

§ Construction 32. Let C and D be R&B-cographs such that CÓ “ G _H and DÓ “ H̄ _ K for
some cographs G, H, and K. We define the graph B “ xVB, EBy with VB “ VG Z VH Z VK
and EB “ BC ZBD. This allows us to define the R&B-cograph E “ C ˛D as follows: We let
EÓ “ G _ K, i.e., VE “ VG Y VK and RE “ EG Y EK, and we let xy P BE iff there is a path
from x to y in B. Note that this indeed defines a perfect matching. For each x in VE there is
a unique y connected to x by a path in B because BC and BD are both perfect matchings.

§ Lemma 33. If in Construction 32 the R&B-cographs C and D are critically chorded, then
so is E “ C ˛D.

Lutz Straßburger 31:11

Proof. This follows directly from the correspondence to MLL´ proof nets given in [27] and
the standard cut elimination result for linear logic proof nets. The idea used here goes back
to [19], and a more recent presentation can be found in [15]. đ

Next, we define for a simple flow φ : Γ $ B ^ C the two projections φl : Γ $ B and
φr : Γ $ C that are simple flows that “forget” the information about the deleted subformula.
Their existence should not be surprising since from a proof of B ^ C one should be able to
recover proofs of B and of C from the same premises.
§ Construction 34. Let φ : Γ $ B ^ C be given by a critically chorded R&B-cograph C and
the skew fibration f : CÓ � Gp

ŹΓ̄q _ pGpBq ^GpCqq. Let UC Ď VC be the set of all vertices
in C that are mapped by f to atom occurrences in C, and let UKC Ď VC be the smallest set
such that

If x P UC and xy P BC and y R UC then y P UKC .
If x P UKC and xy P BC and y R UC then y P UKC .
If V 1, V 2 Ď VC induce subcographs and V 1 Ď UKC and V 1 X V 2 “ H and V 1YV 2 induces a
subcograph such that for all v1 P V 1 and v2 P V 2 we have v1v2 P RC, then also V 2 Ď UKC .3

Now let VCl
“ V zpUC Y UKC q, and let RCl

and BCl
be the restrictions of RC and BC

(respectively) to VCl
. Finally, we can define φl : Γ $ B by Cl “ xVCl

, RCl
, BCl

y and fl : CÓl �
Gp

ŹΓ̄q _GpBq which is f restricted to VCl
.4

The idea behind this construction is to remove from C the preimage of C together with
the largest “critically chorded sub-(R&B-cograph)” that contains all vertices to which there
is a B-edge from any vertex in the preimage of C.

It is easy to see that Cl is critically chorded: any chordless æ-cycle would already be
present in C, and any two vertices are connected by the same chordless æ-path as in C. We
also have that VCl

‰ H. To see that, let UB Ď VC be the set of all vertices in C that are
mapped by f to atom occurrences in B. Now note that either both UB and UC are empty
or both are not empty (because f is skew). If both UB and UC are empty, then VCl

“ V

which is not empty by definition. Otherwise, if UB and UC are both nonempty, but VCl
is,

then all of UB must be contained in UKC . Furthermore, at least one æ-paths connecting UB

and UC starts and ends with a B-edge. Hence, an æ-cycle is closed by the R-edge between
the two end vertices (because of the ^-connective between B and C), contradicting that C is
critically chorded.

Finally, it is easy to see that fl is axiom preserving and a skew fibration. Thus, φl : Γ $ B

is indeed a simple combinatorial flow. In the same way we can define the right projection
φr : Γ $ C. Below is an example of a simple flow and its two projections:

b, pe ^ cq _ ā, a

‚

‚

b _ pa ^ bq

Ð

b, pe ^ cq _ ā, a

‚, ‚, p‚ ^ ‚q _ ‚, ‚

‚ ^ ‚ ^ ‚, ‚ ^ ‚ ^ ‚

pb _ pa ^ bqq ^ ppe ^ āq _ cq

Ñ

b, pe ^ cq _ ā, a

‚ _ ‚, ‚

‚

pe ^ āq _ c

(8)

In a dual way, we can define for a simple combinatorial flow ψ : B _ C $ ∆ its left and
right projections ψl : B $ ∆ and ψr : C $ ∆.

3 This step can be seen as a combination of the Ó-, ó-, and Ò-steps in the empire construction in [2].
4 As mentioned before, this construction is different from the one in [17], due to the absence of mix and
“laxness”. However, it remains open, how this compares to the “greedy garbage collection” of [17].

FSCD 2017

31:12 Combinatorial Flows and their Normalisation

Γ

B ^ C

∆

;

Γ

B

Γ

C

B,C

∆

Γ

B

∆, C̄

;

Γ

∆, C̄

;

C

Γ̄,∆

Γ

C

Γ̄,∆

;

Γ

Γ̄,∆

;

Γ

Γ,Γ

∆

Figure 5 Steps in the proof of Lemma 30

Proof of Lemma 30. We proceed by induction on the formula A. First, assume A “ B ^ C.
Then, from φ : Γ $ B ^ C we can obtain the two projections φl : Γ $ B and φr : Γ $ C,
and from ψ : B ^ C $ ∆, we get ψ1 : B,C $ ∆ (see top line of Figure 5). From ψ1 we can
obtain (via Lemma 18) ψ2 : B $ ∆, C̄, which can be composed with φl to get, by induction
hypothesis, a simple flow ξ : Γ $ ∆, C̄, from which (again by Lemma 18) we can get a simple
flow χ1 : C $ Γ̄,∆, as shown on the lower left of Figure 5. This can be composed with φr,
which gives us by induction hypothesis a simple flow χ2 : Γ $ Γ̄,∆, from which we get a
simple flow χ1 : Γ,Γ $ ∆ by applying Lemma 18. Finally, we can apply Lemma 31 to get the
desired χ : Γ $ ∆, as shown on the lower right Figure 5. If A “ B _ C we proceed analogous.
It remains to show the case when A is an atom, for which the construction is depicted below:

Γ

‚ _ ¨ ¨ ¨ _ ‚

a

‚ ^ ¨ ¨ ¨ ^ ‚

∆

;

Γ

Γ, . . . ,Γ

p‚ _ ¨ ¨ ¨ _ ‚q ^ ¨ ¨ ¨ ^ p‚ _ ¨ ¨ ¨ _ ‚q

pa _ ¨ ¨ ¨ _ aq ^ ¨ ¨ ¨ ^ pa _ ¨ ¨ ¨ _ aq

p‚ _ ¨ ¨ ¨ _ ‚q ^ ¨ ¨ ¨ ^ p‚ _ ¨ ¨ ¨ _ ‚q

∆
“

a{a _ ¨ ¨ ¨ _ a
‰

∆ “ ∆
“

a{a
‰

;

Γ

∆

(9)

Here, let f : CÓ � Gp
ŹΓ̄, aq and g : DÓ � Gpā,

Ž∆q be the skew fibrations of the simple
flows φ : Γ $ a and ψ : a $ ∆, respectively. Let x1, . . . , xn be the vertices in C that are
mapped by f to the a in the conclusion of φ, and let y1, . . . , ym be the vertices in D that are
mapped by g to the occurrence of ā that represents the a in the premise of ψ.

Now we define the map f˚ : CÓ � Gp
ŹΓ̄, a _ ¨ ¨ ¨ _ aq where we replace a by a disjunction

of n copies of a, and let f˚ behave as f on VCztx1, . . . , xnu and map each xi to one copy of
a. This clearly also is a skew fibration, and in a similar way we define the skew fibration
g˚ : DÓ � Gpā _ ¨ ¨ ¨ _ ā,

Ž∆q where we use m copies of ā. We let φ˚ : Γ $ a _ ¨ ¨ ¨ _ a and
ψ˚ : a ^ ¨ ¨ ¨ ^ a $ ∆ be the simple flows defined by f˚ and g˚, respectively.

Lutz Straßburger 31:13

We then apply the construction of Section 4 to form the conjunction of m copies of φ˚,
which yields a simple flow φ̂ : Γ, . . . ,Γ $ pa _ ¨ ¨ ¨ _ aq ^ ¨ ¨ ¨ ^ pa _ ¨ ¨ ¨ _ aq.

Next, we substitute in ψ˚ all simple flow paths that start in the premise a ^ ¨ ¨ ¨ ^ a by the
identity flow id : a _ ¨ ¨ ¨ _ a $ a _ ¨ ¨ ¨ _ a (with m copies of a on each side) as done in Section 5.
Then we have a simple flow ψ̂ : pa _ ¨ ¨ ¨ _ aq ^ ¨ ¨ ¨ ^ pa _ ¨ ¨ ¨ _ aq $ ∆ra{a _ ¨ ¨ ¨ _ as.5

Finally, we plug φ̂ and ψ̂ together and apply Lemma 33 to get a simple flow χ1 : Γ, . . . ,Γ $
∆ra{a _ ¨ ¨ ¨ _ as, to which we apply Lemma 31 to get the desired simple flow χ : Γ $ ∆. đ

7 Normalization IV: Putting things together

If we define the relation Ñ on combinatorial flows such that φ1 Ñ φ2 whenever φ1 can
be reduced to φ2 by one of the reductions given by Lemmas 24, 25, and 30, then we have
immediately the following:

§ Theorem 35. The relation Ñ is strongly normalizing, and the normal forms are simple
combinatorial flows.

Proof. At each step the number of simple combinatorial flows in the flow is reduced, and we
always can make at least one reduction when the flow is not simple. đ

§ Corollary 36. For each combinatorial flow φ : Γ $ ∆ there is a simple combinatorial flow
φ1 : Γ $ ∆ with the same premise and conclusion.

8 Relation to to deep inference proofs

In this section we show how combinatorial flows are related to syntactic proofs in deep
inference. It should be clear that the similar constructions are possible with other proof
formalisms (like tableaux, sequent calculus, or resolution) as well.

We use the version of the deep inference system SKS [4], which is shown in Figure 6.6
The rules shown there should be read as rewrite rule schemes that can be applied inside an
arbitrary (positive) formula context. In the rules aiÓ, aiÒ, acÓ, and acÒ, the a can stand for
any atom. In all rules, A, B, C, and D, can stand for any formula, and in aiÓ we additionally
allow A to be empty, so to have proper proofs without premise.7 We write

P

S
∥∥∥Φ

Q

and
´

S
∥∥∥Ψ

Q
(10)

to denote that there is a derivation Φ from P to Q, (respectively the proof Ψ without premise
for the formula Q) in the system S, modulo the equivalence relation defined by associativity
and commutativity of ^ and _, as given in (3). Figure 9 shows on the left an example of a
derivation in SKS, where 2 ¨ s stands for two consecutive applications of the s-rule.

Each rule in system SKS can straightforwardly be translated into a simple combinatorial
flow, as indicated in Figure 7, where the double lines indicate the identity (see Observation 19).

5 There is a slight abuse of notation: ∆ra{a _ ¨ ¨ ¨ _ as stands for the sequent obtained by replacing every
occurrence of a in ∆ from which there is a simple flow path to an a in the premise of ψ˚ by a _ ¨ ¨ ¨ _ a
(i.e., there might be occurrences of a in ∆ that are not replaced).

6 Note that our system is slightly different from the original version of SKS in [4]: We do not have explicit
units in the language, and therefore our weakening rule is not atomic (see also [30]).

7 We could also allow A to be empty in aiÒ, so to have a proper refutation without conclusion.

FSCD 2017

31:14 Combinatorial Flows and their Normalisation

A
aiÓ ´́´́´́´́´́´́´́

A ^ pa _ āq

pA _Bq ^ C
s ´́´́´́´́´́´́´́´
A _ pB ^ Cq

pā ^ aq _A
aiÒ ´́´́´́´́´́´́´́

A

A
wÓ ´́´́ ´́´

A _B

a _ a
acÓ ´́´́´́

a

pA ^ Cq _ pB ^Dq
m ´́´́´́´́´́´́´́´́´́´́´́´́

pA _Bq ^ pC _Dq

a
acÒ ´́´́´́

a ^ a

B ^A
wÒ ´́´́ ´́´

A

Figure 6 Deep inference system SKS

wÓ :

A

‚̈‚

‚̈‚

A _B

aiÓ:

A

‚̈‚

‚̈‚ ^ p‚ _ ‚q

A ^ pa _ āq

s :

pA _Bq ^ C

p‚̈‚ _ ‚̈‚q ^ ‚̈‚

‚̈‚ _ p‚̈‚ ^ ‚̈‚q

A _ pB ^ Cq

aiÒ:

pā ^ aq _A

p‚ ^ ‚q _ ‚̈‚

‚̈‚

A

wÒ :

B ^A

‚̈‚

‚̈‚

A

acÓ :

a _ a

‚ _ ‚

‚ _ ‚

a

m :

pA ^ Cq _ pB ^Dq

p‚̈‚ ^ ‚̈‚q _ p‚̈‚ ^ ‚̈‚q

p‚̈‚ ^ ‚̈‚q _ p‚̈‚ ^ ‚̈‚q

pA _Bq ^ pC _Dq

m :

pA ^ Cq _ pB ^Dq

p‚̈‚ _ ‚̈‚q ^ p‚̈‚ _ ‚̈‚q

p‚̈‚ _ ‚̈‚q ^ p‚̈‚ _ ‚̈‚q

pA _Bq ^ pC _Dq

acÒ :

a

‚ ^ ‚

‚ ^ ‚

a ^ a

Figure 7 Simple combinatorial flows for the rules in Figure 6

A

B

ô

A

twÒ,acÒ,mu
∥∥∥Φ1

A1

taiÓ,aiÒ,su
∥∥∥Φ2

B1

twÓ,acÓ,mu
∥∥∥Φ3

B

B

ô

´
taiÓ,su

∥∥∥Ψ2

B1

twÓ,acÓ,mu
∥∥∥Ψ3

B

Figure 8 Relation between simple combinatorial flows and SKS derivations

c̄ ^ b ^ pa _ cq ^ pc̄ _ aq
awÒ ´́´́´́´́´́´́´́´́´́´́´́´́´́´́´

b ^ pa _ cq ^ pc̄ _ aq
acÒ ´́´́´́´́´́´́´́´́´́´́´́´́´́´́´

b ^ b ^ pa _ cq ^ pc̄ _ aq
2 ¨ s ´́´́´́´́´́´́´́´́´́´́´́´́´́´́´

b ^ b ^ pa _ pc ^ c̄q _ aq
aiÒ ´́´́´́´́´́´́´́´́´́´́´́´́´́´́´

b ^ b ^ pa _ aq
2 ¨ s ´́´́´́´́´́´́´́´́´́´́

pb ^ aq _ pb ^ aq
m ´́´́´́´́´́´́´́´́´́´́

pb _ bq ^ pa _ aq
acÓ ´́´́´́´́´́´́´́´́´́´́

pb _ bq ^ a

Ø

c̄ ^ b ^ pa _ cq ^ pc̄ _ aq
awÒ ´́´́´́´́´́´́´́´́´́´́´́´́´́´́´

b ^ pa _ cq ^ pc̄ _ aq
acÒ ´́´́´́´́´́´́´́´́´́´́´́´́´́´́´

b ^ b ^ pa _ cq ^ pc̄ _ aq
2 ¨ s ´́´́´́´́´́´́´́´́´́´́´́´́´́´́´

b ^ b ^ pa _ pc ^ c̄q _ aq
aiÒ ´́´́´́´́´́´́´́´́´́´́´́´́´́´́´

b ^ b ^ pa _ aq
2 ¨ s ´́´́´́´́´́´́´́´́´́´́

pb ^ aq _ pb ^ aq
m ´́´́´́´́´́´́´́´́´́´́

pb _ bq ^ pa _ aq
acÓ ´́´́´́´́´́´́´́´́´́´́

pb _ bq ^ a

Ø

c̄ ^ b ^ pa _ cq, c̄ _ a

‚, ‚, ‚ _ ‚, ‚ _ ‚

‚ ^ ‚, ‚ ^ ‚

pb _ bq ^ a

Figure 9 Example of an SKS derivation and its simple combinatorial flow

Note that for the m-rule there are two possible translations. Since whenever A “ B modulo
associativity and commutativity (3) we have that GpAq “ GpBq, an equivalence step in an
SKS-proof can translated into the identity flow. This is enough to give a direct translation
which proves the first direction of the following:

Lutz Straßburger 31:15

§ Theorem 37. Substitution-free combinatorial flows and system SKS p-simulate each other.

For the other direction we use the relation between simple combinatorial flows and system
SKS shown in Figure 8 to translate simple flows into SKS derivations which can be composed
horizontally and vertically. Figure 9 shows the corresponding SKS derivations for the second
example in Figure 1. For a detailed proof see [31].

Let us now investigate what happens when substitution is present. The substitution rule
in a deductive system is given as follows:

A
sub ´́´

Aσ
(11)

It replaces a formula A by the formula that is obtained by applying the substitution σ to A.
We define sSKS to be the system SKS` sub. It is important to note that unlike the other

rules (shown in Figure 6) the rule sub in (11) cannot be applied inside a context. It is always
applied to the whole formula. The reason is that the rule is not “strongly sound”, in the sense
that the premise does not imply the conclusion, as it is the case with the other inference
rules. This means, in particular, that it does not make sense to speak of derivations in sSKS,
but only of proofs with no premise. It has recently been established that sSKS is p-equivalent
to Frege systems with substitution and Frege systems with extension [5, 30, 25]. Here we
establish that combinatorial flows have the same expressiveness with respect to p-simulation:

§ Theorem 38. Combinatorial flows and sSKS p-simulate each other.

The basic idea of the proof is to simulate the application of a substitution σ “ ta1 ÞÑ

B1, . . . , an ÞÑ Bnu in the sub-rule in sSKS by the substitution of the identity flow idBi for the
variable ai for each i “ 1..n. But since in combinatorial flows the replacement is not performed
simultaneously, we have to do a renaming first, in order to avoid unwanted variable capturing.

For the other direction, some more work is necessary. The reason is that in sSKS,
substitution is a global rule, whereas in combinatorial flows it is a local activity, which is
more flexible. To solve this problem, we use the notion of extension, due to [33], following
the ideas used in [30]. For a detailed proof see [31].

9 Conclusion and Future Work

In this paper we proposed a solution to the problem of finding syntax-independent presenta-
tions of classical proofs that can also cover proof compression mechanisms that are usually
studied in the area of proof complexity. This way, they can serve as a notion of proof
certificate [23] that goes beyond mere cut-free sequent proofs.

Furthermore, the cut elimination presented in Section 6 can, together with the results of
Section 8 also be used as an alternative normalization procedure for SKS derivations, since
the normal forms are streamlined in the sense of [12] and [13].

The obvious next step is to include first-order quantifiers in the presentation. There is
already preliminary work by Hughes [18] in this direction, but it still has to be investigated
how the various notions of composition and normalization discussed in this paper behave in
the presence of quantifiers.

Another direction of possible future research is the question whether combinatorial flows
can form some free category (in the same sense as MLL proof nets form the free unit-free
star-autonomous category [14]) and the relation to categorical combinators [7].

FSCD 2017

31:16 Combinatorial Flows and their Normalisation

Acknowledgements

I thank Anupam Das and Alessio Guglielmi for fruitful discussions, and I thank Paola
Bruscoli, Dominic Hughes, and anonymous referees for helpful comments on earlier drafts of
this work.

References
1 Peter B. Andrews. Refutations by matings. IEEE Transactions on Computers, C-25:801–

807, 1976.
2 Gianluigi Bellin and Jacques van de Wiele. Subnets of proof-nets in MLL´. In J.-Y.

Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, volume 222 of London
Mathematical Society Lecture Notes, pages 249–270. Cambridge University Press, 1995.

3 Wolfgang Bibel. On matrices with connections. Journal of the ACM, 28:633–645, 1981.
4 Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In R. Nieuwenhuis

and A. Voronkov, editors, LPAR 2001, volume 2250 of LNAI, pages 347–361. Springer,
2001.

5 Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference. ACM
Transactions on Computational Logic, 10(2):1–34, 2009. Article 14.

6 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

7 Pierre-Louis Curien. Categorical combinators. Information and Control, 69(1-3):188–254,
1986. doi:10.1016/S0019-9958(86)80047-X.

8 Vincent Danos and Laurent Regnier. The structure of multiplicatives. Annals of Mathem-
atical Logic, 28:181–203, 1989.

9 Anupam Das. Rewriting with linear inferences in propositional logic. In Femke van
Raamsdonk, editor, 24th International Conference on Rewriting Techniques and Applica-
tions (RTA), volume 21 of Leibniz International Proceedings in Informatics (LIPIcs), pages
158–173. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2013.

10 R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and
Applications, 10(2):303 – 318, 1965.

11 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
12 Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic

flows. Logical Methods in Computer Science, 4(1:9):1–36, 2008. URL: http://arxiv.org/
abs/0709.1205.

13 Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. Breaking paths in atomic flows
for classical logic. In LICS 2010, 2010.

14 Willem Heijltjes and Lutz Straßburger. Proof nets and semi-star-autonomous categor-
ies. Mathematical Structures in Computer Science, 26(5):789–828, 2016. doi:10.1017/
S0960129514000395.

15 Dominic Hughes. Simple multiplicative proof nets with units. Preprint, 2005. URL: http:
//arxiv.org/abs/math.CT/0507003.

16 Dominic Hughes. Proofs Without Syntax. Annals of Mathematics, 164(3):1065–1076, 2006.
17 Dominic Hughes. Towards Hilbert’s 24th problem: Combinatorial proof invariants: (pre-

liminary version). Electr. Notes Theor. Comput. Sci., 165:37–63, 2006.
18 Dominic Hughes. First-order proofs without syntax. Berkeley Logic Colloquium, 2014.
19 Gregory Maxwell Kelly and Saunders Mac Lane. Coherence in closed categories. J. of Pure

and Applied Algebra, 1:97–140, 1971.
20 Jan Krajíček and Pavel Pudlák. Propositional proof systems, the consistency of first order

theories and the complexity of computations. The Journal of Symbolic Logic, 54(3):1063–
1079, 1989.

http://dx.doi.org/10.1016/S0019-9958(86)80047-X
http://arxiv.org/abs/0709.1205
http://arxiv.org/abs/0709.1205
http://dx.doi.org/10.1017/S0960129514000395
http://dx.doi.org/10.1017/S0960129514000395
http://arxiv.org/abs/math.CT/0507003
http://arxiv.org/abs/math.CT/0507003

Lutz Straßburger 31:17

21 François Lamarche and Lutz Straßburger. Naming proofs in classical propositional logic. In
Paweł Urzyczyn, editor, TLCA’05, volume 3461 of LNCS, pages 246–261. Springer, 2005.
URL: http://www.lix.polytechnique.fr/~lutz/papers/namingproofsCL.pdf.

22 Olivier Laurent. Polarized proof-nets: proof-nets for LC (extended abstract). In Jean-
Yves Girard, editor, Typed Lambda Calculi and Applications (TLCA 1999), volume 1581 of
LNCS, pages 213–227. Springer, 1999.

23 Dale Miller. A proposal for broad spectrum proof certificates. In J.-P. Jouannaud and
Z. Shao, editors, CPP: First International Conference on Certified Programs and Proofs,
volume 7086 of Lecture Notes in Computer Science, pages 54–69, 2011.

24 Rolf H. Möhring. Computationally tractable classes of ordered sets. In I. Rival, editor,
Algorithms and Order, pages 105–194. Kluwer Acad. Publ., 1989.

25 Novak Novakovic and Lutz Straßburger. On the power of substitution in the calculus of
structures. ACM Trans. Comput. Log., 16(3):19, 2015.

26 Christian Retoré. Réseaux et Séquents Ordonnés. PhD thesis, Université Paris VII, 1993.
27 Christian Retoré. Handsome proof-nets: perfect matchings and cographs. Theoretical

Computer Science, 294(3):473–488, 2003.
28 Edmund P. Robinson. Proof nets for classical logic. Journal of Logic and Computation,

13:777–797, 2003.
29 Lutz Straßburger. From deep inference to proof nets via cut elimination. Journal of Logic

and Computation, 21(4):589–624, 2011.
30 Lutz Straßburger. Extension without cut. Annals of Pure and Applied Logic, 163(12):1995–

2007, 2012.
31 Lutz Straßburger. Combinatorial Flows and Proof Compression. Research Report RR-9048,

Inria Saclay, 2017. URL: https://hal.inria.fr/hal-01498468.
32 Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge Univer-

sity Press, second edition, 2000.
33 G. S. Tseitin. On the complexity of derivation in propositional calculus. Zapiski Nauchnykh

Seminarou LOMI, 8:234–259, 1968.

FSCD 2017

http://www.lix.polytechnique.fr/~lutz/papers/namingproofsCL.pdf
https://hal.inria.fr/hal-01498468

	Introduction
	Preliminaries on combinatorial proofs
	Combinatorial flows
	Normalization I: Binary Connectives
	Normalization II: Substitution
	Normalization III: Cut
	Normalization IV: Putting things together
	Relation to to deep inference proofs
	Conclusion and Future Work

