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Abstract. In this paper we present a theory of proof nets for full mul-
tiplicative linear logic, including the two units. It naturally extends the
well-known theory of unit-free multiplicative proof nets. A linking is no
longer a set of axiom links but a tree in which the axiom links are sub-
trees. These trees will be identified according to an equivalence relation
based on a simple form of graph rewriting. We show the standard results
of sequentialization and strong normalization of cut elimination. Fur-
thermore, the identifications enforced on proofs are such that the proof
nets, as they are presented here, form the arrows of the free (symmetric)
*-autonomous category.

1 Introduction

For a long time formal logicians have been aware of the need to determine, given
a formal system S and two proofs of a formula A in that system, when these two
proofs are “the same” proof. As a matter of fact this was already a concern of
Hilbert when he was preparing his famous lecture in 1900 [Thi03]. This problem
has taken more importance during the last few years, because many logical
systems permit a close correspondence between proofs and programs.

In a formalism like the sequent calculus (and to a lesser degree, natural de-
duction), it is oftentimes very easy to see that two derivations π1 and π2 should
be identified because π1 can be transformed in to π2 by a sequence of rule per-
mutations that are obviously trivial. It is less immediately clear in general what
transformations can be effected on a proof without changing its essence. But here
category theory is very helpful, providing criteria for the identification of proofs
that are simple, general and unambiguous, if sometimes too strong [Gir91].

The advent of linear logic marked a significant advance in that quest. In
particular the multiplicative fragment of linear logic comes equipped with an
extremely successful theory of proof identification: not only do we know exactly
when two sequent proofs should be identified (the allowed rule permutations are
described in [Laf95]), but there is a class of simple formal objects that precisely
represent these equivalence classes of sequent proofs. These objects are called
proof nets, and they have a strong geometric character, corresponding to addi-
tional graph structure (“axiom links”) on the syntactical forest of the sequent.
More precisely, given a sequent Γ = A1, . . . , An and a proof π of that sequent,
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then the proof net that represents π is simply given by the syntactical forest
of Γ decorated with additional edges (shown in thick lines) that represent the
identity axioms that appeared in the proof:
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Moreover proof nets are vindicated by category theory, since the category
of two-formula sequents and proof nets is precisely the free ∗-autonomous cate-
gory [Bar79] (without units) on the set of generating atomic formulas [Blu93]. As
a matter of fact axiom links were already visible, under the name of Kelly-Mac
Lane graphs in the early work [KL71] that tried to describe free autonomous
categories; Girard’s key insights [Gir87] here were in noticing that there was an
inherent symmetry that could be formalized through a negation (thus the move
from autonomous to ∗-autonomous), and that the addition of the axiom links to
the sequent’s syntactic forest were enough to completely characterize the proof.

The theory of proof nets has been extended to larger fragments of linear logic;
when judged from the point of view of their ability to identify proofs that should
be identified, these extensions can be shown to have varying degrees of success.
One of these extensions, which complies particularly well with the categorical
ideal, is the inclusion of additive connectives presented in [HvG03], in which the
additives correspond exactly to categorical product and coproduct.

In this paper we give a theory of proof nets for the full multiplicative frag-
ment. That is, our theory of proof nets includes the multiplicative units. We
prove that it allows us to construct the free ∗-autonomous category with units
on a given set of generating objects, thus getting full validation from the cate-
gorical imperative.

There are only two other presentations for multiplicative units that we are
aware of. In [KO99], the authors provide an internal language for autonomous
and *-autonomous categories based on the λµ-calculus, and in [BCST96], a non-
standard version of two-sided proof nets for a weaker logic is developed from
which the authors also claim to have constructed free ∗-autonomous categories.
Our approach is different in the following way: By making full use of the symme-
try given by the combination of an involutive negation and a one-sided sequent
calculus, we get a notion of proof net which is considerably simpler than the one
provided in [BCST96].

The Main Problem

We assume that the reader is familiar with the sequent calculus for classical
multiplicative linear logic.

The theory of ∗-autonomous categories tells us that whenever a proof contains
a rule instance r which appears after a ⊥-introduction rule and which does
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Fig. 1. Different representations of the same proof

not introduce a connective under that ⊥, then r can be pushed above that ⊥-
introduction without changing the proof:

Γ⊥ ⊥, Γ · · ·
r ⊥, Γ ′

←→
Γ · · ·

r
Γ ′

⊥ ⊥, Γ ′

This seemingly trivial permutation actually has deep consequences. Suppos-
ing that rule r was a �-introduction, there is now a choice of two branches on
which to do the ⊥-introduction.

Γ,A⊥ ⊥, Γ,A B,∆
� ⊥, Γ,A � B,∆

←→
Γ,A B,∆

�
Γ,A � B,∆⊥ ⊥, Γ,A � B,∆

←→ Γ,A

B,∆⊥ ⊥, B,∆
� ⊥, Γ,A � B,∆

Ordinary proof nets for multiplicative linear logic are characterized by the
presence of links, which connect the atoms of the syntactical forest of the sequent.
When extending them to multiplicative units, the first impulse is probably to try
to attach the ⊥s that are present on the sequent forest on other atomic formulas.
This is what is done in [BCST96] and corresponds, in the sequent calculus, to
doing the ⊥-introductions as early as possible, that is, as high up on the sequent
tree as can be done. The paragraph above shows that an arbitrary choice has to
be made because of tensor introductions: in a �-intro one branch of the sequent
proof tree or the other has to be chosen for doing the ⊥-intro. In such a situation
correct identification of proofs can only be achieved by considering equivalence
classes of graphs, and the theory of proof nets involves an equivalence relation
on a set of “correct” graphs.
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Another possibility is to attach these ⊥s “as low as possible” on the forest,
corresponding to the idea that in the sequent calculus deduction the ⊥-intro
would be done as late as possible, for example just before the ⊥ instance gets
a connective introduced under it. One way of implementing this is linking the
⊥ instance to the last connective that was introduced above it. This is not the
only way of doing things, for example we could imagine links that attach that
⊥ instance to several subformulas of the sequent forest, corresponding to the
several conclusions of the sequent that existed above the ⊥-introduction.

But whatever way we choose to “normalize” proofs, we claim that if the
conventional notion of “link” is used for ⊥s (i.e., if we consider a proof π on the
sequent Γ as the sequent forest of Γ decorated with special edges that encode
information about the essence of π) we still need to use equivalence classes of
such graphs, and there is no hope of having a normal form in that universe of
enriched sequent graphs. For instance, the six graphs in Figure 1 are easily seen
to represent equivalent proofs, because going from an odd-numbered example
to its successor is just sliding a ⊥-intro up in one of the �-intro branches, and
going from an even-numbered example to its successor is just doing the reverse
transformation. But notice that examples (3) and (5) are distinct but isomorphic
graphs, since one can be exactly superposed on the other by only using the
Exchange rule. Thus it is impossible, given the information at our disposal, to
choose one instead of the other to represent the abstract proof they both denote.
The only way this could be done would be by using arbitrary extra information,
like the order of the formulas in the sequent, a strategy that only replaces the
overdeterminism of the sequent calculus by another kind of overdeterminism.

The same can be said of Examples (2) and (6), which are also isomorphic
modulo Exchange. But notice that these two comply to the “as early as possible”
strategy, while the previous two were of the “as late as possible” kind. So for
neither strategy can there be a hope a graphical normal form. The interested
reader can verify that the six examples above are part of a “ring” of 24 graphs
that are all equivalent from the point of view of category theory.

Thus there is one aspect of our work that does not differ from [BCST96],
which is our presentation of abstract proofs as equivalence classes of graphs.
But some related aspects are significantly different:

– The graphs that belong to our equivalence classes are standard multiplicative
proof nets, where the usual notions, like correctness criteria and the empire
of a tensor branch, will apply. It is just that some � and � links are used
in a particular fashion to deal with the units. (The readers can choose their
favorite correctness criterion since they are all equivalent; in this paper we
will use the one of [DR89] because of its popularity.)

– The equivalence relation we will present is based on a very simple set of
rewriting rules on proof graphs. As a matter of fact, there is only one non-
trivial rule, since the other rules have to do with commutativity and associa-
tivity of the connectives and can be dispensed with if we use, for example,
n-ary connectives.
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Fig. 2. Two examples of proof graphs

2 Cut Free Proof Nets for MLL

Let A = {a, b, . . . } be an arbitrary set of atoms, and let A⊥ = {a⊥, b⊥, . . . }.
The set of MLL formulas is defined as follows:

F ::= A | A⊥ | 1 | ⊥ | F � F | F �F .

Additionally, we will define the set of MLL linkings (which can be seen as a
special kind of formulas) as follows:

L ::= 1 | a � a⊥ | a⊥
� a | ⊥ � L | L � ⊥ | L�L .

Here, a stands for any element of A. We will use A, B, . . . to denote formulas,
and P , Q, . . . to denote linkings. Sequents (denoted by Γ , ∆, . . . ) are finite lists
of formulas (separated by comma).

In the following, we will always consider both formulas and linkings as binary
trees (and sequents as forests), whose leaves are decorated by elements of A ∪
A⊥∪{1,⊥}, and whose inner nodes are decorated by � or �. We can also think
of the nodes being decorated by the whole subformula above that node.

2.1 Definition. A pre-proof graph is a graph consisting of a linking P and
a sequent Γ , both of which share the same set of leaves. It will be denoted as
P � Γ .

Following the tradition, we will draw these graphs such that the roots of
the formula trees are at the bottom, the root of the linking tree is at the top,
and the leaves are in between. Figure 2 shows two examples. The first of them
corresponds to the first graph in Figure 1. A more compact notation for this is

(11 � ⊥2)�(⊥3 � ((14 � ⊥5)�(⊥6 � 17)))
�

11,⊥2 � ⊥3, 14,⊥5 � ⊥6, 17
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and

⊥1 � ((12 � ⊥4)�((a3 � a⊥
5 )�(a⊥

6 � a7)))
�

⊥1, 12 � a3,⊥4 � ((a⊥
5 � a⊥

6 )� a7)
.

Here, the indices are used to show how the leaves of the linking and the
leaves of the sequent are identified. In this way we will, throughout this paper,
use indices on atoms to distinguish between different occurrences of the same
atom (i.e. a3 and a7 do not denote different atoms). In the same way, indices on
the units 1 and ⊥ are used to distinguish different occurrences.

2.2 Definition. A switching of a pre-proof graph P � Γ is a graph G that
is obtained from P � Γ by omitting for each �-node one of the two edges that
connect the node to its children. [DR89]

2.3 Definition. A pre-proof graph P � Γ is called correct if all its switch-
ings are connected and acyclic. A proof graph is a correct pre-proof graph.

The examples in Figure 2 are proof graphs.
Let P � Γ be a pre-proof graph where one ⊥ is selected. Let it be indexed

as ⊥i. Now, let G be a switching of P � Γ , and let G′ be the graph obtained
from G by removing the edge between ⊥i and its parent in P (which is always
a �). Then G′ is called an extended switching of P � Γ with respect to ⊥i.
Observe that, if P � Γ is correct, then every extended switching is a graph that
has exactly two connected components.

We will use the notation P{Q} � Γ to distinguish the subtree Q of the
linking tree of the graph. Then P{ } is the context of Q.

On the set of pre-proof graphs
we will define the relation ∼ to be the smallest equivalence relation satisfying

P{Q� R} � Γ ∼ P{R �Q} � Γ
P{(Q� R)� S} � Γ ∼ P{Q�(R �S)} � Γ

P{Q � R} � Γ ∼ P{R � Q} � Γ
P{⊥i � (Q � ⊥j)} � Γ ∼ P{(⊥i � Q) � ⊥j)} � Γ

P{Q�(R � ⊥i)} � Γ
(∗)∼ P{(Q� R) � ⊥i)} � Γ ,

where the last equation only holds if the following side condition is fulfilled:
(∗) In each extended switching of P{Q�(R � ⊥i)} � Γ with respect to ⊥i no

node of the subtree Q is connected to ⊥i.
The following proof graph is equivalent to the second one in Figure 2:

(((⊥1 � 12) � ⊥4)�(a3 � a⊥
5 ))�(a⊥

6 � a7)
�

⊥1, 12 � a3,⊥4 � ((a⊥
5 � a⊥

6 )� a7) .

2.4 Equivalence on Pre-proof Graphs.
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id
a � a⊥ � a, a⊥

P � Γ, A, B, ∆
ex

P � Γ, B, A, ∆

1
1 � 1

P � Γ⊥ ⊥ � P � ⊥, Γ

P � A, B, Γ
�

P � A � B, Γ

P � Γ, A Q � B, ∆
�

P � Q � Γ, A � B, ∆

Fig. 3. Translation of cut free sequent calculus proofs into pre-proof graphs

2.5 Definition. A pre-proof net1 is an equivalence class [P � Γ ]∼. A pre-
proof net is correct if one of its elements is correct. In this case it is called a
proof net.

In the following, we will for a given proof graph P � Γ write [P � Γ ]
to denote the proof net formed by its equivalence class (i.e. we will omit the
∼ subscript).

2.6 Lemma. If P � Γ is correct and P � Γ ∼ P ′ � Γ , then P ′ � Γ is
also correct.

Proof: That the first four equations preserve correctness is obvious. If in the
last equation there is a switching that makes one side disconnected, then it also
makes the other side disconnected. For acyclicity, we have to check whether there
is a switching that produces a cycle on the right-hand side of the equation and
not on the left-hand side. This is only possible if the cycle contains some nodes
of Q and the ⊥i. But this case is ruled out by the side condition (∗). ��

Lemma 2.6 ensures that the notion of proof net is well-defined, in the sense
that all its members are proof graphs, i.e. correct.

3 Sequentialization

Figure 3 shows how cut free sequent proofs of MLL can be inductively translated
into pre-proof graphs.

We will call a pre-proof net sequentializable if one of its representatives can
be obtained from a sequent calculus proof via this translation.

3.1 Theorem. A pre-proof net is sequentializable iff it is a proof net.
For the proof we will need the observation that any proof graph is an ordinary

unit-free proof net, and the well-known fact that there is always a splitting tensor
in such a net.

3.2 Observation Every proof graph P � Γ is an ordinary unit-free proof
net in the style of [DR89]. To make this precise, define for the linking P the
linking formula P � inductively as follows:

1 What we call pre-proof net is in the literature often called proof structure.
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a⊥� = a 1� = ⊥ (A � B)� = A�
� B�

a� = a⊥ ⊥� = 1 (A� B)� = A�
�B� .

In other words, P � is obtained from P by replacing each leaf by its dual and
by leaving all inner nodes unchanged. We now connect the leaves of P � and Γ by
ordinary axiom links according to the leaf identification in P � Γ . If we forget
the fact that ⊥ and 1 are the units and think of them as ordinary dual atoms,
then we have an ordinary unit-free proof net2.

3.3 Lemma. If in a unit-free proof net all roots are �-nodes, then one of
them is splitting, i.e. by removing it the net becomes disconnected. [Gir87]

Proof of Theorem 3.1 (Sketch): It is easy to see that the rules 1 and id give
proof graphs and that the rules ⊥, �, and � preserve the correctness. Therefore
every sequentializable pre-proof net is correct.

For the other direction pick one representative P � Γ of the proof net and
proceed by induction on the sum of the number of �-nodes in the graph and the
number of �-nodes in Γ . We now interpret P � Γ as an ordinary unit-free proof
net (according to Observation 3.2), and remove all �-roots (for those inside Γ
apply the � rule and proceed by induction hypothesis). Then apply Lemma 3.3.
If the splitting � is inside Γ , we can apply the �-rule and proceed by induction
hypothesis; if it is inside P , it must come from an axiom link or a bottom link.
In both cases we can obtain two smaller proof graphs, to which we can apply
the induction hypothesis to get two sequent proofs, which can be composed by
plugging one into a leaf of the other. ��

4 Cut and Cut Elimination

A cut is a formula A � A⊥, where � is called the cut connective, and where the
function (−)⊥ is defined on formulas as follows (with a little abuse of notation):

a⊥⊥ = a 1⊥ = ⊥ (A � B)⊥ = A⊥
� B⊥

a⊥ = a⊥ ⊥⊥ = 1 (A� B)⊥ = A⊥
� B⊥ .

A sequent with cuts is a sequent where some of the formulas are cuts. But
cuts are not allowed to occur inside formulas, i.e. all �-nodes are roots. A pre-
proof graph with cuts is a pre-proof graph P � Γ , where Γ may contain cuts.
The �-nodes have the same geometric behavior as the �-nodes. Therefore the
correctness criterion stays literally the same, and we can define proof graphs with
cuts and proof nets with cuts accordingly. In the translation from sequent proofs
containing the cut rule into pre-proof graphs with cuts, the cut is treated as
follows:

Γ,A A⊥,∆
cut

Γ,∆
�

P � Γ,A Q � A⊥,∆
cut

P � Q � Γ,A � A⊥,∆
.

2 If Γ consists of only one formula, then we have an object which is in [BC99] called
a bipartite proof net. In fact, two proof graphs (in our sense) are equivalent if and
only if the two linkings (seen as formulas) are isomorphic (in the sense of [BC99]).
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Fig. 4. Cut elimination reduction steps

Since the � behaves in the same way as the �, we immediately have the
generalization of the sequentialization:

4.1 Theorem. A pre-proof net with cuts is sequentializable if and only if it
is correct, i.e. it is a proof net with cuts.

On the set of cut pre-proof graphs we can define the cut reduction relation →
as follows:

P
�

(A� B) � (A⊥
� B⊥), Γ

→
P
�

A � A⊥, B � B⊥, Γ

P{(a⊥
h � ai)�(a⊥

j � ak)}
�

ai � a⊥
j , Γ

→
P{a⊥

h � ak}
�
Γ

P{(Q � ⊥i)� 1j}
�

⊥i � 1j , Γ
→

P{Q}
�
Γ

These reduction steps are shown in graphical notation in Figure 4.

4.2 Lemma. If P � Γ is correct and P � Γ → P ′ � Γ ′, then P ′ � Γ ′ is
also correct.

Proof: It is impossible that a cut reduction step introduces a cycle in a switching
or makes it disconnected. ��
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Observe that it can happen that in a proof graph no reduction is possible,
although there are cuts present in the sequent. For example, in
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the cut cannot be reduced.
In a given proof graph P � Γ , a �-node that can be reduced will be called

ready. Obviously, a cut on a �-�-pair is always ready, but for a cut on atoms or
units this is not necessarily the case, as the example above shows. However, we
have the following theorem:
4.3 Theorem. Given a proof graph P � Γ and a �-node in Γ , there is an
equivalent proof graph P ′ � Γ , in which that �-node is ready, i.e. can be reduced.

This is an immediate consequence of the following two lemmas.
4.4 Lemma. For every proof graph P � ai �a⊥

j , Γ that contains an atomic
cut, there is an equivalent proof graph P ′{(a⊥

h � ai)�(a⊥
j � ak)} � ai � a⊥

j , Γ .
4.5 Lemma. For every proof graph P � ⊥i � 1j , Γ that contains a cut on
the units, there is an equivalent proof graph P ′{(Q � ⊥i)� 1j} � ⊥i � 1j , Γ .

For proving them, we will use the following three lemmas.
4.6 Lemma. Let P{(⊥k �R{xi})�(S{x⊥

j }�⊥h)} � xi �x⊥
j , Γ be a proof

graph, where x is an arbitrary atom or a unit, and x⊥ its dual.
Then at least one of P{⊥k � (R{xi}�(S{x⊥

j } � ⊥h))} � xi � x⊥
j , Γ and

P{((⊥k � R{xi})� S{x⊥
j }) � ⊥h} � xi � x⊥

j , Γ is equivalent to it.

4.7 Lemma. Let P{(⊥k�R{xi})�(x⊥
j �Q)} � xi�x⊥

j , Γ be a proof graph,
where x is an arbitrary atom or a unit, and x⊥ its dual.
Then P{⊥k � (R{xi}�(x⊥

j � Q))} � xi � x⊥
j , Γ is equivalent to it.

4.8 Lemma. Let P{(⊥k � R{xi})� x⊥
j } � xi � x⊥

j , Γ be a proof graph,
where x is an arbitrary atom or a unit, and x⊥ its dual.
Then P{⊥k � (R{xi}� x⊥

j )} � xi � x⊥
j , Γ is equivalent to it.

Proof of Lemma 4.4 (Sketch): Since the proof graph is correct, the linking
P must be of the shape P ′′{R{a⊥

h �ai}� S{a⊥
j �ak}} for some contexts P ′′{ },

R{ } and S{ }. The contexts R{ } and S{ } can be reduced to { } by applying
Lemma 4.6 and Lemma 4.7 repeatedly.
Proof of Lemma 4.5 (Sketch): Similar to Lemma 4.4, but in this case we
also need Lemma 4.8.

Let us now extend the relation → to proof nets as follows: [P � Γ ] → [Q � ∆]
if an only if there are proof graphs P ′ � Γ and Q′ � ∆ such that

P � Γ ∼ P ′ � Γ → Q′ � ∆ ∼ Q � ∆ .
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4.9 Lemma. There is no infinite sequence

[P � Γ ] → [P ′ � Γ ′] → [P ′′ � Γ ′′] → · · ·
Proof: In each reduction step the size of the sequent (i.e. the number of �, �

and �-nodes) is reduced. ��
4.10 Lemma. Let P � Γ ∼ P ′ � Γ , and let P � Γ → Q � ∆ and
P ′ � Γ → Q′ � ∆, i.e. in both reductions the same cut is reduced. Then we have
Q � ∆ ∼ Q′ � ∆.

Proof: Easy case analysis. ��
4.11 Lemma. If Q � ∆ ← P � Γ → R � Σ, then either Q � ∆ = R � Σ,
or there is a proof graph S � Φ such that Q � ∆ → S � Φ ← R � Σ.

4.12 Lemma. If [Q � ∆] ← [P � Γ ] → [R � Σ], then either [Q � ∆] =
[R � Σ], or there is a proof net [S � Φ] such that [Q � ∆] → [S � Φ] ← [R � Σ].

Proof (Sketch): Let �1 denote the cut that is reduced in Γ to obtain ∆ and
�2 the one that is reduced to obtain Σ. The basic idea is to apply Theorem 4.3
in order to make both cuts ready at the same time and then apply Lemma 4.11
and Lemma 4.10. There is essentially only one case in which it is not possible to
make both cuts ready at the same time, namely, when they use the same axiom
link. In other words, P � Γ is of the following shape:

P ′{(P ′′{a⊥
h � ai}� P ′′′{a⊥

j � ak})� P ′′′′{a⊥
l � am}}

�
ai �1 a⊥

j , ak �2 a⊥
l , Φ

But whatever order of reduction is used, in both cases we get something of
the shape S′{a⊥

h � am} � Φ. ��
4.13 Theorem. The cut elimination reduction → on proof nets is strongly
normalizing. The normal forms are cut free proof nets.

Proof: Termination is provided by Lemma 4.9 and confluence follows from
Lemma 4.12. That the normal form is cut free is ensured by Theorem 4.3. ��

5 *-Autonomy

For any formula A, we can provide an identity proof net idA = [IA � A⊥, A],
where IA is called the identity linking which is defined inductively on A as follows:

Ia = Ia⊥ = a � a⊥

I⊥ = I1 = ⊥ � 1
IA � B = IA�B = IA � IB

Observe that we can have that IA = IA⊥ because changing the order of the
arguments of a � or � in the linking of a proof graph does not change the proof
net (see 2.4).

Furthermore, for any two proof nets f = [P � A⊥, B] and g = [Q � B⊥, C],
we can define their composition g ◦ f to be the result of the cut elimination
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procedure to [P �Q � A⊥, B �B⊥, C]. That this is well-defined and associative
follows almost immediately from the strong normalization of cut elimination. We
also have that f ◦ idA = f = idB ◦ f .

This gives rise to a category PN(A) whose objects are the MLL formulas built
over A ∪A⊥ ∪ {⊥, 1}, and whose arrows are the proof nets. More precisely, the
arrows between two objects A and B are the (cut-free) proof nets [P � A⊥, B].
The operation � on formulas can be extended to a bifunctor � : PN(A) ×
PN(A) → PN(A) by defining for two arrows f = [P � A⊥, B] and g = [Q �
C⊥,D] the arrow f � g = [P �Q � A⊥

� C⊥, B � D]. It can easily be seen that
this bifunctor makes our category symmetric monoidal (with unit 1): The basic
natural isomorphisms demanded by the definition (associativity, right unit, left
unit, symmetry) are

αA,B,C = [IA � IB � IC � A⊥
�(B⊥

� C⊥), (A � B) � C]
ρA = [⊥ � IA � A⊥

�⊥, A]
λA = [⊥ � IA � ⊥�A⊥, A]

σA,B = [IA � IB � A⊥
� B⊥, B � A]

It is easy to check these are indeed proof nets, that α, ρ, λ, and σ are natural
isomorphisms for all formulas A, B, and C, and that the corresponding diagrams
(see [BW99]) commute.

Furthermore, we can exhibit the (contravariant) duality functor (−)⊥ whose
object function has already been defined. For an arrow f = [P � A⊥, B] : A → B
let f⊥ = [P � B,A⊥] : B⊥ → A⊥. This determines a symmetric *-autonomous
category structure [Bar79, BW99]. In particular, we define the bifunctor −�−
as A� B = (A⊥

� B⊥)⊥ and its unit object as ⊥ = 1⊥. The last thing to check
is that we have the natural bijection

Hom(A � B,C) ∼= Hom(A,B⊥
�C)

[P � A⊥
� B⊥, C] 
→ [P � A⊥, B⊥

�C] .

In this section we will show that the category of proof nets is the free symmetric
*-autonomous category. Let A be a set and let ηA : A → Obj(PN(A)) be the
function that maps every element of A to itself seen as atomic formula. To say
that PN(A) is the free *-autonomous category generated by A amounts to saying
that
6.1 Theorem. For any *-autonomous category3 (C,�, 1C , (−)⊥) and any
map G◦ : A → Obj(C), there is a unique functor G : PN(A) → C, preserving
the *-autonomous structure, such that G◦ = Obj(G) ◦ ηA, where Obj(G) is the
restriction of G on objects.

The remainder of this section is devoted to a sketch the proof of this theorem.
For this we will introduce the following notation.

3 For simplicity we assume that for every object C of C we have C⊥⊥ = C. This can
be relaxed to a natural isomorphism by standard trickery.

6 The Free *-Autonomous Category
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Let I be an index set. A bracketing of I is given by a total order I =
{i1, . . . , ik} and a binary tree structure whose set of leaves is I, such that the
order is respected. We will denote bracketings of I also by I. The whole point
of this is, given an I-indexed family (Ci)i∈I of objects of C, that we can write
�I{Ci1 , . . . , Cik

} to denote the object of C that is obtained by applying the func-
tor − � − according to the bracketing I. By a standard theorem of symmetric
monoidal categories, any two objects obtained from different bracketings of the
same set have a unique “coherence” isomorphism between them. Notice that this
will involve the symmetry only if the order differs on the bracketings. Similarly,
�I{Ci1 , . . . , Cik

} is defined. For empty I, let �∅∅ = 1C and �∅∅ = ⊥C = 1⊥C .
The purpose of this notation is to state the following property of *-autonomous
categories.

6.2 Proposition. Let C be a *-autonomous category, and let C1, . . . , Cn

be objects of C. Let I, J ⊆ {1, . . . , n}, and let �I = {1, . . . , n} \ I and �J =
{1, . . . , n} \ J be their complements. Then for all bracketings of I, J, �I, �J ,
we have a natural bijection between HomC

(

�I{C⊥
i | i ∈ I} , ��I{Ci | i ∈ �I} )

and HomC
(

�J{C⊥
i | i ∈ J} , ��J{Ci | i ∈ �J} )

.

Proof: The proof is done by repeatedly applying the associativity and commu-
tativity of the two functors −�− and −�−, the natural isomorphisms for the
units, and the natural bijection HomC(A � B⊥, C) ∼= HomC(A,B �C), which is
imposed by the *-autonomous structure. ��

Let now the *-autonomous category C and the embedding G◦ : A → Obj(C)
be given. We will exhibit the functor G : PN(A) → C which has the desired
properties. On the objects, this functor is uniquely determined as follows:

G(a) = G◦(a) G(⊥) = ⊥C G(A� B) = G(A)� G(B)
G(a⊥) = G◦(a)⊥ G(1) = 1C G(A � B) = G(A) � G(B)

There is no other choice since the objects 1C and ⊥C in C, as well as the
functors (−)⊥, −�−, and −�− are uniquely determined by the *-autonomous
structure on C.

For defining G on the morphisms, the situation is not as simple. We will first
ignore the fact that the units are units and interpret a proof graph (with cuts)
P � Γ as an ordinary unit-free proof net with conclusions A0, . . . , An, B1 �

B⊥
1 , . . . , Bm � B⊥

m, where A0 = P � (see Observation 3.2), A1, . . . , An are the
formulas in Γ that are not cuts, and B1 � B⊥

1 , . . . , Bm � B⊥
m are the cuts in Γ .

To each such object we will uniquely assign a family of morphisms

�I{G(Ai)⊥ | i ∈ I} → ��I{G(Ai) | i ∈ �I}
indexed by the bracketings on the subsets I ⊆ {0, . . . , n} and their complements.
Proposition 6.2 ensures that every member of such a family of morphisms de-
termines the others uniquely. The construction is done by induction on the size
of the proof graph, using Lemma 3.3. (In fact, it is quite similar to the sequen-
tialization.)

Observe that in particular this construction gives us for each proof graph
P � A⊥, B a unique arrow ψP�A⊥,B : G(P �)⊥ → G(A⊥)� G(B). Further-
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more, observe that for every linking P , the object G(P �)⊥ in C is isomor-
phic to �a�a⊥{G(a)� G(a)⊥}, where a � a⊥ ranges over the axiom links in
P . This means that the *-autonomous structure on C uniquely determines a
morphism φP : 1C → G(P �)⊥. This can be composed with ψP�A⊥,B to get
ξ[P�A⊥,B] : 1C → G(A⊥)� G(B). That this is well-defined, is ensured by the
following lemma (in which we no longer ignore the fact that the units are units).

6.3 Lemma. If Q � A⊥, B ∼ P � A⊥, B, then ξ[P�A⊥,B] = ξ[Q�A⊥,B].

Consequently, to each proof net f = [P � A⊥, B], we can uniquely assign the
arrow G(f) : G(A) → G(B) that is determined by ξ[P�A⊥,B] via Proposition 6.2.

It remains to show that G : PN(A) → C is indeed a functor (i.e. identities
and composition are preserved). That for each formula A, the proof [IA � A⊥, A]
is mapped to identity id : G(A) → G(A) is an easy induction on the structure
of A and left to the reader. The preservation of composition is ensured by the
following lemma.

6.4 Lemma. Let T � Γ → S � ∆, i.e. the proof graph S � ∆ is obtained
from T � Γ by applying a single cut reduction step. Then ξ[T�Γ ] and ξ[S�∆]

denote the same morphism 1C → �{G(A1), . . . , G(An)}, where A1, . . . , An are
the formulas in Γ (resp. ∆) that are not cuts.

It might be worth mentioning, that Theorem 6.1 provides a decision proce-
dure for the equality of morphisms in the free symmetric *-autonomous category,
which is in our opinion simpler than the ones provided in [BCST96] and [KO99].

7 Conclusion

We think we made a convincing case for the the cleanest approach yet to proof
nets with the multiplicative units. There is always the possibility that another
“ideology” than category theory will arise and will tell us to identify sequent
proofs in a different way, perhaps collapsing fewer proofs, and help us construct
more rigid proof objects. But we doubt very much that such a thing exists, given
that the permutation rules that category theory imposes on the sequent calculus
are so natural and so hard to weaken.

There are some issues that are left open and that we want to explore in the
future:
– The relation with the new proof formalism called the calculus of structures

[GS01, BT01]. We should mention that the idea behind our approach origi-
nates from the new viewpoints that are given by the calculus of structures.

– The addition of additives to our theory. This should not be very hard, given
the work done in [HvG03]. The true challenge is to include also the additive
units.

– The development of a theory of proof nets for classical logic. The problem is
finding the right extension of the axioms of a *-autonomous category, such
that on the one hand classical proofs are identified in a natural way, and on
the other hand there is no collapse into a boolean algebra.
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– The search for meaningful invariants. It is very probable that the equivalence
classes of graphs we define have a geometric meaning, and can be related
to more abstract invariants like those given by homological algebra. We are
convinced that the work in in [Mét94] is only the tip of the iceberg.
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[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Gir91] Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical
Structures in Computer Science, 1:255–296, 1991.

[GS01] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in
the calculus of structures. In Laurent Fribourg, editor, Computer Science
Logic, CSL 2001, volume 2142 of LNCS, pages 54–68. Springer-Verlag, 2001.

[HvG03] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free
multiplicative-additive linear logic. In 18’th IEEE Symposium on Logic in
Computer Science (LICS 2003), 2003.

[KL71] Gregory Maxwell Kelly and Saunders Mac Lane. Coherence in closed
categories. Journal of Pure and Applied Algebra, 1:97–140, 1971.

[KO99] Thong-Wei Koh and Chih-Hao Luke Ong. Internal languages for au-
tonomous and *-autonomous categories. In Martin Hofmann, Giuseppe
Rosolini, and Dusko Pavlovic, editors, Proceedings of the 8th Conference on
Category Theory and Computer Science, Edinburgh, September 1999, vol-
ume 29 of Electronic Notes in Theoretical Computer Science. Elsevier, 1999.

[Laf95] Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, volume 222
of London Mathematical Society Lecture Notes, pages 225–247. Cambridge
University Press, 1995.

[Mét94] François Métayer. Homology of proof nets. Archive of Mathematical Logic,
33:169–188, 1994.
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