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Abstract We introduce the calculus of structures: it is more general than the
sequent calculus and it allows for cut elimination and the subformula property.
We show a simple extension of multiplicative linear logic, by a self-dual non-
commutative operator inspired by CCS, that seems not to be expressible in the
sequent calculus. Then we show that multiplicative exponential linear logic ben-
efits from its presentation in the calculus of structures, especially because we
can replace the ordinary, global promotion rule by a local version. These formal
systems, for which we prove cut elimination, outline a range of techniques and
properties that were not previously available. Contrarily to what happens in the
sequent calculus, the cut elimination proof is modular.

1 Introduction

The sequent calculus [5] is very appropriate for classical logic, but it has some problems
in dealing with more refined logics like linear logic [6]. Observing certain logical
relations in the sequent calculus might be impossible. In this paper we show a calculus,
called the calculus of structures, which is able to overcome those difficulties.

We call calculus a framework, like natural deduction or the sequent calculus, for
specifying logical systems. We say formal system to indicate a collection of inference
rules in a given calculus. A derivation is a composition of instances of inference rules,
a proof is a derivation free from hypotheses.

A proof in the sequent calculus is a tree, and branching occurs when two-premise
rules are used. The two branches are statements that proofs exist for both premises.
At the meta level, we say that the left branch is a proof and the right branch is a
proof. In classical logic, this ‘and’ corresponds to the ‘and’ at the object level. This
is not the case in other logics, like in linear logic.

Another founding property of the sequent calculus is the pivotal rôle of main
connectives. Given a main connective in the conclusion, a rule gives meaning to it
by saying that the conclusion is provable if subformulae obtained by removing the
connective are in turn provable.

These two properties together have remarkable success in making the study of
systems independent of their semantics, which is important if a semantics is incom-
plete, missing or still under development, as often happens in computer science. The
problem is that the sequent calculus is unnecessarily rigid for some logics. We can
relax the ‘and’ branching between premise trees, and abandon the decomposing of the
conclusion around the main connective of one of its formulae. The question is whether
we can do so while keeping the good properties, cut elimination especially.

The calculus of structures draws from a very simple principle, which is very

dangerous if not realised with care. The inference rules are of the kind
S{T}

ρ
S{R}

, where

premise and conclusion are structures, i.e., formulae subject to certain equivalences
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(associativity, commutativity, units, . . . ). A structure S{R} is a structure context
S{ }, whose hole is filled by the structure R. The rule scheme ρ above specifies that
if a structure matches R, in a context S{ }, it can be rewritten as specified by T , in
the same context S{ } (or vice versa if one reasons top-down). A rule corresponds
to implementing in the formal system any axiom T ⇒ R, where ⇒ stands for the
implication we model in the system. The danger lies in the words ‘any axiom’.

In fact, rules could be used as axioms of a generic Hilbert system, where there
is no special, structural relation between T and R. But then all the good proof
theoretical properties would be lost. Our challenge is to design inference rules in a
way that is conservative enough to allow us to prove cut elimination, and such that
they possess the subformula property. Still we have to be liberal enough to overcome
the problems of rigidity mentioned above.

It is important to note that the calculus of structures is more general than the
sequent calculus, for logics with De Morgan rules. Any system that admits a one-sided
presentation can be ported, trivially, to the calculus of structures. But, since we can
do more, we want to use the new expressive capabilities to get new logics, or to make
old logics better. We will do both things in this paper (without paying a big price).

Rules come in pairs,
S{T}

ρ↓
S{R}

(down version) and
S{R̄}

ρ↑
S{T̄}

(up version), where

Ū is the negation of U and S stands for any context. This duality derives from
the duality between T ⇒ R and R̄ ⇒ T̄ . We would like to dispose of the up rules
without affecting provability—after all, T ⇒ R and R̄ ⇒ T̄ are equivalent statements
in many logics. The cut rule splits into several up rules, and this makes for a modular
decomposition of the cut elimination argument, since we can get rid of up rules one
after the other. This is one the main achievements of our paper (in [7], p. 15, Girard
deems as ‘rather shocking’ this lack of modularity in the sequent calculus).

Derivations in the calculus of structures are chains of instances of rules. Con-
trarily to what happens in the sequent calculus, whose derivations are trees, our deri-
vations have a top-down symmetry. This allows for new manipulations of derivations.
For example, permuting down certain rules, like the cut, is easier than in the sequent
calculus; entire derivations may be flipped upside down and negated and they still are
valid derivations; and so on. The most important consequence of the new symmetry

is that the cut rule
S{(R, R̄)}

i↑
S{⊥}

becomes top-down symmetric to the identity rule
S{1}

i↓
S{[R, R̄]}

(here, (R,T ) and [R,T ] denote the conjunction and the disjunction of

R and T , and 1 and ⊥ are the conjunctive and disjunctive units). It is then possible

to reduce the cut rule to its atomic variant
S{(a, ā)}

a↑
S{⊥}

, the same way as identity can

be just required for atoms in most systems in the sequent calculus. The reduction of
cut to its atomic form simplifies the cut elimination argument, since there is no more
interaction between a cut’s principal formula and the structure of the proof.

We believe that the development of a calculus must be driven by its systems.
Here we develop two systems inside the calculus of structures. The first one, in
Sect. 2, is system BV (Basic system V ) [8]. It is equivalent to multiplicative linear
logic plus mix, extended by a non-commutative self-dual operator. System BV is
motivated by the desire to grasp a sequential operator, like that of CCS [12], in a
logical system, especially from a proof-search perspective. The logic obtained seems
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not to be expressible in the sequent calculus, certainly not in a simple way, while in
our calculus it is straightforward. System BV is just a first, but crucial step toward a
logical system encompassing languages of distributed computation. The methodology
for designing systems, induced by the calculus of structures, is outlined in that section.

We start from a very simple observation. A basic reaction in CCS is a|ā → 0: the
two parallel processes a and ā communicate and rewrite to the empty process 0. This
naturally corresponds to the identity axiom in logic, if we express complementation
in CCS by negation; the parallel composition ‘|’ corresponds to disjunction (linear
logic’s multiplicative disjunction corresponds remarkably well, see for example [10]).
Consider now sequential composition, as in the process a.b: the dual of this process
must be a.b = ā.b̄, since a.b | ā.b̄ →∗ 0. Then, we need a self-dual non-commutative
logical operator for modelling sequential composition. We are not committing to CCS:
we just observe that, as witnessed by CCS, there is a natural way of seeing parallel
and sequential compositions in a logical system.

In Sect. 3 the system ELS (multiplicative Exponential Linear logic in the calculus
of Structures) is shown [16]. A first reason to study this system, which is equivalent
to sequent calculus’s MELL, is to see how our calculus performs on a system that is
studied already elsewhere. We get a surprising result: the promotion rule can be made
local, what is unlikely in the sequent calculus.

There is another reason for studying MELL in our calculus: we plan to enrich
BV with contraction, in the hope of making it Turing equivalent. To this purpose, we
need exponentials to control contraction, because we do not want to destroy the good
behaviour of multiplicative disjunction with respect to parallel composition (what is
known as ‘resource sensitivity’).

For both systems BV and ELS we state decomposition theorems: rules in deriva-
tions can be rearranged in a highly structured way (impossible in the sequent calculus)
where subsystems of a given system are applied in sequence. Decomposition results
allow us greatly to simplify the cut elimination proofs and are (still mysteriously)
linked to other features of the systems under study. These theorems are welcome
because proving cut elimination in the calculus of structures can be harder than in
the sequent calculus, due to the more liberal applicability of inference rules.

We also prove cut elimination for both systems, and, overall, the argument
is quite different than the usual one in the sequent calculus. Exploring the new
methodology is by itself interesting, because there is the possibility of characterising
the property of cut elimination in a more systematic way than before.

This paper only deals with syntax: our sole purpose is to present the calculus of
structures and its properties. MELL is, of course, semantically well-known, and then
so is ELS. System BV has been discovered by trace semantics [8].

2 Non-commutativity

A system in our calculus requires a language of structures. These are sort of inter-
mediate expressions between formulae and sequents. Here we define the language for
systems BV and SBV , and we call it BV . Intuitively, [S1, . . . , Sh ] corresponds to a
sequent in linear logic, whose formulae are connected by pars, and associativity and
commutativity are taken into account. The structure (S1, . . . , Sh) corresponds to the
times connection of S1, . . . , Sh; it is associative and commutative. The structure
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〈S1; . . . ;Sh〉 is associative and non-commutative: this corresponds to the new logical
relation we introduce. All the details for this section can be found in [8].
2.1 Definition There are infinitely many positive literals and negative literals. Lit-
erals, positive or negative, are denoted by a, b, . . . . Structures are denoted by S, P ,
Q, R, T , U and V . The structures of the language BV are generated by

S ::= a | ◦ | [ S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | 〈S; . . . ;S
︸ ︷︷ ︸

>0

〉 | S̄ ,

where ◦, the unit, is not a literal; [S1, . . . , Sh ] is a par structure, (S1, . . . , Sh) is a
times structure and 〈S1; . . . ;Sh〉 is a seq structure; S̄ is the negation of the structure
S. Structures with a hole that does not appear in the scope of a negation are denoted
by S{ }. The structure R is a substructure of S{R}, and S{ } is its context. We
simplify the indication of context in cases where structural parentheses fill the hole
exactly: for example, S [R,T ] stands for S{[R,T ]}.

Structures come with equational theories establishing some basic, decidable al-
gebraic laws by which structures are indistinguishable. There is an analogue in the
laws of associativity, commutativity, idempotency, and so on, usually imposed on se-
quents. We will see these laws together with the inference rules. It would be possible,
of course, to introduce the equational laws by inference rules. But, having dropped
connectives, our choice makes matters much clearer.

The next step in defining a system is giving its inference rules. The following
definition is general, i.e., it holds for any system, not just BV .

2.2 Definition An (inference) rule is any scheme
T

ρ
R

, where ρ is the name of the

rule, T is its premise and R is its conclusion. Rule names are denoted by ρ and π.
A (formal) system, denoted by S , is a set of rules. A derivation in a system S is a
finite chain of instances of rules of S , and is denoted by ∆. A derivation can consist
of just one structure. The topmost structure in a derivation is called its premise; the
lowest structure is called conclusion. A derivation ∆ whose premise is T , conclusion

is R, and whose rules are in S is denoted by
T

R

S∆ .

A typical rule has shape
S{T}

ρ
S{R}

and specifies a step of rewriting, by the impli-

cation T ⇒ R, inside a generic context S{ }. Rules with empty contexts correspond
to the case of the sequent calculus. It is important to note that the notion of derivation
is top-down symmetric. Logical axioms for the given systems will be given separately
from the rules. They will induce the concept of proof, and their introduction is our
way of breaking the symmetry and observing the usual proof theoretical properties,
like cut elimination. We will be dealing with proofs only later in the section.

Let us see a system that deals with the new non-commutative logical relation.
It is made by two sub-systems: one for interaction and the other for structure. The
interaction fragment deals with negation, i.e., duality. It corresponds to identity and
cut in the sequent calculus. In our calculus these rules become mutually top-down
symmetric and both admit decompositions into their atomic counterparts.

The structure fragment corresponds, mainly, to logical rules in the sequent cal-
culus; it defines the logical relations. Differently from the sequent calculus, the logical
relations need not be defined in isolation, rather complex contexts can be taken into
consideration. In the following system, as well as in the system in the next section,
we consider pairs of logical relations, one inside the other.
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Associativity

[ �R, [ �T ] ] = [ �R, �T ]

(�R, (�T )) = (�R, �T )

〈�R; 〈�T 〉; �U〉 = 〈�R; �T ; �U〉

Unit

[◦, �R] = [ �R]

(◦, �R) = (�R)

〈◦; �R〉 = 〈�R; ◦〉 = 〈�R〉

Singleton

[R] = (R) = 〈R〉 = R

Commutativity

[ �R, �T ] = [ �T , �R]

(�R, �T ) = (�T , �R)

Negation

◦̄ = ◦
[R1, . . . , Rh ] = (R̄1, . . . , R̄h)

(R1, . . . , Rh) = [R̄1, . . . , R̄h ]

〈R1; . . . ; Rh〉 = 〈R̄1; . . . ; R̄h〉
¯̄R = R

Contextual Closure

if R = T then S{R} = S{T}

S{◦}
a↓

S [a, ā]

S(a, ā)
a↑

S{◦}

Interaction
Structure (core)

S([R, T ], U)
s

S [(R, U), T ]

S〈[R, T ]; [R′, T ′ ]〉
q↓

S [〈R;R′〉, 〈T ; T ′〉]

S(〈R;T 〉, 〈R′;T ′〉)
q↑

S〈(R,R′); (T, T ′)〉

Fig. 1 Left: Syntactic equivalence = for BV Right: System SBV

2.3 Definition The structures of the language BV are equivalent modulo the rela-
tion =, defined at the left of Fig. 1. There, �R, �T and �U stand for finite, non-empty
sequences of structures (sequences may contain ‘,’ or ‘;’ separators as appropriate in
the context). At the right of the figure, system SBV is shown (Symmetric, or Self-
dual, Basic system V ). The rules a↓, a↑, s, q↓ and q↑ are called respectively atomic
interaction, atomic cut (or atomic cointeraction), switch, seq and coseq. The down
fragment of SBV is {a↓, s,q↓}, the up fragment is {a↑, s,q↑}.

Negation is involutive and can be pushed directly over atoms. The unit ◦ is self-
dual and common to the three logical relations. One may think of it as a convenient
way of expressing the empty sequence. Of course, rules become very flexible in the
presence of such a unit. For example, the following notable derivation is valid:

(a, b)
q↑

〈a; b〉
q↓ =

[a, b]

(〈a; ◦〉, 〈◦; b〉)
q↑

〈[a, ◦]; [◦, b]〉 = 〈(a, ◦); (◦, b)〉
q↓ .

[〈a; ◦〉, 〈◦; b〉]
Here is a derivation for the CCS reaction a.b | ā.b̄ →∗ 0:

◦
a↓

[b, b̄]
a↓

〈[a, ā]; [b, b̄]〉
q↓ .

[〈a; b〉, 〈ā; b̄〉]
Please note that [〈a; b〉, 〈b̄; ā〉] admits no derivation where both [a, ā] and [b, b̄] inter-
act. As the reader may notice, the correspondence with CCS is truly straightforward.
The instance of the rule q↓ above can not be expressed in the sequent calculus, because
1 there should be two premises 	 a, ā ‘and’ 	 b, b̄, but we would have big problems

with cut elimination, essentially because ‘and’ is too strong;
2 there is no principal connective in the conclusion, rather there are two of them

to be considered together, namely, the two seq relations between a and b and
between ā and b̄.

We do not mean that similar logics cannot be expressed in any other calculus. For
example, Retoré does it in [13, 14], in proof nets. His logic is very close to ours,
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possibly the same, but the exact correspondence is at present unknown. None has
been able to define in the sequent calculus a self-dual non-commutative relation that
lives with commutative ones. We should mention the work [2, 15] by Abrusci and
Ruet: they mix commutative and non-commutative relations in a sequent system, but
instead of one self-dual sequential connective, they have two mutually dual ones.

A way of understanding the rule s is by considering linear logic’s times rule
	 A,Φ 	 B,Ψ

�
	 A � B,Φ, Ψ

. This rule is mimicked by
([RA, TΦ ], [UB , VΨ ])
s

[([RA, TΦ ], UB), VΨ ]
s ,

[(RA, UB), TΦ, VΨ ]
where RA, UB , TΦ and VΨ correspond to the formulae A, B and the multisets of
formulae Φ and Ψ . The two s instances could be swapped: the substructures in the
par context can be brought inside the times structure independently. We have no
combinatorial explosion in the splitting of a times context [9, 11], which depends
on the impossibility, in the sequent calculus, of representing the middle structure in
the derivation above. In fact, the lazy splitting algorithm of [9] is here represented
naturally and simply.

System SBV is designed to ensure the subformula property: all the rule premises
are made of substructures of the conclusions, except for the cut rule. This is of course
a key ingredient in consistency arguments, and a basis for proof search.
2.4 Definition The following rules are called interaction and cut (or cointeraction):

S{◦}
i↓

S [R, R̄]
and

S(R, R̄)
i↑

S{◦}
;

R and R̄ are called principal structures.

The sequent calculus rule
	 A,Φ 	 A⊥, Ψ

cut
	 Φ,Ψ

is realised as

([RA, TΦ ], [RA, VΨ ])
s

[([RA, TΦ ], RA), VΨ ]
s

[(RA, RA), TΦ, VΨ ]
i↑ .

[TΦ, VΨ ]
The next theorem states the reduction of the interaction rules to atomic form.

2.5 Definition A rule ρ is strongly admissible for the system S if ρ /∈ S and for

every instance
T

ρ
R

there exists a derivation
T

R

S . The systems S and S ′ are strongly

equivalent if for every derivation
T

R

S there exists a derivation
T

R

S ′, and vice versa.

2.6 Theorem The rules i↓ and i↑ are strongly admissible for the systems {a↓, s,q↓}
and {a↑, s,q↑}, respectively.
Proof Structural induction on the principal structure. We show the inductive cases of i↑:

S(〈P ;Q〉, 〈P̄ ; Q̄〉)
q↑

S〈(P, P̄ ); (Q, Q̄)〉
i↑

S(Q, Q̄)
i↑ and

S{◦}

S(P, Q, [P̄ , Q̄])
s

S(Q, [(P, P̄ ), Q̄])
s

S [(P, P̄ ), (Q, Q̄)]
i↑

S(Q, Q̄)
i↑ .

S{◦} �
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2.7 Definition We call core the set of rules, different than atomic (co)interaction
ones, that appear in the reduction of interaction and cut to atomic form. Rules, other
than (co)interactions, that are not in the core are called non-core. The core of SBV is
{s,q↓,q↑}, called SBVc; there are no non-core rules in SBV .

2.8 Remark Let ρ be a rule and π be its corule, i.e., π is obtained by swapping
and negating premise and conclusion in ρ. The rule π is then strongly admissible for

the system {i↓, i↑, s, ρ}, because each instance
S{T}

π
S{R}

can be replaced by

S{T}
i↓

S(T, [R, R̄])
s
S [R, (T, R̄)]

ρ
S [R, (T, T̄ )]

i↑ .
S{R}

The main idea for getting decomposition and cut elimination theorems is study-
ing the permutability of rules. To get a decomposition theorem, instances are moved
up or down along the derivation until a certain scheme is obtained. To get cut elim-
ination, ‘evil’ rules, corresponding to cuts to be eliminated, are permuted up a proof
until they reach the logical axiom and disappear.

2.9 Definition A rule ρ permutes over π if ρ �= π and for all

Q
π

U
ρ

P
there is

Q
ρ

V
π

P
, for

some V ; if

Q
ρ

V

P
S∪{π} exists, for some system S , we say that ρ permutes by S over π.

In the sequent calculus, identity rules are leaves of the derivation trees, of course.
They can be put at the top in our calculus, too, but the dual is also true of cuts: they
can be driven down with no effort. Here is the decomposition theorem.

2.10 Theorem For every derivation
T

R

SBV there is a derivation

T

Q
{a↓}

P
SBVc

R

{a↑}

, for some

structures P and Q.

Proof The rule a↓ permutes over a↑ and permutes by SBVc over s, q↓ and q↑. Take the
topmost instance of a↓ and move it upward until it reaches the top. Proceed inductively
downward by moving up each a↓ instance until only a↓ instances are above it. Perform
dually for a↑. �

Derivations are reduced to three-phase ones: a ‘creation’ phase, a middle phase
where atoms are shuffled by rules in the core, and a ‘destruction’ phase.

It is time to break the top-down symmetry by making asymmetric observations:
we want to detect proofs. To do so, we admit inference rules with no premise, called
logical axioms. For SBV we have:

2.11 Definition The following (logical axiom) rule is called unit : ◦↓
◦

. The sys-
tem in Fig. 2 is called BV (Basic system V ).



8 Guglielmi and Straßburger

◦↓
◦

S{◦}
a↓

S [a, ā]

S([R, T ], U)
s

S [(R, U), T ]

S〈[R, T ]; [R′, T ′ ]〉
q↓

S [〈R;R′〉, 〈T ;T ′〉]

Fig. 2 System BV

2.12 Definition A proof, denoted by Π, is a finite derivation whose top is an instance
of a logical axiom. A system S proves R if there is in S a proof Π whose conclusion
is R, written

R

SΠ . A rule ρ is admissible for the system S if ρ /∈ S and for every

proof
R

S∪{ρ} there exists a proof
R

S . Two systems are equivalent if they prove the

same structures.

To get cut elimination, so as to have a system whose rules all enjoy the subfor-
mula property, we could just get rid of a↑, by proving its admissibility for the other
rules. But we can do more than that: the whole up fragment of SBV , except for s
(which also belongs to the down fragment), is admissible. This suggests a modular
scheme for proving cut elimination, which, as a matter of fact, scales up to the much
more complex case of MELL, in Sect. 3:

1 rules in the non-core up fragment of the system are trivially admissible for the
core, plus interaction and their (down) corules (see 2.8);

2 prove admissibility for the up rules in the core;

3 show admissibility of a↑.
The decomposition into several up rules is very beneficial when systems are extended:
the cut elimination proof of the smaller system can be largely reused for the bigger
one, since it relies on mutual permutability of rules. (There are no non-core rules in
SBV , we will see the general case in Sect. 3.)

We have to prove the equivalence of SBV ∪ {◦↓} and BV . The first step is to
show the admissibility of q↑. The proof of the theorem outlines our typical technique,
which uses super rules to keep track of the context while permuting up a rule to be
eliminated.

2.13 Theorem The rule q↑ is admissible for BV ∪ {a↑}.
Proof The rule q↑ can be generalised by a certain rule m↑ (called comerge and derived
from semantics); m↑ permutes by {s, q↓} over a↓, s and q↓. By 2.10 a given proof can be
transformed into

P

BV∪{q↑}

R

{a↑}
=

T
m↑

Q

BVΠ′

P

SBVc

R

{a↑}

,

where the top instance of q↑ has been called m↑. The m↑ instance can be permuted up until
it disappears against ◦↓. Repeat inductively downward for all q↑ instances. �

The last step is getting rid of the a↑ instances.
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2.14 Theorem The rule a↑ is admissible for BV .
Proof Similar to the previous one. We need the following fact: In BV , replace s by the rule

S([R, T ], U)
ds↓

S [(R, U), T ]
(deep switch), where R is not a proper times structure (i.e., there are no

non-unit P and Q such that R = (P, Q)); the resulting system, called BVd, is equivalent to
BV (the argument is not trivial). Transform the upper BV portion of the given proof into a

BVd one. Then drive up the topmost a↑ instance by using the super rule
S(R{a}, T{ā})

sa↑
S [R{◦}, T{◦}]

,

which permutes by {s, q↓} over a↓, ds↓ and q↓. The two a↓ instances that apply to the
principal literals created by the a↑ instance must be permuted up preliminarily, until they
reach the top of the proof. Proceed inductively downward. �

This completes the proof of cut elimination. The strategy we followed is com-
pletely deterministic, so the procedure is confluent.

Here comes consistency; a similar argument, exploiting the top-down symmetry,
becomes hard in the sequent calculus, due to the difficulty in flipping derivations.
2.15 Theorem If R is provable in BV then R̄ is not provable, provided R �= ◦.

Proof A proof of R is like

◦↓
◦

a↓
[a, ā]

R

BV . Get
R̄

(a, ā)

SBV by flipping the given proof. If R̄ is provable,

then (a, ā) is provable in SBV ∪ {◦↓} and, by 2.13 and 2.14, in BV : impossible. �

2.16 Remark If we restrict BV by disallowing seq structures, we get a system equiv-
alent to MLL (Multiplicative Linear Logic) plus mix and nullary mix [1]. The proof
of this is very similar to the proof of 3.12.

Systems equivalent to MLL with constants and without mix can be easily de-
signed in our calculus, but they are not extensible to seq. Other reasons for collapsing
the constants into ◦ come from external semantic arguments (see [8]).

3 Multiplicative Exponential Linear Logic

All general notions from Sect. 2 apply here. In the following, only what changes in
the systems for MELL is defined. The main differences between our presentation and
the sequent calculus one are: rules apply anywhere deep into structures, the switch
rule replaces times, the promotion rule is decomposed into a local variant. Details can
be found in [16].
3.1 Definition We denote by MELL (Multiplicative Exponential Linear Logic) the
system in the sequent calculus whose formulae are generated by

A ::= a | ⊥ | 1 | A � A | A � A | ?A | !A | A⊥ ,
whose sequents are expressions of the kind

	 A1, . . . , Ah , for h � 0 ,
where the commas between formulae stand for multiset union, and whose rules are
shown in Fig. 3. Formulae are denoted by A and B, multisets of formulae by Φ and
Ψ . Negation obeys De Morgan rules.

Let us define the language of structures ELS (multiplicative Exponential Linear
logic in the calculus of Structures). The multiplicatives are denoted as in Sect. 2; for
the exponentials we use ? and !. Structures of ELS and formulae of MELL are in a
trivial, mutual correspondence.
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id
� A, A⊥

� A, Φ � A⊥, Ψ
cut

� Φ, Ψ

� A, B, Φ
�

� A � B, Φ

� A, Φ � B, Ψ
�

� A � B, Φ, Ψ

� Φ
⊥

� ⊥, Φ

� Φ
wk

� ?A, Φ

� ?A, ?A, Φ
ct

� ?A, Φ

� A, Φ
dr

� ?A, Φ

� A, ?B1, . . . , ?Bh
pr

� !A, ?B1, . . . , ?Bh

1
� 1

h � 0

Fig. 3 System MELL

3.2 Definition The structures of ELS are generated by
S ::= a | ⊥ | 1 | [ S, . . . , S

︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | ?S | !S | S̄ ,

where ⊥ and 1 are units; [S, . . . , S ] is a par structure, (S, . . . , S) is a times structure;
?S is a why-not structure and !S is an of-course structure; S̄ is the negation of S.
3.3 Definition The functions ·

S
and ·

L
, from formulae to structures and vice versa,

are as follows:
a
S
= a ,

⊥
S
= ⊥ ,

1
S
= 1 ,

A � B
S
= [A

S
, B

S
] ,

A � B
S
= (A

S
, B

S
) ,

?A
S
= ?A

S
,

!A
S
= !A

S
,

A⊥
S
= A

S
,

a
L

= a ,

⊥
L

= ⊥ ,

1
L

= 1 ,

[R1, . . . , Rh ]
L

= R1
L
� · · · � Rh

L
,

(R1, . . . , Rh)
L

= R1
L
� · · · � Rh

L
,

?R
L

= ?R
L

,

!R
L

= !R
L

,

R̄
L

= (R
L
)⊥ ,

where h > 0. The function ·
S

extends to sequents by 	
S
= ⊥ and

	 A1, . . . , Ah
S
= [A1

S
, . . . , Ah

S
] , for h > 0 .

It would be entirely possible to take MELL as presented above and transport it
trivially into the calculus of structures. At that point, all of the proof theory possible
in the sequent calculus would still be possible in our calculus. Instead, we collapse
dereliction (dr) and contraction (ct) into absorption (which is a known, easy trick)
and use the peculiarities of the calculus of structures to deal differently with times
(�) and promotion (pr). This way we get new properties.
3.4 Definition The structures of ELS are considered equivalent modulo the relation
=, defined at the left of Fig. 4. There, �R and �T stand for finite, non-empty sequences
of structures. At the right of the figure, system SELS is shown (Symmetric, or Self-
dual, multiplicative Exponential Linear logic in the calculus of Structures). The rules
a↓, a↑ and s are called, as in system SBV , atomic interaction, atomic cut (or atomic
cointeraction) and switch. The rules p↓, w↓ and b↓ are called, respectively, promotion,
weakening and absorption, and their corules get a prefix co- before their name. The
down fragment of SELS is {a↓, s,p↓,w↓,b↓}, the up fragment is {a↑, s,p↑,w↑,b↑}.

The reader can check that the equations in Fig. 4 are equivalences in MELL.
3.5 Definition The following rules are interaction and cut (or cointeraction):

S{1}
i↓

S [R, R̄]
and

S(R, R̄)
i↑

S{⊥}
.
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Associativity

[ �R, [ �T ] ] = [ �R, �T ]

(�R, (�T )) = (�R, �T )

Units

[⊥, �R] = [ �R]

(1, �R) = (�R)

Singleton

[R] = (R) = R

Exponentials

?⊥ = ⊥
!1 = 1

??R = ?R

!!R = !R

Commutativity

[ �R, �T ] = [ �T , �R]

(�R, �T ) = (�T , �R)

Negation

¯̄R = R

⊥̄ = 1

1̄ = ⊥
[R1, . . . , Rh ] = (R̄1, . . . , R̄h)

(R1, . . . , Rh) = [R̄1, . . . , R̄h ]

?R = !R̄

!R = ?R̄
¯̄R = R

Contextual Closure

if R = T then S{R} = S{T}

S{1}
a↓

S [a, ā]

S(a, ā)
a↑

S{⊥}

Interaction
Structure

S([R,T ], U)
s
S [(R,U), T ]

S{![R, T ]}
p↓

S [!R, ?T ]

S(?R, !T )
p↑

S{?(R,T )}

core
non-core

S{⊥}
w↓

S{?R}
S{!R}

w↑
S{1}

S [?R,R]
b↓

S{?R}
S{!R}

b↑
S(!R,R)

Fig. 4 Left: Syntactic equivalence = for ELS Right: System SELS

1↓
1

S{1}
a↓

S [a, ā]

S([R,T ], U)
s
S [(R,U), T ]

S{![R, T ]}
p↓

S [!R, ?T ]

S{⊥}
w↓

S{?R}
S [?R,R]

b↓
S{?R}

Fig. 5 System ELS

Like for system SBV , we have the following two propositions, which say: 1) the
general interaction and cut rules can be decomposed into their atomic forms; 2) the
cut rule is as powerful as the whole up fragment of the system, and vice versa (and
the same holds for the interaction rule with respect to the down fragment).

3.6 Proposition The rules i↓ and i↑ are strongly admissible for systems {a↓, s,p↓}
and {a↑, s,p↑}, respectively.
Proof Similar to the proof of 2.6. �

3.7 Proposition Every rule ρ↑ in system SELS is strongly admissible for the system
{i↓, i↑, s, ρ↓}.
Proof See 2.8. �

3.8 Definition The core of SELS is the system {s,p↓,p↑}, denoted by SELSc.

3.9 Definition The following (logical axiom) rule is called one: 1↓
1

.

As we did in Sect. 2, we put our logical axiom into the down fragment of SELS.

3.10 Definition System ELS is shown in Fig. 5.

As a quick consequence of 3.6 and 3.7 we get:

3.11 Theorem ELS∪ {i↑} and SELS∪ {1↓} are strongly equivalent.
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The system SELS∪ {1↓} is equivalent to MELL:
3.12 Theorem If R is provable in SELS∪{1↓} then 	 R

L
is provable in MELL, and

if 	 Φ is provable in MELL then 	 Φ
S
is provable in SELS∪ {1↓}.

Proof For every rule
S{T}

ρ
S{R}

in SELS the sequent � (T
L
)⊥, R

L
is provable in MELL. Then

the sequent � (S{T}
L
)⊥, S{R}

L
is provable. Use this and

� S{T}
L

� (S{T}
L
)⊥, S{R}

Lcut
� S{R}

L

inductively over a given proof
S{T}

ρ
S{R}

SELS∪{1↓}

. Conversely, given a proof in MELL, transform it by

an easy induction, proceeding from its root, into a proof in SELS∪ {1↓}. We only show the
case of promotion, where the derivation ∆ exists by induction hypothesis:

1↓
!1

![A
S
, ?B1

S
, . . . , ?Bh

S
]

p↓
...

p↓
[![A

S
, ?B1

S
], ??B2

S
, . . . , ??Bh

S
]

p↓ .
[!A

S
, ??B1

S
, . . . , ??Bh

S
]

SELS∆

�

An argument along these lines shows that for every cut free proof in MELL we
can obtain a proof in ELS. Therefore, i↑ is admissible for ELS, by the cut elimination
theorem for MELL [6]. In other words, the whole up fragment of SELS is admissible
for ELS. However, we obtain this result for the calculus of structures by using the
sequent calculus. Since we want to use our calculus for logics that cannot be captured
by the sequent calculus, we must be able to prove cut elimination within our calculus,
with no detour. The first step is a decomposition theorem.

3.13 Theorem For every derivation
T

R

SELS there is a derivation

T

T1

{b↑}

T2

{w↓}

T3

{a↓}

R3

SELSc

R2

{a↑}

R1

{w↑}

R

{b↓}

, for some

structures R1, R2, R3, T1, T2, T3.
Proof The decomposition is done in three steps: b↑ and b↓ instances are separated, then
w↓ and w↑, and then a↓ and a↑. The first step is very difficult (see [16]), the other two are
rather trivial. �

If we just consider proofs instead of derivations, all top instances of b↑ become
trivial: their premises and conclusions are equal to 1. Moreover, all w↑ instances can
be removed by using 3.7 and 3.6.
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1↓
1

R4

{w↓}

R3

{a↓}

R2

{s,p↓,p↑}

R1

{a↑}

R

{b↓}

1
=

1↓
1

R4

{w↓}

R3

{a↓}

R2

{ds↓,ns↑,p↓,sp↑}

R1

{sa↑}

R

{b↓}

2→

1↓
1

R4

{w↓}

R3

{a↓}

R′
3

{ns↑,sp↑,sr↑}

R2

{ds↓,p↓,r↓}

R1

{sa↑}

R

{b↓}

3→

1↓
1

R′
4

{w↓}

R′
3

{a↓}

R2

{ds↓,p↓,r↓}

R1

{sa↑}

R

{b↓}

4→

1↓
1

R′′
4

{w↓}

R′′
3

{a↓}

R2

{ds↓,p↓}

R1

{sa↑}

R

{b↓}

5→

1↓
1

R′′′
3

{w↓}

R′
2

{a↓}

R1

{ds↓,p↓}

R

{b↓}

Fig. 6 Cut elimination for SELS∪ {1↓}

3.14 Theorem For every proof
R

SELS∪{1↓} there is a proof

1↓
1

R4

{w↓}

R3

{a↓}

R2

SELSc

R1

{a↑}

R

{b↓}

, for some struc-

tures R1, R2, R3, R4.
Proof It is a trivial variation of 3.13. �

The decomposition theorem is of great value for the cut elimination proof, be-
cause all instances of b↓ are already below the instances of p↑ and a↑ that have to be
eliminated. This means that we do not have to deal with absorption (nor contraction),
which are known to be most problematic in a cut elimination proof.
3.15 Theorem The systems SELS∪ {1↓} and ELS are equivalent.
Proof The proof is similar to that for BV : we eliminate in order w↑, b↑, p↑ and a↑. For w↑
and b↑ we use 3.14. For a↑ and p↑ we use the super rules:

S([a, P ], [ā, Q])
sa↑ and

S [P, Q]

S([?R,P ], [!T, Q])
sp↑ .

S [?(R,T ), P, Q]

We also need the rule r↓ and its super corule sr↑:

S{?[R, T ]}
r↓ and

S [?R, ?T ]

S([!R, P ], [!T, Q])
sr↑ .

S [!(R, T ), P, Q]

We then use the rule ns↑ (non-deep switch) which defines all instances of s that are not
instances of ds↓ (see 2.14). Fig. 6 shows the steps of the transformation. We start from a
decomposed proof produced by 3.14. Then we replace all instances of s either by ds↓ or ns↑,
and all instances of p↑ and a↑ by sp↑ and sa↑, respectively. While permuting up the rules
ns↑ and sp↑ over ds↓ and p↓ in Step 2, the rules sr↑ and r↓ are introduced. In Steps 3 and 4,
the rules ns↑, sp↑ and sr↑, and then the rule r↓ are eliminated. In the last step the rule sa↑
is eliminated. �
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4 Conclusions and Future Work

We have shown, in the calculus of structures, the system BV , which is an extension of
MLL (Multiplicative Linear Logic) and which is not expressible in the sequent calculus
in any known way. Research is currently going on finally to prove that it is impossible
to capture BV in the sequent calculus. System BV is interesting for computer science
because it models a typical notion of sequentialisation. We then extended MLL to
MELL in our calculus, and we got a system whose promotion rule is local, as opposed
to what is possible in the sequent calculus, where promotion is global. The new system
does not present unnecessary non-determinism in dealing with the times connective.

The question is whether a new calculus is justified, given that the competition
is the venerable sequent calculus. We answer yes for the following reasons:
1 Simplicity : The calculus of structures is more general than the sequent calculus

(for logics with involutive negation), but is not more complicated. The case
of multiplicative exponential linear logic shows that a simple system, deeply
different than MELL, can be designed. System BV yields with very simple
means a logic that defeats sequent calculus.

2 Power : The calculus of structures unveils properties and possibilities of analy-
ses, like decomposition, that are not available in the sequent calculus.

3 Modularity: Proving cut-elimination is modular; if one enlarges a system, the
work done for the smaller system can be used for the bigger. Moreover, the cut
elimination argument for any given system is decomposed into separate pieces.
This stems from the possibility of dealing with cut the same way we could with
identity in the sequent calculus: our calculus makes use of a new symmetry.
One reason for these achievements is the applicability of rules deeply into struc-

tures, which allows for a lazy bookkeeping of the context. For example, the times rule
in the sequent calculus must make an early choice of the splitting of its context, which
is not the case in our calculus. The same happens with promotion: pieces of context
can be brought inside the scope of an of-course one by one.

Another reason behind our results is the dropping of the idea of connective. In
the calculus of structures, instead of defining connectives, rules define mutual relations
of logical relations. Typical rules in the up fragment of a system are not definable in
the sequent calculus, yet they are just simple duals of ordinary sequent calculus rules.
Without much complication, we can then decompose the cut rule into its atomic form,
which is the key to modularity.

One possible problem with our calculus is that, since rules apply anywhere deep
into structures, proof search can be very non-deterministic. Research is in progress in
our group to focus proofs not only along lines induced by the logical relations [3, 11],
but also based on the depth of structures.

Classical logic is also studied. One can easily port ‘additive’ rules to our calculus,
but the question, again, is whether we can get decomposition and a modular cut
elimination proof. Recent work, in preparation, by Brünnler and Tiu, shows that
classical logic enjoys a presentation whose rules are all local, and cut is admissible [4].

The next step will be to bring exponentials (and contraction) to system BV .
The experiment performed in this paper shows that the operation is entirely practical
in our calculus, and it would yield better results than proof nets [13, 14], which
have notorious difficulties with exponentials. The resulting calculus will be Turing
equivalent. Our hope is that MELL will be proved decidable (the question is still
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open): if this happened, it would mean that the edge is crossed by our self-dual
non-commutative logical relation (the tape of a Turing machine?).

Finally, we have a further prototype system, inspired by traces [8], in which also
the contraction rule is atomic. We are not able yet to prove cut elimination for it. If
we were successful, we would obtain a totally distributed formalism, in the sense of
computer science, which would also be a first class proof theoretical system.
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