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Abstract. We consider cut-elimination in the sequent calculus for classical first-order
logic. It is well known that this system, in its most general form, is neither confluent nor
strongly normalizing. In this work we take a coarser (and mathematically more realistic)
look at cut-free proofs. We analyze which witnesses they choose for which quantifiers, or
in other words: we only consider the Herbrand-disjunction of a cut-free proof. Our main
theorem is a confluence result for a natural class of proofs: all (possibly infinitely many)
normal forms of the non-erasing reduction lead to the same Herbrand-disjunction.

1. Introduction

The constructive content of proofs has always been a central topic of proof theory and it
is also one of the most important influences that logic has on computer science. Classical
logic is widely used and presents interesting challenges when it comes to understanding the
constructive content of its proofs. These challenges have therefore attracted considerable
attention, see, for example, [Par92, DJS97, CH00], [BB96], [Urb00, UB00], [BBS02], [Koh08],
or [BL00] for different investigations in this direction.

A well-known, but not yet well-understood, phenomenon is that a single classical proof
usually allows several different constructive readings. From the point of view of applications
this means that we have a choice among different programs that can be extracted. In [RT12]
the authors show that two different extraction methods applied to the same proof produce
two programs, one of polynomial and one of exponential average-case complexity. This
phenomenon is further exemplified by case studies in [Urb00, BHL`05, BHL`08] as well
as the asymptotic results [BH11, Het12b]. The reason for this behavior is that classical
“proofs often leave algorithmic detail underspecified” [Avi10].

On the level of cut-elimination in the sequent calculus this phenomenon is reflected by
the fact that the standard proof reduction without imposing any strategy is not confluent.
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In this paper we consider cut-elimination in classical first-order logic and treat the question
which cut-free proofs one can obtain (by the strategy-free rewriting system) from a single
proof with cuts. As our aim is to compare cut-free proofs we need a notion of equivalence
of proofs: clearly the syntactic equality makes more differences than those which are math-
ematically interesting. Being in a system with quantifiers, a natural and more realistic
choice is to consider two cut-free proofs equivalent if they choose the same terms for the
same quantifiers, in other words: if they have the same Herbrand-disjunction.

A cut-reduction relation will then be called Herbrand-confluent if all its normal forms
have the same Herbrand-disjunction. The main result of this paper is that, for a natural
class of proofs, the standard reduction without erasing of subproofs is Herbrand-confluent.
This result is surprising as this reduction is neither confluent nor strongly normalizing and
may produce normal forms of arbitrary size (which—as our result shows—arise only from
repetitions of the same instances).

As a central proof technique we use rigid tree languages which have been introduced
in [JKV09] with applications in verification (e.g. of cryptographic protocols as in [JKV11])
as their primary purpose. To a proof we will associate a rigid tree grammar whose lan-
guage is invariant under non-erasing cut-elimination and hence equal to the only obtainable
Herbrand-disjunction. This property suggests the new notion of Herbrand-content of a
proof, which is defined as the language of the grammar of the proof, and which is a strong
invariant. A side effect of this proof technique is a combinatorial description of how the
structure of a cut-free proof is related to that of a proof with cut. Such descriptions are im-
portant theoretical results which underlie applications such as algorithmic cut-introduction
as in [HLW12, HLRW13].

This paper is an extended version of [HS12], where we have worked in a setting that
was restricted to proofs of formulas of the shape Dx1 ¨ ¨ ¨ DxnA, for A quantifier-free. In this
paper we extend the results obtained in [HS12] to proofs of arbitrary end-sequents. For
this, we first carry out the central technical work in a setting of skolemized end-sequents,
and then extend these results to the general case via deskolemization. This proof strategy
is analogous to the proof of the second ε-Theorem from the first ε-Theorem in [HB39].

More precisely, this paper is structured as follows: in Section 2 we briefly review the
sequent calculus and cut-elimination for classical first-order logic. In Section 3 we describe
regular and rigid tree grammars, which we relate to proofs in Section 4. In Section 5 we
prove the main invariance lemma in the skolemized setting, and in Section 6 we establish
the necessary techniques and results for lifting the invariance lemma to the general case.
This lifting is carried out in Section 7 followed by a discussion of several corollaries such as
Herbrand-confluence.

2. Sequent Calculus and Cut-Elimination

For the sake of simplicity, we consider only a one-sided sequent calculus and formulas in
negation normal form, but the results can be proved for a two-sided sequent calculus in the
same way. Thus, our formulas (denoted by A, B, . . . ) are generated from the literals and
the constants J and K via the binary connectives ^ (and) and _ (or) and the quantifiers D
and @ in the usual way. The negation A of a formula A is defined via the usual De Morgan
laws. A sequent (denoted by Γ, ∆, . . . ) is a multiset of formulas.
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Definition 2.1. A proof is a tree of sequents, such that every node forms together with
its children an instance of one of the inference rules shown below:

´́ ´́ ´́ ax

A,A
´́´ J
J

Γ
´́´́´ w
Γ, A

Γ, A,A
´́´́ ´́ ´́ c
Γ, A

Γ, A A,∆
´́´́ ´́ ´́ ´́ ´́ ´́ cut

Γ,∆

Γ, A,B
´́´́ ´́ ´́ ´́ _
Γ, A _B

Γ, A ∆, B
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ^
Γ,∆, A ^B

Γ, Arxzαs
´́´́ ´́ ´́ ´́´ @
Γ,@xA

Γ, Arxzts
´́´́ ´́ ´́ ´́ D
Γ, DxA

where in the ax-rule A has to be a literal, in the @-rule the α is called eigenvariable and
does not appear in Γ,@xA, and in the D-rule the term t does not contain a variable bound
in A. We use the notation rxzαs for the substitution that replaces x by the eigenvariable α.
Similarly, rxzts is the substitution that replaces x with t.

The explicitly mentioned formula in a conclusion of an inference rule, like A _ B for
_ is called main formula. Analogously, the explicitly mentioned formulas in the premises
of an inference rule, like A and B for _, are called auxiliary formulas. In the context of a
concrete derivation we speak about main and auxiliary formula occurrences of inferences.

Definition 2.2. A proof is called regular if different @-inferences have different eigenvari-
ables.

We use the following convention: We use lowercase Greek letters α, β, γ, δ, . . . for eigen-
variables in proofs, and π, ψ, . . . for proofs. For a proof π, we write |π| for the number of
occurrences of inferences in π. Furthermore, we write EVpπq for the set of eigenvariables of
@-inferences of π.

In a sequent calculus proof, each formula occurrence can be traced downwards via its
descendants to either a cut formula or the end-sequent. We write EVcpπq for the set of those
eigenvariables in π that are introduced by a @-inference whose main formula occurrence can
be traced downwards to a cut formula, i.e., is not part of the end-sequent of π. The elements
of EVcpπq will also be called cut-eigenvariables.

Definition 2.3. A weak sequent is a sequent that does not contain any @-quantifier.

Fact 2.4. If the end-sequent of a proof π is a weak sequent then EVpπq “ EVcpπq.

Remark 2.5. Our results do not depend on technical differences in the definition of the cal-
culus (which in classical logic are inessential) such as the choice between multiplicative and
additive rules and the differences in the cut-reduction induced by these choices. However,
for the sake of precision, we will formally define the cut-reduction used in this paper.

Definition 2.6. Cut-reduction is defined on regular proofs and consists of the proof rewrite
steps shown in Figure 1 (as well as all corresponding symmetric variants), where in the
contraction reduction step

ρ1 “ rαzα1sαPEVpψ2q and ρ2 “ rαzα2sαPEVpψ2q

are substitutions replacing each eigenvariable α in ψ2 by fresh copies, i.e., α1 and α2 are
fresh for the whole proof. We write ù for the compatible (w.r.t. the inference rules),
reflexive and transitive closure of ❀.

The above system for cut-reduction consists of purely local, minimal steps and therefore
allows the simulation of many other reduction relations. We chose to work in this system
in order to obtain invariance results of maximal strength. Among the systems that can
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Axiom reduction:

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ

Γ, A
´́´́´ ax

A,A
´́´́´́ ´́´́ ´́´́ ´́´ cut

Γ, A

❀ ⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ

Γ, A

Quantifier reduction:

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

∆, Arxzts
´́´́´́´́´́´́ D
∆, DxA

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2

Arxzαs,Γ
´́´́´́´́ ´́´́ @

@xA,Γ
´́´́´́´́´́´́´́´́´́´́´́´́´́´ cut

Γ,∆

❀
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

∆, Arxzts
✉✉
✉✉
✉✉
✉✉

■■■■■■■■
ψ2rαzts

Arxzts,Γ
´́´́´́´́´́´́´́´́´́´́´́´́´́´́´́´ cut

Γ,∆

Propositional reduction:

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ, A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2

∆, B
´́´́´́´́´́´́´́´́´́´́´ ^
Γ,∆, A ^ B

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ3

A,B,Π
´́´́´́´́´́´́ _
A _ B,Π

´́´́´́´́´́´́´́´́´́´́´́´́´́´́´́´́´́´́ cut

Γ,∆,Π

❀ ⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2

∆, B

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ, A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ3

A,B,Π
´́´́´́´́´́´́´́´́´́´́´́ cut

B,Γ,Π
´́´́´́´́´́´́´́´́´́´́´́´́´́´́´́´ cut

Γ,∆,Π

Contraction reduction:

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ, A,A
´́´́´́´́´ c

Γ, A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2

A,∆
´́´́´́´́´́´́´́´́´́´́´ cut

Γ,∆

❀

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ, A,A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2ρ

1

A,∆
´́´́´́´́ ´́´́´́´́´́´́´́ cut

Γ,∆, A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2ρ

2

A,∆
´́´́´́´́´́´́´́´́´́´́´́´́´́´́´́´́´ cut

Γ,∆,∆
“““““““““ c

˚

Γ,∆

Weakening reduction:

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ
´́´́´ w

Γ, A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2

A,∆
´́´́´́´́´́´́´́´́´́´́´ cut

Γ,∆

❀

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ
“““““ w

˚

Γ,∆

Unary inference permutation:

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ1, A
´́´́ ´́ r

Γ, A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2

A,∆
´́´́´́´́´́´́´́´́´́´́´ cut

Γ,∆

❀

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ1, A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2

A,∆
´́´́´́´́´́´́´́´́´́´́´ cut

Γ1,∆
´́´́ ´́ r

Γ,∆

Binary inference permutation:

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ1
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2

Γ2, A
´́´́´́´́´́´́´́´́´́´́ r

Γ, A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ3

A,∆
´́´́´́´́´́´́´́´́´́´́´́´́´́´ cut

Γ,∆

❀ ⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ1

Γ1

⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ2

Γ2, A
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄
ψ3

A,∆
´́´́´́´́´́´́´́´́´́´́´ cut

Γ2,∆
´́´́´́´́´́´́´́´́´́´́´́´́´́´ r

Γ,∆

Figure 1: Cut-reduction steps
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be simulated literally are for example all color annotations of [DJS97] in the multiplicative
version of LK defined there. The real strength of the results in this paper lies however in
the general applicability of the used proof techniques: the extraction of a grammar from a
proof (that is described in the next sections) is possible in all versions of sequent calculus for
classical logic and in principle also in other systems like natural deduction. In particular,
our results also apply to inversion-based cut-elimination procedures such as for example
that in [Sch77].

3. Regular and Rigid Tree Grammars

Formal language theory constitutes one of the main areas of theoretical computer science.
Traditionally, a formal language is defined to be a set of strings but this notion can be
generalized in a straightforward way to considering a language to be a set of first-order terms.
Such tree languages possess a rich theory and many applications, see e.g. [GS97], [CDG`07].
In this section we introduce notions and results from the theory of tree languages that we
will use for our proof-theoretic purposes.

A ranked alphabet Σ is a finite set of symbols which have an associated arity (their
rank). For f P Σ, we sometimes use the notation f{n for saying that n is the arity of f .
We write TΣ to denote the set of all finite trees (or terms) over Σ, and we write TΣpXq to
denote the set of all trees over Σ and a set X of variables (seen as symbols of arity 0). We
also use the notion of position in a tree, which is a list of natural numbers. We write ε for
the empty list (the root position), and we write p.q for the concatenation of lists p and q.
We write p ď q if p is a prefix of q and p ă q if p is a proper prefix of q. Clearly, ď is a
partial order and ă is its strict part. We write Posptq to denote the set of all positions in
a tree t P TΣpXq. Furthermore, for a given tree or term t and position p, we write t|p to
denote the subterm of t that occurs at position p.

Definition 3.1. A regular tree grammar is a tuple G “ xN,Σ, θ, P y, where N is a finite
set of non-terminal symbols, where Σ is a ranked alphabet, such that N X Σ “ H, where θ
is the start symbol with θ P N , and where P is a finite set of production rules of the form
β Ñ t with β P N and t P TΣpNq.

The derivation relation ÑG of a regular tree grammar G “ xN,Σ, θ, P y is defined as
follows. We have sÑG r if there is a production rule β Ñ t in P and a position p P Pospsq,
such that s|p “ β and r is obtained from s by replacing β at p by t. The language of G is
then defined as LpGq “ tt P TΣ | θ Ñ˚

G tu, where Ñ˚
G is the reflexive and transitive closure

of ÑG. A derivation D of a term t P LpGq is a sequence t0 ÑG t1 ÑG . . .ÑG tn with t0 “ θ

and tn “ t. Note that a term t might have different derivations in G.
In [JKV09] the class of rigid tree languages has been introduced with applications in

verification (e.g. of cryptographic protocols as in [JKV11]) as primary motivation. It will
turn out that this class is appropriate for describing cut-elimination in classical first-order
logic. In contrast to [JKV09] we do not use automata but grammars—their equivalence is
shown in [Het12a].

Definition 3.2. A rigid tree grammar is a tuple xN,NR,Σ, θ, P y, where xN,Σ, θ, P y, is a
regular tree grammar and NR Ď N is the set of rigid non-terminals. We speak of a totally
rigid tree grammar if NR “ N . In this case we will just write xNR,Σ, θ, P y.
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A derivation θ “ t0ÑG t1ÑG . . .ÑG tn “ t of a rigid tree grammar G “ xN,NR,Σ, θ, P y
is a derivation in the underlying regular tree grammar satisfying the additional rigidity
condition: If there are i, j ă n, a non-terminal β P NR, and positions p and q such that
ti|p “ β and tj|q “ β then t|p “ t|q. The language LpGq of the rigid tree grammar G is
the set of all terms t P TΣ which can be derived under the rigidity condition. For a given
derivation D : θ “ t0 ÑG t1 ÑG . . .ÑG tn “ t and a non-terminal β we say that p P Posptq is
a β-position in D if there is an i ď n with ti|p “ β, i.e., either a production rule β Ñ s has
been applied at p in D , or β occurs at position p in t. In the context of a given grammar G,
we sometimes write D : αÑ˚

G t to specify that D is a derivation starting with α and ending
with the term t.

Example 3.3. Let Σ “ t0{0, s{1u. A simple pumping argument shows that the language
L “ tfpt, tq | t P TΣu is not regular. On the other hand, L is generated by the rigid tree
grammar

G “ xtθ, α, βu, tαu, t0{0, s{1, f{2u, θ, P y where

P “ t θ Ñ fpα,αq,

α Ñ 0 | spβq,

β Ñ 0 | spβq u

Lemma 3.4. Let G “ xN,NR,Σ, θ, P y be a rigid tree grammar and let t P LpGq. Then
there is a derivation θ ÑG . . . ÑG t which uses at most one β-production for each β P NR.

Proof. Given any derivation of t, suppose both β Ñ s1 and β Ñ s2 are used at positions
p1 and p2 respectively. Then by the rigidity condition t|p1 “ t|p2 and we can replace the
derivation at p2 by that at p1 (or the other way round). This transformation does not
violate the rigidity condition because it only copies existing parts of the derivation.

Lemma 3.5. Let G “ xNR,Σ, θ, P y be a totally rigid tree grammar and θ ‰ β P NR, such
that there is exactly one t with β Ñ t in P . If G1 “ xNRztβu,Σ, θ, pP ztβ Ñ tuqrβztsy then
LpGq “ LpG1q.

Proof. If a G-derivation of a term s uses β, it must replace β by t hence s is derivable
using the productions of G1 as well. The rigidity condition is preserved as the equality
constraints of the G1-derivation are a subset of those of the G-derivation. Conversely, given
a G1-derivation of a term s we obtain a derivation of s from the productions of G by replacing
applications of δ Ñ rrβzts by δ Ñ r followed by a copy of β Ñ t for each occurrence of
β in r. Let γ1, . . . , γn be the non-terminals that appear in t. By the rigidity condition for
i P t1, . . . , nu there is a unique term at all γi-positions in the derivation. Hence β fulfills
the rigidity condition as well, and we have obtained a G-derivation of s.

Notation 3.6. For a given non-terminal β and a term t, we will write β P t or t Q β for
denoting that β occurs in t.

Definition 3.7. Let G be a tree grammar. A path of G is a list P of productions α1 Ñ t1,
. . . , αn Ñ tn with n ě 1 and αi`1 P ti for all i P t1, . . . , n ´ 1u. The length of a path is
|P| “ n. We will also write P : α1 Ñ t1 Q α2 Ñ . . . Q αn Ñ tn to denote a path.

For a given path P : α1 Ñ t1 Q α2 Ñ . . . Q αn Ñ tn we say that α1, . . . , αn are on the
path P and write αi P P for that. We also write P : α1 99K tn and P : α1 99K αn, if we
do not want to explicitly mention the intermediate steps. For a fixed grammar G, we write
α 99K β to denote that there is a path P in G with P : α 99K β.
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For a set P of production rules, we write αăP β (or simply αă β, when P is clear from
context) if there is a production α Ñ t in P with β P t. We write ă

` for the transitive
closure of ă, and ă

˚ for its reflexive, transitive closure. Note that α 99K β implies α ă
` β,

but not the other way around, since β could be a non-terminal with no production β Ñ s

in P .

Definition 3.8. A tree grammar xN,Σ, θ, P y is called cyclic if αă
`
P α for some α P N , and

acyclic otherwise.

Lemma 3.9. If G is totally rigid and acyclic, then we have that up to renaming of the non-
terminals G “ xtα1, . . . , αnu,Σ, α1, P y with LpGq “ tα1rα1zt1s ¨ ¨ ¨ rαnztns | αi Ñ ti P P u.

Proof. Acyclicity permits a renaming of non-terminals, such that αi ă
`
P αj implies i ă j.

Then LpGq Ě tα1rα1zt1s ¨ ¨ ¨ rαnztns | αi Ñ ti P P u is obvious. For the left-to-right inclusion,
let D : α1 “ s1 ÑG . . .ÑG sn “ s P TΣ be a derivation in G. By Lemma 3.4 we can assume
that for each j at most one production whose left-hand side is αj is applied, say αj Ñ tj. By
acyclicity we can rearrange the derivation so that αj Ñ tj is only applied after αi Ñ ti for
all i ă j. For those αj which do not appear in the derivation we can insert any substitution
without changing the final term so we obtain s “ α1rα1zt1s ¨ ¨ ¨ rαnztns.

This lemma entails that |LpGq| ď
śn
i“1

|tt | αi Ñ t P P u|, in particular we are dealing
with a finite language. The central questions in this context are (in contrast to the standard
setting in formal language theory) not concerned with representability but with the size of
a representation.

4. Proofs and Grammars

In this section we will relate sequent calculus proofs to rigid tree grammars. A central
tool for establishing this relation is Herbrand’s theorem [Her30, Bus95]. In its simplest
form it states that DxA, for A quantifier-free, is valid iff there are terms t1, . . . , tn such
that

Žn
i“1

Arxztis is a tautology. Such tautological disjunctions of instances are hence
called Herbrand-disjunctions. Such a disjunction, or equivalently: the set of terms, can be
considered a compact representation of a cut-free proof. The relation to tree grammars is
based on the observation that a (finite) set of terms is just a (finite) tree language. While
the Herbrand-disjunction of a cut-free proof will be considered a tree language, a proof
with cut will give a rise to a grammar and its cut-elimination will be described by the
computation of the language of its grammar.

There are different options for extending Herbrand’s theorem to non-prenex formulas,
e.g. the Herbrand proofs of [Bus95] or the expansion trees of [Mil87]. For our purposes it
will be most useful to follow the approach of [BL94].

Definition 4.1. Let π be a proof and let O be a formula occurrence in π. Then we define
the Herbrand-set HpOq of O inductively as follows:

‚ If O is the occurrence of a formula A in an axiom, then HpOq “ tAu.
‚ If O is in the conclusion sequent of an inference rule without being its main occurrence,
then O has exactly one ancestor O1 in one of the premises, and we let HpOq “ HpO1q.

‚ If O is the main occurrence in the conclusion of a ˝-rule with ˝ P t^,_u and with auxiliary
occurrences O1 and O2, then HpOq “ tA ˝ B | A P HpO1q, B P HpO2qu.

‚ If O is the main occurrence in the conclusion of a @- or D-rule with auxiliary occurrence
O1 in the premise, then HpOq “ HpO1q.
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‚ If O is the main occurrence in the conclusion of a w-rule, then HpOq “ tKu.
‚ If O is the main occurrence in the conclusion of a c-rule with auxiliary occurrences O1

and O2 in the premise, then HpOq “ HpO1q Y HpO2q.

Finally, we define

Hpπq “
ď

PPΓ

HpP q

where Γ is the end-sequent of π and P ranges over all formula occurrences in Γ.

Besides to the Herbrand-set of a formula occurrence, we also need the set of terms
associated with an occurrence of an D-formula.

Definition 4.2. Let Q be an occurrence of a formula DxA in a proof. We define the set
tmpQq of terms associated with Q as follows: if Q is introduced as the main formula of a
weakening, then tmpQq “ H. If Q is introduced by an D-rule

Γ, Arxzts
´́´́ ´́ ´́ ´́ D
Γ, DxA

then tmpQq “ ttu. If Q is the main formula in the conclusion of a contraction, and Q1 and
Q2 are the two auxiliary occurrences of the same formula in the premise, then tmpQq “
tmpQ1q Y tmpQ2q. In all other cases, an inference with the occurrence Q in the conclusion
has a corresponding occurrence Q1 of the same formula in one of its premises, and we let
tmpQq “ tmpQ1q.

In the following, we will restrict our attention to a certain class of proofs, that we call
simple proofs below.

Definition 4.3. A proof π is called simple if

‚ it is regular (i.e., different @-inferences have different eigenvariables),
‚ every cut in π is of one of the following forms:

Γ, B B,∆

Γ,∆
cut or Γ, DxB

Brxzαs,∆

@xB,∆
@

Γ,∆
cut

(4.1)

where B is quantifier-free.

Let us make some remarks on this definition. First, we require regularity which is a
necessary assumption in the context of cut-elimination. But since every proof can be trivially
transformed into a regular one, this is no real restriction. Second, the requirement of the
@-rule being applied directly above the cut is natural as the rule is invertible. Moreover,
any proof which does not fulfill this requirement can be pruned to obtain one that does,
by simply permuting @-inferences down and identifying their eigenvariables when needed.
Thus, the only significant restriction is that of disallowing quantifier alternations in the cut
formulas. This corresponds to allowing only Σ1 (or Π1) formulas in cuts.

We conjecture that our central result can be extended to Σn-cuts. However, this will
require the development of an adequate class of grammars first (see also Section 8).

Observation 4.4. Simple proofs have the technically convenient property of exhibiting a
1-1 relationship between cut-eigenvariables and cuts. For an eigenvariable α P EVcpπq we
will therefore write cutα for the corresponding cut and @α for the inference introducing α
(when read from bottom to top).
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Definition 4.5. Let π be a simple proof, let α P EVcpπq, and let Q be the occurrence of
the existentially quantified cut-formula in the premise of cutα. Then we write Bpαq for the
set of substitutions t rαzts | t P tmpQq u and we define

Bpπq “
ď

αPEVcpπq

Bpαq .

Structures similar to the above Bpπq have been investigated also in [Hei10] and [McK13]
where they form the basis of proof net like formalisms using local reductions for quantifiers
in classical first-order logic. Our aim in this work is however quite different: we use these
structures for a global analysis of the sequent calculus.

Definition 4.6. Let π be a simple proof. Then the grammar of π is the totally rigid
grammar Gpπq “ xNR,Σ, θ, P y with

NR “ EVcpπq Y tθu

Σ “ Σpπq Y t^,_,J,Ku

P “ tθ Ñ A | A P Hpπqu Y tα Ñ t | rαzts P Bpπqu

where Σpπq is the signature of π,1 the rank of ^ and _ is 2, the rank of J and K is 0, and
θ does not occur in π.

Lemma 4.7. If π is a simple proof, then Gpπq is acyclic.

Proof. By induction on the number of cuts in π. The grammar of a cut-free proof is trivially
acyclic. For the induction step, let r be the lowest binary inference with subproofs π1 and
π2 such that either (i) r is a cut or (ii) r is not a cut but both π1 and π2 contain at least
one cut. Let P , P1, and P2 be the set of productions induced by the cuts in π, π1, π2,
respectively. In case (ii), ăP “ ăP1

Y ăP2
, which is acyclic by induction hypothesis (since

EVcpπ1q X EVcpπ2q “ H). In case (i), let Pr be the productions induced by the cut r,
then ăP “ ăP1

Y ăP2
Y ăPr

. By induction hypothesis, ăP1
and ăP2

are acyclic and as
the cut-formula in r contains at most one quantifier, also ăPr

is acyclic. Therefore, a cycle
in ă

`
P must be of the form α1 ă

˚
P1
β1 ăPr

α2 ă
`
P2
β2 ăPr

α1 where α1, β1 P EVcpπ1q and

α2, β2 P EVcpπ2q. However, r contains only one quantifier and depending on its polarity all
productions in Pr lead from π1 to π2 or from π2 to π1 but not both, so ăP is acyclic.

5. Grammars and Cut-Elimination

In this section we will show that the language of the grammar of a proof defined in the
previous section is an invariant under cut elimination. Before formulating this invariance
result precisely we have to consider the following three aspects of the situation:

First, note that all the reductions shown in Figure 1 preserve simplicity, except the
following:

¨ ¨ ¨

¨ ¨ ¨
´́´́ ´́ ´́ @α

¨ ¨ ¨
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutα

¨ ¨ ¨

¨ ¨ ¨
´́´́ ´́ ´́ @β

¨ ¨ ¨
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutβ

¨ ¨ ¨

❀

¨ ¨ ¨

¨ ¨ ¨
´́´́ ´́ ´́ @α

¨ ¨ ¨

¨ ¨ ¨
´́´́ ´́ ´́ @β

¨ ¨ ¨
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutβ

¨ ¨ ¨
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutα

¨ ¨ ¨

1We consider the eigenvariables in EVpπqzEVcpπq to be part of Σpπq.
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where cutα is permuted down under cutβ (using the bottommost reduction in Fig. 1) and
the cut formula of cutβ has its ancestor on the right side of cutα. So in the following, when
we speak about a reduction sequence of simple proofs we require that the above reduction
is immediately followed by permuting @α down as well, in order to arrive at

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨
´́´́ ´́ ´́ @β

¨ ¨ ¨
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutβ

¨ ¨ ¨
´́´́ ´́ ´́ @α

¨ ¨ ¨
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutα

¨ ¨ ¨

which is again simple.
Secondly, observe that there is no mechanism for deletion in the grammar, but there

is one in cut-elimination: the reduction of weakening which erases a sub-proof (see Fig. 1).
It is hence natural and will turn out to be useful to also consider the reduction relation
without this step.

Definition 5.1. We define the non-erasing cut-reduction
ne

ù as ù without the reduction
rule for weakening.

Note that a
ne

ù-normal form π is an analytic proof too as Hpπq is also a Herbrand-
disjunction, i.e. a tautological collection of instances. In contrast to a ù-normal form

(which might contain implicit redundancy) a
ne

ù-normal form might also contain explicit
redundancy in the form of cuts whose cut-formulas are introduced by weakening on one
or on both sides. Non-erasing reduction is also of interest in the context of the λ-calculus
where it is often considered in the form of the λI-calculus and gives rise to the conservation
theorem (see Theorem 13.4.12 in [Bar84]). Our situation here is however quite different:

neither ù nor
ne

ù is confluent and neither of them is strongly normalizing.
Thirdly, in contrast to the case treated in [HS12] in our more general setting it may

happen that the reduction of a weakening deletes sub-formulas of formula instances from the
proof. In order to treat this situation adequately, we need to define a generalization of the
Ď-relation between sets of formulas. For this reason, we use the symbol K for representing
subformulas introduced by weakening, a technique also employed in [BHW12, Wel11] for
the purpose of a tighter complexity-analysis.

Definition 5.2. The relation ď is defined inductively on quantifier-free formulas as follows:

‚ for all formulas A we have K ď A and A ď A, and
‚ whenever A1 ď A and B1 ď B then also A1 ^B1 ď A ^B and A1 _B1 ď A_B

Let A and B be sets of quantifier-free formulas. Then we define

A ď B iff for all A P A there is a B P B with A ď B .

Fact 5.3. The relation ď is transitive on formula sets.

We are now in a position to precisely state our main invariance lemma which connects
grammars with cut-elimination for weak sequents.

Lemma 5.4. If π ù π1 is a reduction sequence of simple proofs of a weak sequent, then

LpGpπqq ě LpGpπ1qq. If π
ne

ù π1 is a reduction sequence of simple proofs of a weak sequent,
then LpGpπqq “ LpGpπ1qq.
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The rest of this section is devoted to proving this result. The proof strategy is to carry
out an induction on the length of the reduction sequence π ù π1 (or π

ne

ù π1 respectively)
and to make a case distinction on the type of reduction step. The most difficult step will
turn out to be the reduction of contraction which duplicates a sub-proof.

Lemma 5.5. Let π be a simple proof, and let π1 be obtained from π by the single appli-
cation of an axiom reduction, or a propositional reduction, or a unary or binary inference
permutation (see Figure 1). Then LpGpπ1qq “ LpGpπqq.

Proof. None of these reductions is changing the grammar of the proof, i.e., Gpπ1q “ Gpπq
and therefore also LpGpπ1qq “ LpGpπqq.

Lemma 5.6. Let π be a simple proof, and let π1 be obtained from π by the single application
of a quantifier reduction (see Figure 1). Then LpGpπ1qq “ LpGpπqq.

Proof. Let α be the eigenvariable of the @-inference and t be the term of the D-rule di-
rectly above the cut that is reduced. Then Gpπ1q can be obtained from Gpπq by removing
the production rule α Ñ t and by applying the substitution rαzts to the right-hand side
of all remaining production rules. Thus, LpGpπ1qq “ LpGpπqq follows immediately from
Lemma 3.5.

Lemma 5.7. Let π be a simple proof, and let π1 be obtained from π by the single application
of a weakening reduction (see Figure 1). Then LpGpπ1qq ď LpGpπqq.

Proof. The grammar Gpπ1q is obtained from Gpπq via two modifications. First, all produc-
tions coming from cuts or D-inferences in ψ2 are deleted, and second, the formulas in ∆
which are ancestors of the end-sequent are replaced by K in Hpπ1q. Now let A P LpGpπ1qq.
Then the derivation of A in Gpπ1q is also a derivation in Gpπq, with the difference that some
K-subformulas are replaced by other formulas, yielding a formula B P LpGpπqq with B ě A.
Hence LpGpπ1qq ď LpGpπqq.

It remains to analyze the case of contraction. Surprisingly, also in this case the language
of the grammar of a proof remains unchanged. However, the proof of this result is quite
technical and requires additional auxiliary results about the relationship between proofs
and grammars. Furthermore, this is the case which needs the additional condition that the
end-sequent of our proof is weak, i.e., does not contain @-quantifiers.

For simplifying the presentation, we assume in the following (without loss of generality)
that the @-side is on the right of a cut and the D-side on the left. Then, a production
β Ñ t in Gpπq corresponds to three inferences in π: a cut, an instance of the @-rule, and
an instance of the D-rule, that we denote by cutβ, @β, and Dt, respectively, and that are, in
general, arranged in π as shown below.

Γ1, Arxzts
´́´́ ´́ ´́ ´́´ Dt
Γ1, DxA

...
Γ, DxA

Arxzβs,∆1

´́´́ ´́ ´́ ´́ ´́ @β
@xA,∆1

...
@xA,∆

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutβ
Γ,∆

(5.1)

The additional condition that @β is directly above cutβ , as indicated in (4.1) is needed
because in the following we make extensive use of Observation 4.4: there is a one-to-one
correspondence between the cuts and the eigenvariables in EVcpπq, and thus, the notation
cutβ makes sense.
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Definition 5.8. We say that the instances cutβ, @β, and Dt are on a path P in Gpπq if the
production β Ñ t is in P.

Definition 5.9. Let π be a proof containing the configuration

...
´́´́ ´́ r1
. . .

...
´́ ´́ ´ r2

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ r3...

where r1, r2, and r3 are arbitrary rule instances, and r3 is a branching rule, and r1 and r2

might or might not be branching. Then we say that r1 is on the left above r3, denoted by
r1 è r3, and r2 is on the right above r3, denoted by r3 é r2, and r1 and r2 are in parallel,
denoted by r1 èé r2.

Lemma 5.10. Let π be a simple proof and P : α1 Ñ t1 Q α2 . . . Ñ tn be a path in Gpπq.
Then there is a k P t1, . . . , nu such that cutαk

is lowermost among all inferences on P.
Furthermore, @α1

is on the right above cutαk
and Dtn is on the left above cutαk

.

Proof. We proceed by induction on n. If n “ 1, then n “ k “ 1. For the induction step
consider a path α1 Ñ t1 Q . . . Q αn Ñ tn Q αn`1 Ñ tn`1. By induction hypothesis, there is
some l P t1, . . . , nu such that we have this configuration

...
´́´́ ´́ Dtn. . .

...
´́ ´́ ´ @α1

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutαl...

As αn`1 P tn we know that Dtn must be on the right above cutαn`1
. Hence, we are in one of

the following two situations

...
´́´́ ´́ Dtn`1. . .

...
´́´́ ´́ Dtn. . .

...
´́ ´́ ´ @α1

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutαl

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutαn`1...

or

...
´́´́ ´́ Dtn`1. . .

...
´́ ´́ ´ Dtn
. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutαn`1. . .

...
´́ ´́ ´ @α1

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutαl...

In the first case we let k “ n ` 1 and in the second we let k “ l. In both cases cutαk
has

the desired properties.

Lemma 5.11. Let π be a simple proof, let Gpπq “ xNR,Σ, ϕ, P y, and let β, α P EVcpπq. If
β 99K α then either cutα è cutβ or cutα é cutβ or cutα èé cutβ.

Proof. Since β 99K α, we have a path β Ñ . . . Q α Ñ t for some t. By Lemma 5.10 there
is a γ, such that Dt è cutγ and cutγ é @β, and such that cutα and cutβ are not below cutγ .
Furthermore, cutα must be below Dt, and cutβ below @β. If γ “ β, then cutα è cutβ. If
γ “ α, then cutα é cutβ . And if γ ‰ β and γ ‰ α, then cutα èé cutβ.
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Lemma 5.12. Let Gpπq “ xNR,Σ, ϕ, P y be the grammar of a simple proof π, such that
there are two paths

β Ñ t Q γ0 Ñ s0 Q γ1 Ñ s1 Q . . . Ñ sn´1 Q γn “ α Ñ sn

β Ñ t Q δ0 Ñ r0 Q δ1 Ñ r1 Q . . . Ñ rm´1 Q δm “ α Ñ rm

such that γ0 and δ0 occur at two different positions in t. Then we have one of the following
two cases:

(1) we have γi “ δj for some 0 ď i ă n and 0 ď j ă m, or

(2) for all 0 ď i ă n and 0 ď j ă m we have cutα é cutγi and cutα é cutδj .

Proof. Note that because of acyclicity of Gpπq, we have that β ‰ γi for all i ď n and β ‰ δj
for all j ď m, in particular β ‰ α. Assume, for the moment, that m,n ą 0; the case of
one of them being zero will be treated at the very end of the proof. Then γ0 ‰ α and
δ0 ‰ α. If γ0 “ δ0, we have case 1. So, assume also γ0 ‰ δ0. As β Ñ t is a production
in Gpπq, the proof π contains a formula which contains both γ0 and δ0 hence @γ0 and @δ0
are not parallel. Since we have cutγ0 é @γ0 and cutδ0 é @δ0 , we also have that cutγ0 and
cutδ0 are not parallel. Without loss of generality, assume that cutδ0 is below cutγ0 . Then
cutδ0 é cutγ0 (since cutγ0 è cutδ0 would entail @γ0 èé @δ0). Since we have δ0 99K α, we can
apply Lemma 5.11, giving us three possibilities:

‚ If cutα è cutδ0 then we have the situation

...
´́´́ ´́ Dsn. . .

...
´́ ´́ ´ @α
. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutα
. . .

...
´́´́ ´́ Ds0. . .

...
´́ ´́ ´ @γ0
. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutγ0

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutδ0...

By Lemma 5.10 applied to the path γ0 99K sn we have that cutδ0 must coincide with cutγi

for some 0 ď i ă n (since π is a tree), so δ0 “ γi (by Observation 4.4), and we are in
case 1.

‚ If cutα é cutδ0 then we are in both of the following two situations:

...
´́´́ ´́ Dsn. . .

. . .

. . .

...
´́ ´́ ´ @γ0
. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ cutγ0

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutδ0

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutα...

and

...
´́´́ ´́ Drm. . .

. . .

...
´́ ´́ ´ @δ0
. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ cutδ0

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutα...

Thus, by Lemma 5.10 applied to the paths γ0 99K sn and δ0 99K rm we know that cutα “
cutγk “ cutδl for some 0 ď k ď n and 0 ď l ď m hence γk “ α “ δl. Furthermore k “ n

and l “ m by acyclicity of Gpπq and assumption γn “ α “ δm. Now consider any γi
with 0 ď i ă n. Since γi 99K α, we can apply Lemma 5.11 and get either cutα è cutγi

or cutα é cutγi or cutα èé cutγi . Since by Lemma 5.10 cutγi must be above cutα, we
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conclude cutα é cutγi . With the same reasoning we can conclude that cutα é cutδj for all
0 ď j ă m. We are therefore in case 2.

‚ If cutα èé cutδ0 then we are in both of the following two situations:

...
´́´́ ´́ Drm. . . . .

.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutα
. . .

. . .

...
´́ ´́ ´ @δ0
. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutδ0

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ r
...

and

...
´́´́ ´́ Dsn. . . . .

.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutα
. . .

. . .

. . .

...
´́ ´́ ´ @γ0
. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutγ0

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutδ0

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ r
...

By Lemma 5.10 applied to the paths γ0 Ñ . . . Ñ sn and δ0 Ñ . . . Ñ rm, the rule r

coincides with cutγi and cutδj for some 0 ă i ă n and 0 ă j ă m, therefore γi “ δj (by
Observation 4.4), and we are in case 1.

It remains to treat the case n “ 0 or m “ 0. If m “ n “ 0 then we are trivially in case 2
(there is no 0 ď i ă n or 0 ď j ă m). If n “ 0 and m ą 0, we can apply Lemma 5.10 to the
path δ0 Ñ . . . Ñ rm and obtain an l P t0, . . . ,mu such that we are in the situation

...
´́´́ ´́ Drm. . .

...
´́ ´́ ´ @α
. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutα
. . .

. . .

...
´́ ´́ ´ @δ0
. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́´ cutδ0

. .
.

´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cutδl...

But by the same argument as at the beginning of the proof, we also have that @α and
@δ0 cannot be in parallel (α and δ0 both appear in t), and therefore either cutδ0 é cutα or
cutα é cutδ0 . Since δ0 99K α, the only possibility is cutα é cutδ0 , by Lemma 5.11. Thus
cutα “ cutδl , and therefore l “ m and we are in case 2. The case m “ 0 and n ą 0 is
similar.

We have now finally collected together all necessary tools for describing the reduction
step for contraction.
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Lemma 5.13. Let π be a simple proof of a weak sequent such that π contains a subproof
ψ, shown on the left below,

ψ “

②②
②②
②②

❊❊❊❊❊❊
ψ1

Γ, A,A
´́´́ ´́ ´́ c
Γ, A

②②
②②
②②

❊❊❊❊❊❊
ψ2

A,∆
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cut

Γ,∆

❀

②②
②②
②②

❊❊❊❊❊❊
ψ1

Γ, A,A
②②
②②
②②

❊❊❊❊❊❊
ψ2ρ

1

A,∆
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cut

Γ,∆, A
②②
②②
②②

❊❊❊❊❊❊
ψ2ρ

2

A,∆
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cut

Γ,∆,∆
““““““““ c

˚

Γ,∆

“ ψ1

and let π1 be the proof obtained from π from replacing ψ by ψ1 shown on the right above, where
ρ1 “ rαzα1sαPEVpψ2q and ρ

2 “ rαzα2sαPEVpψ2q are substitutions that replace all eigenvariables

in ψ2 by fresh copies. Then LpGpπ1qq “ LpGpπqq.

Proof. Let us first show LpGpπqq Ď LpGpπ1qq. Write P for the productions of Gpπq and
P 1 for those of Gpπ1q. Let F P LpGpπqq and D be its derivation. If the duplicated cut
is quantifier-free, then P 1 “ Pρ1 Y Pρ2, since the substitutions ρ and ρ1 do not affect the
eigenvariables outside ψ2. Hence Dρ1 (as well as Dρ2) is a derivation of F in Gpπ1q. If the
duplicated cut contains a quantifier, let α be its eigenvariable, let t1, . . . , tk be its terms
coming from the left copy of A and tk`1, . . . , tn those from the right copy of A and let
Q “ tα Ñ t1, . . . , α Ñ tnu Ď P . We then have

P 1 “ pP zQqρ1 Y tα1 Ñ t1, . . . , α
1 Ñ tku Y pP zQqρ2 Y tα2 Ñ tk`1, . . . , α

2 Ñ tnu .

If D does not contain α, then Dρ1 (as well as Dρ2) is a derivation of F in Gpπ1q. If D

does contain α, then by Lemma 3.4 we can assume that it uses only one α-production, say
α Ñ ti. If 1 ď i ď k, then Dρ1 is a derivation of F in Gpπ1q and if k ă i ď n, then Dρ2 is a
derivation of F in Gpπ1q.

Let us now show LpGpπ1qq Ď LpGpπqq. Let F be a formula in LpGpπ1qq, and let D 1 be a
derivation of F in Gpπ1q. We construct D “ D 1pρ1q´1pρ2q´1 by “undoing” the renaming of
the variables in ψ2. Then D is a derivation for F , using the production rules of Gpπq, but
possibly violating the rigidity condition.

First, recall that EVcpπq “ EVpπq and observe that only non-terminals α P EVpψ2q
can violate the rigidity condition in D : if β R EVpψ2q violates the rigidity condition then
there are β-positions p1, p2 in D with F |p1 ‰ F |p2 and as βρ1ρ2 “ β the positions p1, p2 are
also β-positions in D 1 and they violate the rigidity condition in D 1 which is a contradiction
to D 1 being a Gpπ1q-derivation.

Now define for each α P EVpψ2q the value npD , αq to be the number of pairs pp1, p2q P
PospF q ˆ PospF q where p1 and p2 are α-positions in D with p1 ‰ p2 and F |p1 ‰ F |p2 , and
define npDq “

ř

αPEVpψ2q npD , αq. We proceed by induction on npDq to show that D can

be transformed into a derivation which does no longer violate rigidity. If npDq “ 0 then D

obeys the rigidity condition, and we are done. Otherwise there is at least one α P EVpψ2q
with npD , αq ą 0. We now pick one such α which is minimal with respect to ă

˚ (which
exists since Gpπq is acyclic). Let p1 and p2 be α-positions in D with p1 ‰ p2 and F |p1 ‰ F |p2 ,
let p be the maximal common prefix of p1 and p2 and let q be the maximal prefix of p where
a production rule has been applied in D . Due to the tree structure of F , the position q is
uniquely defined, and q is a β-position for some non-terminal β, and some production rule
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β Ñ t has been applied at position q in D , and we have two paths:

β Ñ t Q γ0 Ñ s0 Q γ1 Ñ s1 Q . . . Ñ sn´1 Q γn “ α Ñ sn

β Ñ t Q δ0 Ñ r0 Q δ1 Ñ r1 Q . . . Ñ rm´1 Q δm “ α Ñ rm

where γ0 and δ0 occur at two different positions in t. Thus, we can apply Lemma 5.12,
giving us the following two cases:

‚ We have γi “ δj for some 0 ď i ă n and 0 ď j ă m. Say η “ γi “ δj , and let pγ and pδ be
the positions of γi and δj (respectively) in D . Since ηă

`α we know that η does not violate
the rigidity condition (we chose α to be minimal), and therefore F |pγ “ F |pδ “ F 1. Let
Dγ : γi Ñ˚

Gpπq F
1 and Dδ : δj Ñ˚

Gpπq F
1 be the two subderivations of D starting in positions

pγ and pδ, respectively. Without loss of generality, we can assume that npDγq ď npDδq.

Then let D̃ be the derivation obtained from D by replacing Dδ by Dγ . Then D̃ is still a

derivation for F , but npD̃q ă npDq.
‚ For all 0 ď i ă n and 0 ď j ă m we have cutα é cutγi and cutα é cutδj . So all inferences
of the path γ0 Ñ . . . Ñ sn´1 as well as all inferences of δ0 Ñ . . . Ñ rm´1 are in ψ2.
Therefore all variables of of these paths are in EVpψ2q. As α violates the rigidity in D

one of p1, p2 must be a α1-position and the other a α2-position in D 1 because D 1 does
satisfy the rigidity condition. Without loss of generality we can assume that p1 is the
α1-position and p2 the α2-position. As the paths are contained completely in ψ2 we have
γ0 P EVpψ2qρ1 and δ0 P EVpψ2qρ2 which is a contradiction as no term can contain both
a variable from EVpψ2qρ1 and one from EVpψ2qρ2.

Proof of Lemma 5.4. By induction on the length of the reduction π ù π1 or π
ne

ù π1

respectively using one of Lemmas 5.5, 5.6, 5.7 or 5.13 depending on the current reduction
step.

6. Skolemization and Deskolemization

In this section we will describe some results that allow one to extend the above invariance
lemma to proofs of arbitrary end-sequents (including @-quantifiers). Carrying out the above
argument directly for arbitrary end-sequents would require dealing with variable-names
on the level of the grammar in order to describe the changes of eigenvariables of the @-
quantifiers in the end-sequent. This can be avoided completely by skolemizing proofs to
reduce the general case to that of weak sequents and then translating back the results by
deskolemization. Skolemization and deskolemization are simple operations on the level of
Herbrand-disjunctions or expansion trees [Mil87] and their use in this context suffices for
our purposes. In contrast, they have surprising complexity-effects on the level of proofs, see
e.g. [BHW12]. The reason why this transfer is possible is that the form of the end-sequent,
and in particular the question whether it contains universal quantifiers, does not have an
effect on the dynamics of cut-elimination. This observation has been well known for a long
time and is apparent already in Gentzen’s consistency proof for Peano Arithmetic [Gen38]
which is carried out on a (hypothetical) proof of the empty sequent as well as in the proof
of the second ε-Theorem from the first ε-Theorem by deskolemization [HB39].

Let us now first define the notion of Herbrand-disjunction precisely. We assume w.l.o.g.
that in a formula every variable is bound by at most one quantifier.
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Definition 6.1. For a given formula F , we write F̂ for the formula obtained from F by
removing all quantifiers. Now let x1, . . . , xn be the existentially bound variables in F , and
let y1, . . . , ym be the universally bound variables in F . Then any formula of the shape

ˆ̂F rx1zt1, . . . , xnztn, y1zα1, . . . , ymzαms

where ˆ̂F is an arbitrary formula with ˆ̂F ď F̂ , where t1, . . . , tn are arbitrary terms, and
where α1, . . . , αm are fresh variables, is called an instance of F . If Γ is a sequent we say
that a set I of formulas is a set of instances of Γ if for every I P I there is a F P Γ, s.t. I
is instance of F .

Often we will work in the context of a proof π of a sequent Γ and consider the instances
of the formulas in Γ that are induced by π. Then the above fresh variables α1, . . . , αm
will be eigenvariables of the proof and their occurrences in terms will be restricted by an
acylicity-condition, see below.

Let Γ “ F1, . . . , Fn be a sequent, let I be a set of instances of Γ, let mi be the number
of quantifiers in Fi, and let li be the number of instances of Fi in I . If we impose an
arbitrary linear ordering on the instances of Fi in I , then a tuple xi, j, ky for 1 ď i ď n

and 1 ď j ď mi and 1 ď k ď li uniquely identifies the term which is substituted for the
quantifier Qxj in the k-th instance of the formula Fi. We will write ti,j,k for this term (which
could just be an eigenvariable if Qxj happens to be an @-quantifier). The k-th instance of
Fi can hence be written as Fi,krx1zti,1,k, . . . , xmi

zti,mi,ks, where x1, . . . , xmi
are the bound

variables in Fi, and Fi,k is some formula with Fi,k ď F̂i. Such a tuple xi, j, ky is called
existential position if xj is bound existentially in Fi, and universal position if xj is bound
universally in Fi.

A position xi1, j1, k1y is said to dominate another position xi2, j2, k2y, if i1 “ i2, and
k1 “ k2, and the quantifier Qxj2 is in the scope of the quantifier Qxj1 in Fi. A set I

of instances induces a relation ă on its existential positions as: xi1, j1, k1y ă xi2, j2, k2y if
there is a universal position xi3, j3, k3y, such that the term ti2,j2,k2 contains a variable α with
α “ ti3,j3,k3 and xi1, j1, k1y dominates xi3, j3, k3y. Furthermore we define the dependency
relation Î on the existential positions of I as transitive closure of ă.

Remark 6.2. A proof π with the property that Hpπq “ I is sometimes called a sequen-
tialization of I . If I has positions xi1, j1, k1y and xi2, j2, k2y with xi1, j1, k1y ă xi2, j2, k2y,
then in each sequentialization of I the inference corresponding to xi1, j1, k1y is below that
of xi2, j2, k2y. In the literature on proof nets, relations like ă are known as jumps.

Definition 6.3. A set I of instances of Γ is called Herbrand-disjunction of Γ if

‚ the dependency relation Î of I is acyclic, and

‚
ł

IPI

I is a tautology.

This notion of Herbrand-disjunction is essentially a flat (as opposed to tree-like) for-
mulation of expansion tree proofs [Mil87]. A similar flat formulation can, for instance, be
found in [BL94].

Theorem 6.4. Γ is valid iff it has a Herbrand-disjunction.

Proof Sketch. Via translating back and forth with cut-free sequent calculus or alternatively
via expansion tree proofs.
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Example 6.5. Let Γ “ Dx pP pxq_@y P pyqq, let I “ tP pcq_P pαq, P pαq_P pβq} and fix the
numbering of quantifiers and instances to be from the left to the right. Then there are the
two existential positions x1, 1, 1y with t1,1,1 “ c and x1, 1, 2y with t1,1,2 “ α and two universal
positions x1, 2, 1y with t1,2,1 “ α and x1, 2, 2y with t1,2,2 “ β. As x1, 1, ky dominates x1, 2, ky,
we have x1, 1, 1y ă x1, 1, 2y, but not the other way round because t1,1,1 “ c is variable-free.
Therefore Î is acyclic. Furthermore I is a tautology and hence a Herbrand-disjunction.

Note that for a weak sequent Γ, the induced dependency ordering Î is empty and
hence trivially acyclic. The Herbrand-disjunctions of weak sequents are therefore exactly
the tautologies of instances.

Definition 6.6. Let F r@y Gs be a formula containing a universal quantifier and let Dx1,
. . . , Dxn be the existential quantifiers in whose scope @y is. Then define the Skolemization
of this universal quantifier as

sk1pF r@y Gsq “ F rGryzgpx1, . . . , xnqs

where g is a fresh n-ary function symbol, called a Skolem function symbol. The term
gpx1, . . . , xnq is called Skolem-term. For a formula F define its Skolemization skpF q to be
the iteration of sk1 until no universal quantifier is left, such that no Skolem function symbol
is used for two different universal quantifiers in F . For a sequent Γ “ F1, . . . , Fn define its
Skolemization skpΓq “ skpF1q, . . . , skpFnq, where no Skolem function symbol is used for two
different universal quantifiers in Γ.

Remark 6.7. Sometimes the above operation on formulas is also called Herbrandization.
We prefer to use the name Skolemization due to the simple duality between the satisfiability-
preserving replacement of existential quantifiers and the validity-preserving replacement of
universal quantifiers by new function symbols. There is no danger of confusion as, in the
proof-theoretic context of this work, we are clearly dealing with validity only. This use of
terminology is due to [HB39], see in particular Section 3.5.a.

The above side condition on the choice of Skolem function symbols results in a 1-1
mapping between universal quantifiers in the sequent we skolemize and the Skolem function
symbols. It could be made formally more precise by equipping the sk-operation with such
a bijection as second argument. However, for the sake of notational simplicity we refrain
from doing so here.

The Skolemization of formulas and sequents can be extended to a Skolemization of
proofs. When skolemizing a proof, all universal quantifiers in the end-sequent are removed
and their variables are replaced by Skolem-terms. In contrast, the cut-formulas remain
unchanged, more precisely:

Definition 6.8. Let π be a proof of a sequent Γ, and let y1, . . . , yn be the variables that
are bound by a @-quantifier in Γ. Furthermore, for each yi let αi,1, . . . , αi,hi be the eigen-
variables introduced in π by an @-rule whose main formula is of the shape @yiA. Then the
Skolemization of the proof π, denoted by skpπq, is the proof with end-sequent skpΓq that is
obtained from π by

(1) removing all @-quantifiers binding one of y1, . . . , yn everywhere, and
(2) replacing each occurrence of yi (for i P t1, . . . , nu) and αi,j (for i P t1, . . . , nu and

j P t1, . . . , hiu) by the corresponding Skolem-term. This term is in each case uniquely
determined if we proceed from the end-sequent of π upwards to the axioms and demand
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that each rule application remains valid, or, in the case of the @-rule, becomes void (i.e.,
premise and conclusion coincide), and

(3) removing the void rule instances.

Note that skpπq still can contain @-quantifiers, namely those coming from a cut.

The Skolemization of a proof π also affects the quantifier-free formulas in π through the
replacement of eigenvariables by Skolem terms. In the context of proof Skolemization we
hence extend the notation skp¨q to formulas F from which some (or all) @-quantifiers have
been removed; then skpF q denotes the formula obtained from skolemizing the remaining
@-quantifiers and carrying out the replacement of eigenvariables by Skolem-terms. Skolem-
ization of proofs has the following useful commutation properties.

Lemma 6.9. If π ù π1 then skpπq ù skpπ1q. If π
ne

ù π1 then skpπq
ne

ù skpπ1q.

Proof. By induction on the number of reductions in π ù π1 or π
ne

ù π1, respectively,
making a case distinction on the reduction step. The most interesting case is that of the
permutation of a @-inference over a cut

⑧⑧
⑧⑧
⑧⑧
⑧❄❄❄❄❄❄❄

ψ1

Γ, Brxzαs, A
´́´́ ´́ ´́ ´́ ´́ ´́ @
Γ,@xB,A

⑧⑧
⑧⑧
⑧⑧
⑧❄❄❄❄❄❄❄

ψ2

A,∆
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ cut

Γ,@xB,∆

❀

⑧⑧
⑧⑧
⑧⑧
⑧❄❄❄❄❄❄❄

ψ1

Γ, Brxzαs, A
⑧⑧
⑧⑧
⑧⑧
⑧❄❄❄❄❄❄❄

ψ2

A,∆
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cut

Γ, Brxzαs,∆
´́´́ ´́ ´́ ´́ ´́ ´́´ @
Γ,@xB,∆

where the main formula of the @-inference is an ancestor of the end-sequent. This reduction
step is translated to an identity-step as Skolemization maps both of the above proofs to

⑧⑧
⑧⑧
⑧⑧
⑧❄❄❄❄❄❄❄

ψs

1

skpΓq, skp@xBq, skpAq
⑧⑧
⑧⑧
⑧⑧
⑧❄❄❄❄❄❄❄

ψs

2

skpAq, skp∆q
´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´ cut

skpΓq, skp@xBq, skp∆q

Each of the other reduction steps translates directly into exactly one reduction step in the
skolemized sequence.

Lemma 6.10. LpGpskpπqqq “ skpLpGpπqqq.

Proof. First note that EVcpπq “ EVcpskpπqq hence Gpπq and Gpskpπqq have the same non-
terminals. Furthermore, to each α P EVpπqzEVcpπq corresponds a unique Skolem-term in
skpπq, hence to each F P Hpπq and σ P Bpπq corresponds a unique F 1 P Hpskpπqq and
σ1 P Bpπq and therefore to each production α Ñ t in Gpπq corresponds a unique produc-
tion α Ñ t1 in Gpskpπqq that is obtained from replacing eigenvariables by their respective
Skolem-terms. If I P skpLpGpπqqq then by Lemma 3.9 we have I “ skpF rα1zs1s ¨ ¨ ¨ rαnzsnsq.
Now for θ Ñ F,α1 Ñ s1, . . . , αn Ñ sn being the productions in Gpπq, letting θ Ñ
F 1, α1 Ñ s1

1
, . . . , αn Ñ s1

n be the corresponding productions in Gpskpπqq we obtain
F 1rα1zs1

1
s ¨ ¨ ¨ rαnzs1

ns “ skpF rα1zs1s ¨ ¨ ¨ rαnzsnsq. Thus, skpLpGpπqqq Ď LpGpskpπqqq. For
the other direction, note that every Skolem-term has at least one corresponding α P
EVpπqzEVcpπq, and as before, this relation translates to productions. So, if J P LpGpskpπqqq
then by Lemma 3.9 we have J “ Grα1zt1s ¨ ¨ ¨ rαnztns for θ Ñ G,α1 Ñ t1, . . . , αn Ñ tn
being the productions in Gpskpπqq. By choosing one corresponding set of productions
θ Ñ G1, α1 Ñ t11, . . . , αn Ñ t1n where Skolem-terms are replaced by the eigenvariables
from which they originate we obtain skpG1rα1zt11s ¨ ¨ ¨ rαnzt1nsq “ Grα1zt1s ¨ ¨ ¨ rαnztns.
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As we have seen in the above proof, Skolemization can identify instances that differ
only in their variable names. The reason for this ability lies in the use of variable names
which can be chosen in a redundant way. These superfluous instances can also be removed
by an appropriate variable renaming as shown in the following example.

Example 6.11. Let Γ “ Dx@y pP px, yq _Qpx, yqq, DxP pc, xq ^ DxQpc, xq. Then the set of
instances obtained from a sequent calculus proof that ends with an ^-inference is

I “ tP pc, αq _Qpc, αq, P pc, βq _Qpc, βq, P pc, αq ^Qpc, βqu .

Skolemizing would produce the following set of instances

skpI q “ tP pc, fpcqq _Qpc, fpcqq, P pc, fpcqq ^Qpc, fpcqqu

by implicitly identifying the two formulas that become equal. A similar effect (but without
using Skolemization) can be achieved by directly identifying α and β as in

I rβzαs “ tP pc, αq _Qpc, αq, P pc, αq ^Qpc, αqu .

We now generalize the observations made in the above example. For every Herbrand-
disjunction I there is a substitution ρ, such that I ρ is a Herbrand-disjunction having the
following property: If two universal positions xi, j, k1y and xi, j, k2y have different variables
then there is a j1, such that the quantifier Dxj1 dominates @xj in Fi and ti,j1,k1 ‰ ti,j1,k2 . This
follows for example from the formulation of expansion trees in [CHM12a, CHM12b] which
use sets of terms for the D-quantifier and a single variable for the @-quantifier. A Herbrand-
disjunction with this property is α-equivalent to one with canonical variable names in the
following sense.

Definition 6.12. Let I be a set of instances. The canonical name of the eigenvariable of
the universal position xi, j, ky is αi,j,t1,...,tm where t1, . . . , tm are the terms of the existential
positions that dominate xi, j, ky. The canonical variable renaming ρc of I is the substitution
which replaces all variable names by their canonical names.

Remark 6.13. Note that this relationship is significantly more complex than α-equivalence,
as differently named variables are identified according to certain criteria external to variable
names. In particular, for some fixed I , there are In of unbounded size such that Inρc “ I .
This can be seen, for example, by continuing Example 6.5: take In “ tP pcq_P pαiq, P pαiq_
P pβiq | 1 ď i ď nu.

We now turn to deskolemization, the inverse operation of Skolemization. In our setting,
we only consider deskolemization of sequents and their instances, but not of proofs. Fur-
thermore we always assume that the original sequent with @-quantifiers is known. Hence
the deskolemization of a sequent trivially replaces it by the original sequent. More inter-
esting is the deskolemization of instances which will consist of replacing Skolem-terms by
(canonically named) variables.

Definition 6.14. Let Γ “ F1, . . . , Fn be a sequent with Skolem function symbol fi,j for the
universal quantifier @xj in Fi. Let I be a set of instances of Γ and define its deskolemization

sk´1pI q by repeating the replacement

fi,jpt1, . . . , tmq ÞÑ αi,j,t1,...,tm

on maximal Skolem-terms (w.r.t. the subterm ordering).
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In the deskolemization of a Herbrand-disjunction, the acyclicity of the dependency
relation is obtained from the acyclicity of the subterm ordering on the Skolem-terms. Con-
versely, during Skolemization, the Skolem-terms are well-defined due to the acyclicity of the
dependency relation (see e.g. [Mil87, Wel11, BHW12] for more details). We hence obtain
the following properties:

Lemma 6.15. Let Γ be a sequent and Γ1 be a weak sequent with Γ1 “ skpΓq.

(1) If I is a Herbrand-disjunction of Γ, then skpI q is a Herbrand-disjunction of skpΓq.
(2) If I 1 is a Herbrand-disjunction of Γ1, then sk´1pI 1q is a Herbrand-disjunction of

sk´1pΓ1q.
(3) If I is a Herbrand-disjunction of Γ, then sk´1pskpI qq “ I ρc.

7. Herbrand-Content

Definition 7.1. For a simple proof π, we define its Herbrand-content as rrπss “ LpGpπqqρc.

Note that for a cut-free proof π we have rrπss “ Hpπqρc, i.e. the Herbrand-content is
nothing other than the Herbrand-disjunction of the proof after variable normalization. Also
note that for a proof π of a weak sequent we have rrπss “ LpGpπqq, and hence, for a cut-free
proof of a weak sequent we have rrπss “ Hpπq. We can now lift the main invariance lemma,
Lemma 5.4, to proofs of arbitrary end-sequents and formulate this result in terms of the
Herbrand-content.

Theorem 7.2. If π ù π1 is a reduction sequence of simple proofs, then rrπss ě rrπ1ss. If

π
ne

ù π1 is a reduction sequence of simple proofs, then rrπss “ rrπ1ss.

Proof. If π ù π1 then skpπq ù skpπ1q by Lemma 6.9. So, by Lemma 5.4, we have
LpGpskpπqqq ě LpGpskpπ1qqq. By Lemma 6.10, we get skpLpGpπqqq ě skpLpGpπ1qqq. Using
Lemma 6.15 and the observation that sk´1 commutes with ď we see that

rrπss “ LpGpπqqρc “ sk´1pskpLpGpπqqqq ě sk´1pskpLpGpπ1qqqq “ LpGpπ1qqρc “ rrπ1ss

The proof for π
ne

ù π1 is step-by-step the same, replacing ě by “.

Corollary 7.3. If π ù π1 is a reduction sequence of simple proofs and π1 is cut-free, then

Hpπ1qρc ď rrπss .

Proof. This is a direct consequence of Theorem 7.2.

This corollary shows that rrπss is an upper bound on the Herbrand-disjunctions obtain-
able by cut-elimination from π. Let us now compare this result with another upper bound
that has previously been obtained in [Het10]. To that aim let G0pπq denote the regular tree
grammar underlying Gpπq which can be obtained by setting all non-terminals to non-rigid.
In this notation, a central result of [Het10], adapted to this paper’s setting is

Theorem 7.4. Let π be a proof of a formula of the shape Dx1 . . . DxnA with A quantifier-free,
and let π ù π1 with π1 cut-free. Then Hpπ1q Ď LpG0pπqq.

While the Theorem 7.4 applies also to non-simple proofs, Corollary 7.3 is stronger in
several respects:

First, the size of the Herbrand-content is by an exponential smaller than the size of
the bound given by Theorem 7.4. Indeed, it is a straightforward consequence of Lemma 3.9
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that the language of a totally rigid acyclic tree grammar with n production rules is bound
by nn but on the other hand:

Proposition 7.5. There is an acyclic regular tree grammar G with 2n productions and
|LpGq| “ nn

n
.

Proof. Let f be an n-ary function symbol, then the productions α0 Ñ fpα1, . . . , α1q, . . . ,
αn´1 Ñ fpαn, . . . , αnq create a tree with nn leaves. Let c1, . . . , cn be terminal symbols, then
by adding the productions αn Ñ c1, . . . , αn Ñ cn we obtain the desired grammar G.

Secondly, the class of totally rigid acyclic tree grammars can be shown to be in exact
correspondence with the class of simple proofs in the following sense. Not only can we use a
totally rigid acyclic tree grammar to simulate the process of cut-elimination, we can also—in
the other direction—use cut-elimination to simulate the process of calculating the language
of a grammar. It is shown in [Het12a] how to transform an arbitrary acyclic totally rigid
tree grammar G into a simple proof that has a ù normal form whose Herbrand-disjunction
is essentially the language of G.

The third and—for the purposes of this paper—most important difference is that the
bound of Corollary 7.3 is tight in the sense that it can actually be reached by a cut-

elimination strategy, namely
ne

ù. In fact, an even stronger statement is true: not only

is there a normal form of
ne

ù that reaches the bound but all of them do. This property
leads naturally to the following confluence result for classical logic.

Definition 7.6 (Herbrand-confluence). A relation ÝÑ on a set of proofs is called Herbrand-
confluent if π ÝÑ π1 and π ÝÑ π2 with π1 and π2 being normal forms for ÝÑ implies that
Hpπ1qρc “ Hpπ2qρc.

Corollary 7.7. The relation
ne

ù is Herbrand-confluent on the set of simple proofs.

Proof. This is a direct consequence of Theorem 7.2.

How does this result fit together with
ne

ù being neither confluent nor strongly nor-
malizing? In fact, note that it is possible to construct a simple proof which permits an

infinite
ne

ù reduction sequence from which one can obtain normal forms of arbitrary size
by bailing out from time to time. This can be done by building on the propositional double-
contraction example found e.g. in [DJS97, Gal93, Urb00] and in a similar form in [Zuc74].
While these infinitely many normal forms do have pairwise different Herbrand-disjunctions
when regarded as multisets, Corollary 7.7 shows that as sets they are all the same. This set-
character of Herbrand-disjunctions is assured by using canonical variable names (or equiva-
lently: Skolemization) and thus identifying repeated instances. This observation shows that
the lack of strong normalization is taken care of by using sets instead of multisets as data
structure. But what about the lack of confluence? Results like [BH11] and [Het12b] show
that the number of ù normal forms with different Herbrand-disjunctions can be enormous.

On the other hand we have just seen that
ne

ù induces only a single Herbrand-disjunction:
rrπss. The relation between rrπss and the many Herbrand-disjunctions induced by ù is
explained by Corollary 7.3: rrπss contains them all.
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8. Conclusion

We have shown that non-erasing cut-elimination for the class of simple proofs is Herbrand-
confluent. While there are different and possibly infinitely many normal forms, they all
induce the same Herbrand-disjunction. This result motivates the definition of this unique
Herbrand-disjunction as Herbrand-content of the proof with cut.

As future work, the authors plan to extend this result to arbitrary first-order proofs.
The treatment of blocks of quantifiers is straightforward: the rigidity condition must be
changed to apply to vectors of non-terminals. Treating quantifier alternations is more
difficult: the current results suggest to use a stack of totally rigid tree grammars, each layer
of which corresponds to one layer of quantifiers (and is hence acyclic). Concerning further
generalizations, note that the method of describing a cut-free proof by a tree language is
applicable to any proof system with quantifiers that has a Herbrand-like theorem, e.g., even
full higher-order logic as in [Mil87]. The difficulty consists in finding an appropriate type
of grammars.

Given the wealth of different methods for the extraction of constructive content from
classical proofs, what we learn from our work about the class of simple proofs is this: the
first-order structure possesses (in contrast to the propositional structure) a unique and
canonical unfolding. The various extraction methods hence do not differ in the choice of
how to unfold the first-order structure but only in choosing which part of it to unfold. We
therefore see that the effect of the underspecification of algorithmic detail in classical logic
is redundancy.
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