
Proceedings of GO 2005, pp. 1 – 5.

Variable Neighbourhood Search for the

Global Optimization of Constrained NLPs

Leo Liberti,1 and Milan Dražić2

1DEI, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy, liberti@elet.polimi.it

2Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia and Montenegro,
mdrazic@matf.bg.ac.yu

Abstract We report on the theory and implementation of a global optimization solver for general constrained
nonlinear programming problems based on Variable Neighbourhood Search, and we give compara-
tive computational results on several instances of continuous nonconvex problems. Compared to an
efficient multi-start global optimization solver, the VNS solver proposed appears to be significantly
faster.

Keywords: VNS, global optimization, nonconvex, constrained, NLP.

1. Introduction

This paper describes a Variable Neighbourhood Search (VNS) solver for the global solution of
continuous constrained nonlinear programming problems (NLPs) in general form:

min
x∈Rn

f(x)

s.t. l ≤ g(x) ≤ u

xL ≤ x ≤ xU .











(1)

In the above formulation, x are the problem variables. f : R
n → R is a possibly nonlinear func-

tion, g : R
n → R

m is a vector of m possibly nonlinear functions, l, u ∈ R
m are the constraint

bounds (which may be set to ±∞ as needed), and xL, xU ∈ R
n are the variable bounds.

Previous work on Variable Neighbourhood Search applied to global optimization was re-
stricted to box-constrained NLPs (m = 0 in the above formulation) [19]. To the best of our
knowledge, a VNS solver for constrained global optimization targeted at problems in general
form (1) has not been implemented yet. It is worth noting, however, that the box-constrained
VNS solver described in [19] is currently being tested on a reformulation of constrained prob-
lems based on penalization of explicit constraints.

2. The Variable Neighbourhood Search algorithm

Variable Neighbourhood Search (VNS) is a relatively recent metaheuristic which relies on iter-
atively exploring neighbourhoods of growing size to identify better local optima [6–8]. More
precisely, VNS escapes from the current local minimum x∗ by initiating other local searches
from starting points sampled from a neighbourhood of x∗ which increases its size iteratively
until a local minimum better than the current one is found. These steps are repeated until a
given termination condition is met.

2 Leo Liberti, and Milan Dražić

VNS has been applied to a wide variety of problems both from combinatorial and contin-
uous optimization. Its early applications to continuous problems were based on a particular
problem structure. In the continuous location-allocation problem the neighbourhoods are de-
fined according to the meaning of problem variables (assignments of facilities to custmers, po-
sitioning of yet unassigned facilities and so on) [3]. In bilinearly constrained bilinear problems
the neighbourhoods are defined in terms of the applicability of the successive linear program-
ming approach, where the problem variables can be partitioned so that fixing the variables in
either set yields a linear problem; more precisely, the neighbourhoods of size k are defined as
the vertices of the LP polyhedra that are k pivots away from the current vertex [6]. However,
none of the early applications of VNS to continuous problems was ever designed for solving
problems in general form (1).
The first VNS algorithm targeted at problems with fewer structural requirements, namely,

box-constrained NLPs, was given in [19] (the paper focuses on a particular class of box-
constrained NLPs, but the proposed approach is general). Since the problem is assumed to
be box-constrained, the neighbourhoods arise naturally as hyperrectangles of growing size
centered at the current local minimum x∗.

Algorithm 1 The VNS algorithm.

0: Input: maximum number of neighbourhoods kmax, number of local searches in each neigh-
bourhood L.
loop
Set k ← 1, pick random point x̃, perform a local search to find a local minimum x∗. (†)
while k ≤ kmax do
Consider a neighbourhood Nk(x

∗) of x∗ such that ∀ k > 1 (Nk(x
∗) ⊃ Nk−1(x

∗)).
for i = 1 to L do
Sample a random point x̃ from Nk(x

∗).
Perform a local search from x̃ to find a local minimum x′. (†)
If x′ is better than x∗, set x∗ ← x′, k ← 0 and exit the FOR loop.
end for
Set k ← k + 1.
Verify termination condition; if true, exit.

end while
end loop

In Algorithm 1, the termination condition can be based onCPU time, number of non-improving
steps and so on.
We implemented Algorithm 1 so that steps (†), i.e. the local search phases, are carried out

by an SQP algorithm which is capable of locally solving constrained NLPs.
The definition of the neighourhoodsmay vary. Consider hyperrectanglesHk(x), centered at

x and proportional to the hyperrectangle xL ≤ x ≤ xU given by the original variable bounds,
such that Hk−1(x) ⊂ Hk(x) for each k ≤ kmax. Letting Nk(x) = Hk(x), sampling becomes
extremely easy. There is a danger, though, that sampled points will actually be insideHk−1(x),
which had already been explored at the previous iteration. Even though the likelihood of this
situation arising lessens as the dimension of the Euclidean space increases (since the higher
the dimension, the higher the ratio of the volume of Hk(x) to the volume of Hk−1(x)), we
would like to make sure that the sampled points are outside Hk−1(x).
Naturally, taking Nk(x) = Hk(x)\Hk−1(x) solves this particular difficulty. Sampling in

Hk(x)\Hk−1(x) is not as straightforward as sampling in Hk(x), however. Let τ be the affine
map sending the hyperrectangle xL ≤ x ≤ xU into the unit L∞ ball (i.e., hypercube) B cen-
tered at 0. Let rk = k

kmax
be the radii of the balls Bk (centered at 0) such that τ(Hk(x)) = Bk for

each k ≤ kmax. In order to sample a random vector x̃ in Bk\Bk−1 we proceed as follows:

1 sample a random direction vector d ∈ R
n;

VNS for Global Optimization 3

2 normalize d (i.e., set d← d

||d||∞
);

3 sample a random radius r ∈ [rk−1, rk] yielding a uniformly distributed point in the shell;

4 let x̃ = rd.

Finally, of course, we set x̃← τ−1(x̃). With this construction, we obtain x̃ ∈ Hk(x)\Hk−1(x).

3. The implementation

The search space is defined as the hyperrectangle given by the set of variable ranges xL ≤ x ≤
xU . At first we pick a random point x̃ in the search space, we start a local search and we store
the local optimum x∗. Then, until k does not exceed a pre-set kmax, we iteratively select new
starting points x̃ in an increasingly larger neighbourhood Nk(x

∗) and start new local searches
from x̃ leading to local optima x′. As soon as we find a local optimum x′ better than x∗, we
update x∗ = x′, re-set k = 1 and repeat. Otherwise the algorithm terminates.
For each k ≤ kmax we consider hyperrectangles Hk(x

∗) proportional to xL ≤ x ≤ xU ,
centered at x∗, whose sides have been scaled by k

kmax
. More formally, let Hk(x

∗) be the hyper-

rectangle yL ≤ x ≤ yU where, for all i ≤ n,

yL

i = x∗
i −

k

kmax
(x∗

i − xL

i)

yU

i = x∗
i +

k

kmax
(xU

i − x∗
i).

This construction forms a set of hyperrectangular “shells” centered at x∗ and proportional
to xL ≤ x ≤ xU . As has been mentioned above, we define each neighbourhood Nk(x

∗) as
Hk(x

∗)\Hk−1(x
∗).

Themain solver parameters control: the minimum neighbourhood size, the number of sam-
pling points and local searches started in each neighbourhood (L in Algorithm 1), an ε toler-
ance to allow moving to a new x∗ only when the improvement is sufficiently high, and the
maximum CPU time allowed for the search.
The solver was coded within the ooOPS optimization software framework [17]. ooOPS

allows global optimization solvers to be deployed quickly and efficiently by offering an API
which is very rich in functionality. Solvers can call each other as black-box procedures; the
solver library is still modest but growing, including SNOPT [5], the NAG library NLP solver
[21], lp solve as local solvers and sBB [12, 13], SobolOpt [10] and the VNS solver described
in this paper as global solvers; a rich symbolic computation library is provided, whose ca-
pabilities extend to the symbolic computation of derivatives and automatic simplification of
expressions, as well as to generating a convex relaxation of the problem at hand.

4. Computational results

In Table 1 we have collected a number of test instances of various constrained NLPs (small,
medium and large sized, ordered by number of problem variables) and reported solution
times of the VNS solver described in this paper versus those obtainedwith the SobolOpt solver
[10], a Multi Level Single Linkage algorithm based on low-discrepancy Sobol’ sequences sam-
pling. In both cases, the local NLP solver used is SNOPT [5]. Both solvers managed to locate
the global optima in all test instances. The instances were solved on a Pentium IV 2.66MHz
CPUwith 1GB RAM, running Linux. All parameters were set to their default values. kmax was
set to 10 for most of the test instances, apart from the largest ones (the last four in Table 1),
where it was set to 50.

4 Leo Liberti, and Milan Dražić

The griewank-2 instance is a modified Griewank function described in [18]. sixhump is
a classic test function for global optimization algorithm. sntoy is the “toy problem” found
in the SNOPT documentation [5]. bilinear-eg3 was taken from [14]: it is a MINLP with 1
binary variable, reformulated to continuous subject to x2 = x. haverly, ben-tal4, example4
and foulds3 are instances of bilinear multi-quality blending problems arising from the oil
industry. kissing-24 4 solves the Kissing Number problem in 4 dimensions. lavor50 and
more4 are instances from theMolecular Distance Geometry Problem; although more4 hasmore
atoms and nonlinear terms, the particular way in which the instance lavor4 was generated
makes it harder to solve.

Instance From N C T VNS SobolOpt

griewank-2 [18] (Test function) 2 0 4 0.005
∗ 1.03

sixhump [22] (Classic test function) 2 0 6 0.006 0.001
∗

sntoy [5] (SNOPT test problem) 4 3 5 7.01 2.64
∗

bilinear-eg3 [14] (MINLP test problem) 6 5 15 0.09 0.03
∗

haverly [9] (Haverly’s pooling problem) 9 8 6 0.01
∗ 0.04

ben-tal4 [2] (Blending problem) 10 8 6 0.01
∗ 0.44

example4 [1] (Blending problem) 26 35 48 0.62
∗ 1.51

kissing-24 4 [16] (Kissing Number problem) 97 300 1200 51.92
∗ 213.70

lavor50 [11] (Molecular conformation) 150 0 16932 707.15
∗ 3153.02

foulds3 [4] (Blending problem) 168 48 136 0.46
∗ 12.65

more4 [20] (Molecular conformation) 192 0 45288 418.818
∗ 2903.38

Table 1. Computational results comparing the VNS with the SobolOpt solvers in ooOPS . User CPU timings are
in seconds. Values marked with ∗ denote the best timings.

5. Conclusion

We presented a new global optimization solver for constrained NLPs based on the VNS al-
gorithm. The computational comparison with an efficient Multi-Level Single Linkage (MLSL)
algorithm called SobolOpt seems to show that in general VNS performs better thanMLSL. Fu-
ture work will be two-fold: on one hand, another VNS global solver based on box-constrained
reformulation of constrainedNLPs based on penalization of explicit constraints is being tested
so that more relevant comparative computational data can be gathered. On the other hand,
we plan to take into account the explicit constraint structure of the problem even in the global
phase, and not only in the local phase as is currently the case. The latter development should
be beneficial particularly for those problems for which the local solver has trouble finding a
feasible starting point.

Acknowledgments

We are particularly thankful to Dr. Sergei Kucherenko for providing the code for the SobolOpt
MLSL solver.

References

[1] N. Adhya, M. Tawarmalani, and N.V. Sahinidis. A lagrangian approach to the pooling problem. Industrial
and Engineering Chemistry Research, 38:1956–1972, 1999.

[2] A. Ben-Tal, G. Eiger, and V. Gershovitz. Global minimization by reducing the duality gap. Mathematical
Programming, 63:193–212, 1994.

VNS for Global Optimization 5

[3] J. Brimberg and N. Mladenović. A variable neighbourhood algorithm for solving the continuous location-
allocation problem. Studies in Location Analysis, 10:1–12, 1996.

[4] L.R. Foulds, D. Haughland, and K. Jornsten. A bilinear approach to the pooling problem. Optimization,
24:165–180, 1992.

[5] P.E. Gill. User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, Department of EESOR, Stanford
University, California, February 1999.

[6] P. Hansen and N. Mladenović. Variable neighbourhood search: Principles and applications. European Journal
of Operations Research, 130:449–467, 2001.

[7] P. Hansen and N. Mladenović. Variable neighbourhood search. In P. Pardalos and M. Resende, editors,
Handbook of Applied Optimization, Oxford, 2002. Oxford University Press.

[8] P. Hansen and N. Mladenović. Variable neighbourhood search. In F.W. Glover and G.A. Kochenberger,
editors, Handbook of Metaheuristics, Dordrecht, 2003. Kluwer.

[9] C.A. Haverly. Studies of the behaviour of recursion for the pooling problem. ACM SIGMAP Bulletin, 25:19–
28, 1978.

[10] S. Kucherenko and Yu. Sytsko. Application of deterministic low-discrepancy sequences to nonlinear global
optimization problems. Computational Optimization and Applications, 30(3):297–318, 2004.

[11] C. Lavor. On generating instances for the molecular distance geometry problem. In Liberti and Maculan
[15], pages 405–414.

[12] L. Liberti. Reformulation and Convex Relaxation Techniques for Global Optimization. PhD thesis, Imperial College
London, UK, March 2004.

[13] L. Liberti. Writing global optimization software. In Liberti and Maculan [15], pages 211–262.

[14] L. Liberti. Linearity embedded in nonconvex programs. Journal of Global Optimization, (to appear) 2004.

[15] L. Liberti and N. Maculan, editors. Global Optimization: from Theory to Implementation. Springer, Berlin, (to
appear).

[16] L. Liberti, N. Maculan, and S. Kucherenko. The kissing number problem: a new result from global opti-
mization. In L. Liberti and F. Maffioli, editors, CTW04 Workshop on Graphs and Combinatorial Optimization,
volume 17 of Electronic Notes in Discrete Mathematics, pages 203–207, Amsterdam, 2004. Elsevier.

[17] L. Liberti, P. Tsiakis, B. Keeping, and C.C. Pantelides. ooOPS. Centre for Process Systems Engineering,
Chemical Engineering Department, Imperial College, London, UK, 2001.

[18] M. Locatelli. A note on the griewank test function. Journal of Global Optimization, 25:169–174, 2003.

[19] N. Mladenović, J. Petrović, V. Kovačević-Vujčić, and M. Čangalović. Solving a spread-spectrum radar
polyphase code design problem by tabu search and variable neighbourhood search. European Journal of
Operations Research, 151:389–399, 2003.

[20] J.J. Moré and Z. Wu. Global continuation for distance geometry problems. SIAM Journal on Optimization,
7:814–836, 1997.

[21] Numerical Algorithms Group. NAG Fortran Library Manual Mark 11. 1984.

[22] E.M.B. Smith. On the Optimal Design of Continuous Processes. PhD thesis, Imperial College of Science, Tech-
nology and Medicine, University of London, October 1996.

