

Introduction to Linear Programming

Leo Liberti

LIX, École Polytechnique
liberti@lix.polytechnique.fr

Course material:

http://www.lix.polytechnique.fr/~liberti/teaching/xct/

Contents

- LP formulations and examples
- The simplex method
- Optimality conditions
- Duality

Definitions

Mathematical programming formulation:

$$\min_{x} f(x) \\
\text{s.t.} g(x) \le 0, \quad \begin{cases} P \end{cases} \tag{1}$$

- A point x^* is *feasible* in P if $g(x^*) \le 0$; F(P) = set of feasible points of P
- A feasible x^* is a *local minimum* if $\exists B(x^*, \varepsilon)$ s.t. $\forall x \in F(P) \cap B(x^*, \varepsilon)$ we have $f(x^*) \leq f(x)$
- A feasible x^* is a global minimum if $\forall x \in F(P)$ we have $f(x^*) \leq f(x)$
- \blacksquare Thm.: if f and F(P) convex, any local min. is also global
- If $g_i(x^*) = 0$ for some i, g_i is active at x^*

Canonical form

- P is a linear programming problem (LP) if $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$ are linear forms
- LP in canonical form:

$$\begin{array}{cc}
\min_{x} & c^{\mathsf{T}} x \\
\text{s.t.} & Ax \le b \\
 & x \ge 0
\end{array} \right\} [C] \tag{2}$$

• Can reformulate inequalities to equations by adding a slack variable x_{n+1} :

$$\sum_{j=1}^{n} a_j x_j \le b \implies \sum_{j=1}^{n} a_j x_j + x_{n+1} = b \land x_{n+1} \ge 0$$

Standard form

LP in standard form: all inequalities transformed to equations

$$\begin{array}{cc}
\min_{x} & (c')^{\mathsf{T}} x \\
\mathbf{s.t.} & A' x = b \\
x \ge 0
\end{array} \right\} [S] \tag{3}$$

- where $x = (x_1, \dots, x_n, x_{n+1}, \dots, x_{n+m}),$ $A' = (A, I_m), c' = (c, \underbrace{0, \dots, 0}_{m})$
- Standard form useful because linear systems of equations are computationally easier to deal with than systems of inequalities
- Used in simplex algorithm

Diet problem I

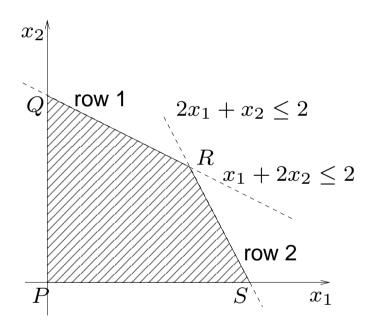
- Consider set M of m nutrients (e.g. sugars, fats, carbohydrates, proteins, vitamins, . . .)
- Consider set N of n types of food (e.g. pasta, steak, potatoes, salad, ham, fruit, . . .)
- A diet is healthy if it has at least b_i units of nutrient $i \in M$
- **●** Food $j \in N$ contains a_{ij} units of nutrient $i \in M$
- ullet A unit of food $j \in N$ costs c_j
- Find a healthy diet of minimum cost

Diet problem II

- Parameters: $m \times n$ matrix $A = (a_{ij}), b = (b_1, \dots, b_m),$ $c = (c_1, \dots, c_n)$
- **Decision** variables: $x_j = \text{quantity of food } j \text{ in the diet}$
- Objective function: $\min_{x} \sum_{j=1}^{n} c_j x_j$
- Constraints: $\forall i \in M \sum_{j=1}^{n} a_{ij} x_j \geq b_i$
- Limits on variables: $\forall j \in N \ x_i \geq 0$
- Canonical form: $\min\{c^{\mathsf{T}}x \mid -Ax \leq -b\}$
- Standard form: add slack variables $y_i = \text{surplus}$ quantity of i-th nutrient, get $\min\{c^\mathsf{T}x \mid -Ax + I_m y = -b\}$

Geometry of LP

A polyhedron is the intersection of a finite number of closed halfspaces. A bounded, non-empty polyhedron is a polytope



Canonical feas. polyhedron:
$$F(C) = \{x \in \mathbb{R}^n \mid Ax \leq b \land x \geq 0\}$$
 $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, b^\mathsf{T} = (2,2)$ Standard feas. polyhedron: $F(S) = \{(x,y) \in \mathbb{R}^{n+m} \mid Ax + I_m y = b \land (x,y) \geq 0\}$

- $P = (0, 0, 2, 2), Q = (0, 1, 0, 1), R = (\frac{2}{3}, \frac{2}{3}, 0, 0), S = (1, 0, 1, 0)$
- Each vertex corresponds to an intersection of at least n hyperplanes $\Rightarrow \geq n$ coordinates are zero

Basic feasible solutions

- Consider polyhedron in "equation form" $K = \{x \in \mathbb{R}^n \mid Ax = b \land x \geq 0\}$. A is $n \times m$ of rank m (N.B. n here is like n+m in last slide!)
- A subset of m linearly independent columns of A is a basis of A
- If β is the set of column indices of a basis of A, variables x_i are basic for $i \in \beta$ and nonbasic for $i \notin \beta$
- Partition A in a square $m \times m$ nonsingular matrix B (columns indexed by β) and an $(n-m) \times m$ matrix N
- Write A = (B|N), $x_B \in \mathbb{R}^m$ basics, $x_N \in \mathbb{R}^{n-m}$ nonbasics
- Given a basis (B|N) of A, the vector $x=(x_B,x_N)$ is a basic feasible solution (bfs) of K with respect to the given basis if $x_B \ge 0$ and $x_N = 0$

Fundamental Theorem of LP

- Given a polyhedron K in "equation form", any bfs of K is a vertex of K and vice versa
- For any $c \in \mathbb{R}^n$, there is always one bfs that solves the LP $\min\{c^\mathsf{T}x \mid x \in K\}$
- Important correspondence between bfs's and vertices suggests geometric solution method based on exploring vertices of K
- Proofs not difficult but long

Simplex Algorithm: Summary

- ullet Solves LPs in form $\min_{x \in K} c^{\mathsf{T}} x$ where $K = \{Ax = b \land x \geq 0\}$
- Starts from any vertex x
- Moves to an adjacent improving vertex x' (i.e. x' is s.t. \exists edge $\{x, x'\}$ in K and $c^{\mathsf{T}}x' \leq c^{\mathsf{T}}x$)
- Two bfs's with basics indexed by β, β' correspond to adjacent vertices if $|\beta \cap \beta'| = m 1$
- Stops when no such x' exists
- Detects unboundedness and prevents cycling ⇒ convergence
- K convex \Rightarrow global optimality follows from local optimality at termination

Simplex Algorithm I

- Let $x=(x_1,\ldots,x_n)$ be the current bfs, write Ax=b as $Bx_B+Nx_N=b$
- Express basics in terms of nonbasics: $x_B = B^{-1}b B^{-1}Nx_N$ (this system is a *dictionary*)
- Express objective function in terms of nonbasics:

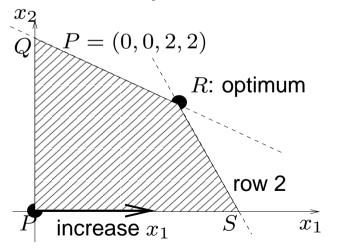
$$c^{\mathsf{T}}x = c_B^{\mathsf{T}}x_B + c_N^{\mathsf{T}}x_N = c_B^{\mathsf{T}}(B^{-1}b - B^{-1}Nx_N) + c_N^{\mathsf{T}}x_N \Rightarrow c^{\mathsf{T}}x = c_B^{\mathsf{T}}B^{-1}b + \bar{c}_N^{\mathsf{T}}x_N$$

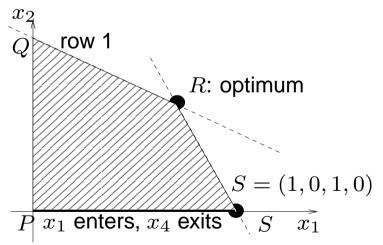
$$(\bar{c}_N^{\mathsf{T}} = c_N^{\mathsf{T}} - c_B^{\mathsf{T}}B^{-1}N \text{ are the } \textit{reduced costs})$$

- Select an improving direction: pick a nonbasic variable x_h with negative reduced cost; increasing its value will decrease the objective function value
- If no such h exists, no improving direction, local minimum \Rightarrow global minimum \Rightarrow termination

Simplex Algorithm II

- Iteration start: x_h is out of basis \Rightarrow its value is zero
- We want to increase its value to strictly positive to decrease objective function value
- ... corresponds to "moving along an edge"
- We stop when we reach another (improving) vertex
- ... corresponds to setting a basic variable x_l to zero





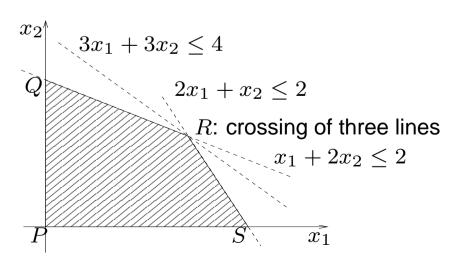
• x_h enters the basis, x_l exits the basis

Simplex Algorithm III

- ullet How do we determine l and new positive value for x_h ?
- Recall dictionary $x_B = B^{-1}b B^{-1}Nx_N$, write $\bar{b} = B^{-1}b$ and $\bar{A} = (\bar{a}_{ij}) = B^{-1}N$
- For $i \in \beta$ (basics), $x_i = \bar{b}_i \sum_{j \notin \beta} \bar{a}_{ij} x_j$
- Consider nonbasic index h of variable entering basis (all the other nonbasics stay at 0), get $x_i = \overline{b}_i \overline{a}_{ih}x_h, \forall i \in \beta$
- Increasing x_h may make $x_i < 0$ (infeasible), to prevent this enforce $\forall i \in \beta \ (\bar{b}_i \bar{a}_{ih}x_h \geq 0)$
- $\begin{array}{c} \bullet \quad \text{Require } x_h \leq \frac{\bar{b}_i}{\bar{a}_{ih}} \text{ for } i \in \beta \text{ and } \bar{a}_{ih} > 0 \text{:} \\ l = \operatorname{argmin}\{\frac{\bar{b}_i}{\bar{a}_{ih}} \mid i \in \beta \wedge \bar{a}_{ih} > 0\}, \qquad x_h = \frac{\bar{b}_l}{\bar{a}_{lh}} \end{array}$
- If all $\bar{a}_{ih} \leq 0$, x_h can increase without limits: problem unbounded

Simplex Algorithm IV

- Suppose > n hyperplanes cross at vtx R (degenerate)
- May get improving direction s.t. adjacent vertex is still R
- Objective function value does not change
- ullet Seq. of improving dirs. may fail to move away from R
- simplex algorithm cycles indefinitely
- Use Bland's rule: among candidate entering / exiting variables, choose that with least index



Example: Formulation

Consider problem:

$$\begin{array}{ccc}
\max_{x_1, x_2} & x_1 + x_2 \\
\text{s.t.} & x_1 + 2x_2 \le 2 \\
& 2x_1 + x_2 \le 2 \\
& x \ge 0
\end{array}$$

Standard form:

$$-\min_{x} -x_{1} - x_{2}$$
s.t. $x_{1} + 2x_{2} + x_{3} = 2$

$$2x_{1} + x_{2} + x_{4} = 2$$

$$x \ge 0$$

• Obj. fun.: $\max f = -\min -f$, simply solve for $\min f$

Example, itn 1: start

- Objective function vector $c^{\mathsf{T}} = (-1, -1, 0, 0)$
- Constraints in matrix form:

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

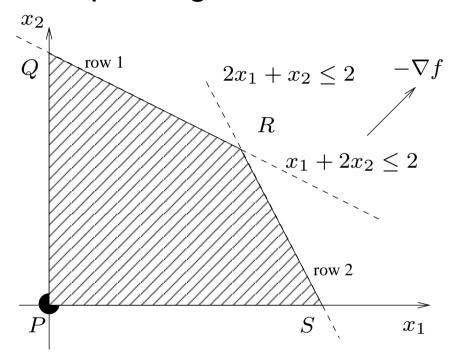
Choose obvious starting basis with

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \beta = \{3, 4\}$$

• Corresponds to point P = (0, 0, 2, 2)

Example, itn 1: dictionary

Start the simplex algorithm with basis in P



• Compute dictionary $x_B = B^{-1}b - B^{-1}Nx_N = \bar{b} - \bar{A}x_N$, where

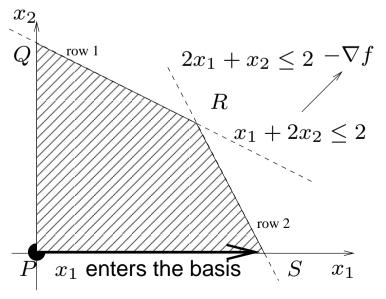
$$\bar{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \quad ; \quad \bar{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Example, itn 1: entering var

• Compute reduced costs $\bar{c}_N = c_N^\mathsf{T} - c_B^\mathsf{T} \bar{A}$:

$$(\bar{c}_1, \bar{c}_2) = (-1, -1) - (0, 0)\bar{A} = (-1, -1)$$

- All nonbasic variables $\{x_1, x_2\}$ have negative reduced cost, can choose whichever to enter the basis
- Bland's rule: choose entering nonbasic with least index in $\{x_1, x_2\}$, i.e. pick h = 1 (move along edge \overline{PS})



Example, itn 1: exiting var

Select exiting basic index l

$$\begin{array}{ll} l &=& \displaystyle \mathop{\rm argmin}\{\frac{\overline{b}_i}{\overline{a}_{ih}} \mid i \in \beta \wedge \overline{a}_{ih} > 0\} = \displaystyle \mathop{\rm argmin}\{\frac{\overline{b}_1}{\overline{a}_{11}}, \frac{\overline{b}_2}{\overline{a}_{21}}\} \\ &=& \displaystyle \mathop{\rm argmin}\{\frac{2}{1}, \frac{2}{2}\} = \displaystyle \mathop{\rm argmin}\{2, 1\} = 2 \end{array}$$

- Means: "select second basic variable to exit the basis", i.e. x_4
- Select new value $\frac{\bar{b}_l}{\bar{a}_{lh}}$ for x_h (recall h=1 corrresponds to x_1):

$$\frac{\overline{b}_l}{\overline{a}_{lh}} = \frac{\overline{b}_2}{\overline{a}_{21}} = \frac{2}{2} = 1$$

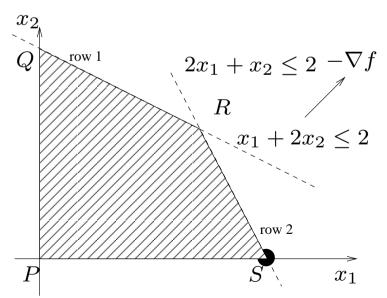
• x_1 enters, x_4 exits (apply swap (1,4) to β)

Example, itn 2: start

• Start of new iteration: basis is $\beta = \{1, 3\}$

$$B = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \quad ; \quad B^{-1} = \begin{pmatrix} 0 & \frac{1}{2} \\ 1 & -\frac{1}{2} \end{pmatrix}$$

• $x_B = (x_1, x_3) = B^{-1}b = (1, 1)$, thus current bfs is (1, 0, 1, 0) = S



Example, itn 2: entering var

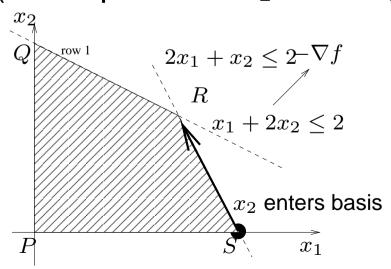
• Compute dictionary: $\bar{b} = B^{-1}b = (1,1)^{\mathsf{T}}$,

$$\bar{A} = B^{-1}N = \begin{pmatrix} 0 & \frac{1}{2} \\ 1 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

Compute reduced costs:

$$(\bar{c}_2, \bar{c}_4) = (-1, 0) - (-1, 0)\bar{A} = (-1/2, 1/2)$$

• Pick h = 1 (corresponds to x_2 entering the basis)



Example, itn 2: exiting var

• Compute l and new value for x_2 :

$$\begin{array}{lcl} l & = & \mathop{\rm argmin}\{\frac{\overline{b}_1}{\overline{a}_{11}}, \frac{\overline{b}_2}{\overline{a}_{21}}\} = \mathop{\rm argmin}\{\frac{1}{1/2}, \frac{1}{3/2}\} = \\ & = & \mathop{\rm argmin}\{2, 2/3\} = 2 \end{array}$$

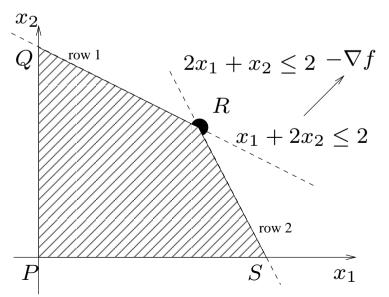
- l=2 corresponds to second basic variable x_3
- New value for x_2 entering basis: $\frac{2}{3}$
- x_2 enters, x_3 exits (apply swap (2,3) to β)

Example, itn 3: start

• Start of new iteration: basis is $\beta = \{1, 2\}$

$$B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \quad ; \quad B^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$

• $x_B = (x_1, x_2) = B^{-1}b = (\frac{2}{3}, \frac{2}{3})$, thus current bfs is $(\frac{2}{3}, \frac{2}{3}, 0, 0) = R$



Example, itn 3: termination

• Compute dictionary: $\overline{b} = B^{-1}b = (2/3, 2/3)^{\mathsf{T}}$,

$$\bar{A} = B^{-1}N = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$

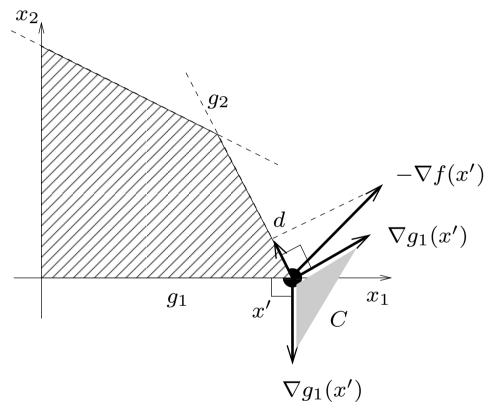
Compute reduced costs:

$$(\bar{c}_3, \bar{c}_4) = (0, 0) - (-1, -1)\bar{A} = (1/3, 1/3)$$

- No negative reduced cost: algorithm terminates
- ullet Optimal basis: $\{1,2\}$
- Optimal solution: $R = (\frac{2}{3}, \frac{2}{3})$
- Optimal objective function value $f(R) = -\frac{4}{3}$
- Permutation to apply to initial basis $\{3,4\}$: (1,4)(2,3)

Optimality Conditions I

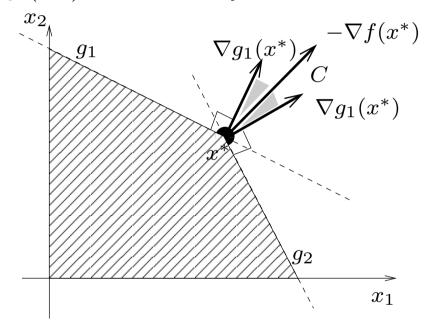
• If we can project improving direction $-\nabla f(x')$ on an active constraint g_2 and obtain a feasible direction d, point x' is not optimal



■ Implies $-\nabla f(x') \notin C$ (cone generated by active constraint gradients)

Optimality Conditions II

● Geometric intuition: situation as above does not happen when $-\nabla f(x^*) \in C$, x^* optimum



• Projection of $-\nabla f(x^*)$ on active constraints is never a feasible direction

Optimality Conditions III

- If:
 - 1. x^* is a local minimum of problem $P \equiv \min\{f(x) \mid g(x) \leq 0\},\$
 - 2. I is the index set of the active constraints at x^* , i.e. $\forall i \in I \ (g_i(x^*) = 0)$
 - 3. $\nabla g_I(x^*) = {\nabla g_i(x^*) \mid i \in I}$ is a linearly independent set of vectors
- then $-\nabla f(x^*)$ is a conic combination of $\nabla g_I(x^*)$, i.e. $\exists \lambda \in \mathbb{R}^{|I|}$ such that

$$\nabla f(x^*) + \sum_{i \in I} \lambda_i \nabla g_i(x^*) = 0$$

$$\forall i \in I \ \lambda_i > 0$$

Karush-Kuhn-Tucker Conditions

Define

$$L(x,\lambda) = f(x^*) + \sum_{i=1}^{m} \lambda_i g_i(x^*)$$

as the Lagrangian of problem P

• KKT: If x^* is a local minimum of problem P and $\nabla g(x^*)$ is a linearly independent set of vectors, $\exists \lambda \in \mathbb{R}^m$ s.t.

$$\nabla_{x^*} L(x, \lambda) = 0$$

$$\forall i \le m \quad (\lambda_i g_i(x^*) = 0)$$

$$\forall i \le m \quad (\lambda_i \ge 0)$$

Weak duality

- Let x^* be the global optimum of P
- Theorem: $\forall \lambda \geq 0$ $\bar{L}(\lambda) \leq f(x^*)$
- Proof: since $\lambda \geq 0$, if $x \in F(P)$ then $\lambda_i g_i(x) \leq 0$, hence $L(x,\lambda) \leq f(x)$; result follows as we are taking the minimum over all $x \in F(P)$
- **●** Important point: $\bar{L}(\lambda)$ is a lower bound for P for all $\lambda \geq 0$
- The problem of finding the tightest Lagrangian lower bound

$$\max_{\lambda \ge 0} \min_{x \in F(P)} L(x, \lambda)$$

is the Lagrangian dual of problem P

Dual of an LP I

- Consider LP P in form: $\min\{c^{\mathsf{T}}x \mid Ax \geq b \land x \geq 0\}$
- $L(x,s,y)=c^{\mathsf{T}}x-s^{\mathsf{T}}x+y^{\mathsf{T}}(b-Ax)$ where $s\in\mathbb{R}^n$, $y\in\mathbb{R}^m$
- Lagrangian dual:

$$\max_{s,y\geq 0} \min_{x\in F(P)} (yb + (c^{\mathsf{T}} - s - yA)x)$$

KKT: for a point x to be optimal,

$$c^{\mathsf{T}} - s - yA = 0$$
 (KKT1)
 $\forall j \leq n \ (s_j x_j = 0), \ \forall i \leq m \ (y_i (b_i - A_i x) = 0)$ (KKT2)
 $s, y \geq 0$ (KKT3)

Consider Lagrangian dual s.t. (KKT1), (KKT3):

Dual of an LP II

Obtain:

Interpret s as slack variables, get dual of LP:

Strong Duality

- Assume x optimum, KKT conditions hold
- Recall (KKT2) $\forall j \leq n(s_i x_i = 0), \forall i \leq m (y_i (b_i A_i x) = 0)$
- Get $y(b Ax) = sx \Rightarrow yb = (yA + s)x$
- By (KKT1) $yA + s = c^{\mathsf{T}}$
- Obtain $yb = c^{\mathsf{T}}x$
- Theorem: if x is optimum of a convex problem, primal and dual objective functions attain the same values at x

The dual of the Diet Problem

- Recall diet problem: select minimum-cost diet of n foods providing m nutrients
- Suppose firm wishes to set the prices $y \ge 0$ for m nutrient pills
- To be competitive with normal foods, the equivalent in pills of a food $j \le n$ must cost less than the cost of the food c_j
- Objective: $\max \sum_{i \le m} b_i y_i$
- Constraints: $\forall j \leq n \sum_{i \leq m} a_{ij} y_i \leq c_j$
- Economic interpretation: at optimum, cost of pills = cost of diet

Example: Dual formulation

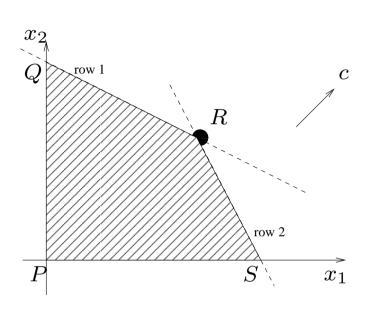
Primal problem P and canonical form:

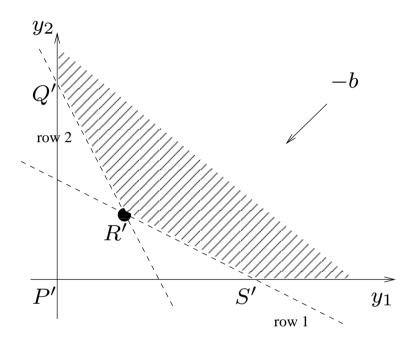
Dual problem D and reformulation:

$$\begin{array}{ccc}
-\max_{y_1,y_2} & -2y_1 - 2y_2 \\
\text{s.t.} & -y_1 - 2y_2 \le -1 \\
& -2y_1 - y_2 \le -1 \\
& y \ge 0
\end{array}
\right\} \Rightarrow \begin{array}{ccc}
\min_{y_1,y_2} & 2y_1 + 2y_2 \\
\text{s.t.} & y_1 + 2y_2 \ge 1 \\
& 2y_1 + y_2 \ge 1 \\
& y \ge 0
\end{array}\right\}$$

Primal and Dual

Graphical representation





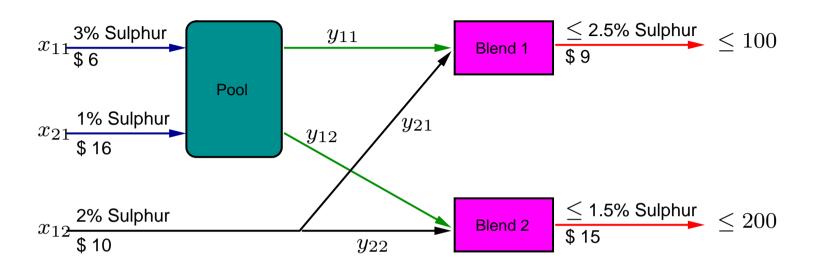
•
$$R^{\mathsf{T}} = (\frac{2}{3}, \frac{2}{3}), (R')^{\mathsf{T}} = (\frac{1}{3}, \frac{1}{3})$$

- By strong duality, $c^{\mathsf{T}}R = (R')^{\mathsf{T}}b$
- $c^{\mathsf{T}}R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} = \frac{1}{3}2 + \frac{1}{3}2 = (R')^{\mathsf{T}}b$

Application: SLP

- SLP: Successive Linear Programming
- Heuristic for solving bilinear programming problems
- **▶** Formulation includes bilinear terms x_iy_j where $i \in I, j \in J$
- **▶** Fact: fix x_i , $i \in I$, get LP₁; fix y_j , $j \in J$, get LP₂
- Algorithm: solve LP₁, get values for y, update and solve LP₂, get values for x, update and solve LP₁, and so on
- Iterate until no more improvement

Haverly's pooling problem



$$\begin{cases} & \min_{x,y,p} & 6x_{11} + 16x_{21} + 10x_{12} - \\ & -9(y_{11} + y_{21}) - 15(y_{12} + y_{22}) \end{cases}$$
 s.t.
$$x_{11} + x_{21} - y_{11} - y_{12} = 0 \text{ linear}$$

$$x_{12} - y_{21} - y_{22} = 0 \text{ linear}$$

$$y_{11} + y_{21} \le 100 \text{ linear}$$

$$y_{12} + y_{22} \le 200 \text{ linear}$$

$$3x_{11} + x_{21} - p(y_{11} + y_{12}) = 0$$

$$py_{11} + 2y_{21} \le 2.5(y_{11} + y_{21})$$

$$py_{12} + 2y_{22} \le 1.5(y_{12} + y_{22})$$