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Definitions

Mathematical programming formulation:
min, f(x) } P o

A point z* Is feasible In P if g(z*) < 0;
F(P) = set of feasible points of P

A feasible z* is a local minimum if 3B (x*, ¢) S.1.
Ve € F'(P)N B(x*,¢) we have f(z*) < f(x)

A feasible x* Is a global minimum If Vx € F'(P) we have

f(z*) < f(z)

Thm.: if f and F'(P) convex, any local min. is also global

If g;(z*) = 0 for some 1, g; is active at * o
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Canonical form

COLE
POLYTECHNIQUE

- N

® P Is a linear programming problem (LP) If f : R — R,
g : R" — R™ are linear forms

® LP In canonical form:

min, c'x )
st. Az <b |[C] (2)
x>0 )

# Can reformulate inequalities to equations by adding a
slack variable x,1:

n

n
Zajiljj <b = Zajxj+xn+1:b N Tpt1 >0

o |
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Standard form

- N

# LP in standard form: all inequalities transformed to

eguations
min, (¢)'z )
st. Alz=10b ;|S] (3)
x>0 )
® where z = (z1,...,%n, Tntt, - Tntm),
A= (A1), d =(c0,...,0)
N——
m

# Standard form useful because linear systems of
equations are computationally easier to deal with than
systems of inequalities

# Used in simplex algorithm

|
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Diet problem |
-

Consider set M of m nutrients (e.g. sugars, fats,
carbohydrates, proteins, vitamins, ...)

Consider set N of n types of food (e.g. pasta, steak,
potatoes, salad, ham, fruit, ...)

A diet is healthy if it has at least b; units of nutrient: € M
Food j € N contains a;; units of nutrient ¢ € M

A unit of food j € N costs ¢;
Find a healthy diet of minimum cost

|
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Diet problem Il
-

Parameters: m x n matrix A = (a;;), b = (b1,...,bm),
c=(c1,...,Cn)

Decision variables: x; = quantity of food j in the diet

CjLy
1

Objective function: min
xr
J

n

n
Constraints: Vi € M ) a;;x; > b;
j=1

Limits on variables: Vj € N z; > 0
Canonical form: min{c'z | — Az < —b}

Standard form: add slack variables y; = surplus
quantity of i-th nutrient, get min{c'z | — Az + I,y = —b}J
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Geometry of LP

-

® A polyhedron IS the intersection of a finite number of
closed halfspaces. A bounded, non-empty polyhedron

IS a polytope
2 Canonical feas. polyhedron. F(C) =
{reR"| Az <b A z >0}
Qprrow 1 2y 4 < 2 L
R A( )’bT(2a2)
N 2 1

N

Standard feas. polyhedron. F(S) =
w2 {(z,y) € R"™™ | Az + I,y

H S 1 b A (xay) Z O}

® P=(0,0,22),Q=(0,1,0,1),R=(2,2,0,0),S = (1,0,1,0)

# Each vertex corresponds to an intersection of at least n
L hyperplanes = > n coordinates are zero J
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Basic feasible solutions

-

Consider polyhedron in “equation form”
K={xzeR"| Ax =bAx >0}. Aisn x m of rank m

(N.B. n hereis like n + m in last slide!)

A subset of m linearly independent columns of A Is a
basis of A

If 5 1s the set of column indices of a basis of A,
variables r; are basic for ; € 3 and nonbasic for ¢ ¢

Partition A In a square m x m nonsingular matrix B
(columns indexed by () and an (n — m) x m matrix N

Write A = (B|N), xp € R™ basics, xy € R"™" nonbasics

Given a basis (B|N) of A, the vector x = (zp,zy) IS @
basic feasible solution (bfs) of K with respect to the given
basisif zp >0and zy =0 J
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Fundamental Theorem of LP

-

Given a polyhedron K in “equation form”, any bfs of K
IS a vertex of K and vice versa

For any ¢ € R", there is always one bfs that solves the
LP min{c'z |z € K}

Important correspondence between bfs’s and vertices
suggests geometric solution method based on exploring
vertices of K

Proofs not difficult but long

|

Lecture 27/2/2006 — p. 10/38



Simplex Algorithm: Summary
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ECOLE
POLYTECHNIQUE

# Solves LPs in form milI% c'v where K = {Ax =bA x>0}
TE

o Starts from any vertex «

#® Moves to an adjacent improving vertex z’
(i.e. ' is s.t. Jedge {z,2'} in K and c'2’ < c'x)

# Two bfs’s with basics indexed by 3, 3’ correspond to
adjacent vertices if [N G| =m — 1

# Stops when no such 2’ exists

# Detects unboundedness and prevents cycling =
convergence

#® [ convex = global optimality follows from local
optimality at termination

o |
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Simplex Algorithm |

Let x = (x1,...,x,) be the current bfs, write Ax = b as
Bxg+ Nxny =0

EXxpress basics in terms of nonbasics:

rp = B~'b — B~!Nx (this system is a dictionary)

EXxpress objective function in terms of nonbasics:

cle = CEZEB + ey = cp(B~ W — B INzy) + CNTN =
= clx —CBB 1b—|—cNmN

(cl; = ¢l — ¢ BN are the reduced costs)

Select an improving direction: pick a nonbasic variable
xj, With negative reduced cost; increasing its value will
decrease the objective function value

If no such h exists, no improving direction, local
minimum =- global minimum = termination

-

|
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Simplex Algorithm Ii
f.o lteration start: z;, Is out of basis = its value Is zero T

# We want to increase its value to strictly positive to
decrease objective function value

#® ...corresponds to “moving along an edge”
# We stop when we reach another (improving) vertex
#® ...corresponds to setting a basic variable x; to zero

2 g
Q P:(o,q,2,2) Q. row 1
R optimum R: optimum
00 /// 7 //?\
// row 2 /// =(1,0,1,0)
increase x1 S x1 P x1 enters, x4 exits 7. S x1

L.o z;, enters the basis, z; exits the basis J
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Simplex Algorithm Il

# How do we determine [ and new positive value for x;?

® Recall dictionary x5 = B~'b — B~ ' Nzy,
write b= B~'vand A = (a;;) = B"'N

® For i e 3 (basics), x; = b; — > e Qi

» Consider nonbasic index £ of variable entering basis (all
the other nonbasics stay at 0), get «; = b; — a;pxp, Vi € 3

# Increasing z; may make z; < 0 (infeasible), to prevent
this enforce Vi € 3 (b; — a;pxp, > 0)

a’?:h fgrz' c g and a;, > 0: E
| = argmin{— | i € B Aa;, > 0}, fbhz_—l
a;p a5

# Require z;, <

o Ifall a;;, <0, z;, can increase without limits: problem
L unbounded J
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Simplex Algorithm IV

Suppose > n hyperplanes cross at vtx R (degenerate)

May get improving direction s.t. adjacent vertex is still R

Objective function value does not change

Seq. of improving dirs. may fail to move away from R

= SIm

Use B
variab

nlex algorithm cycles indefinitely
and’s rule: among candidate entering / exiting

es, choose that with least index

)
“.3x1 +3x2 < 4

Q 2x1 +x0 <2

N
<
N
N
N
N
N
N

N

N
N
N
N
N

A\
: I
N
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Example: Formulation
f.o Consider problem: j

max X1+ X9
T1,T2

Sl 214219 <2 \
201 + 19 < 2
x>0

® Standard form:

—min, —I1— I9
St. 21+ 229+ x3 =2
2r1 +x2 x4 =2
x>0 )

L.o Obj. fun.: max f = —min — f, simply solve for min f J
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Example, ith 1: start

# Obijective function vector ¢' = (—1,—1,0,0)
® Constraints in matrix form:

(1)

Cn[E]

#® Choose obvious starting basis with

1 0O 1 2
(1) (1)

L.o Corresponds to point P = (0,0, 2,2) J
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Example, itn 1: dictionary
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POLYTECHNIQUE

# Start the simplex algorithm with basis in P

L2

2r1422<2 VS

"R /

o x1 4 229 < 2

4/%
0000
7

P S \\\ ]

® Compute dictionary g = B~ '6— B~ 'Nay = b — Axy,
where

- =(3) =2 1) -

222222222222222222222222



Example, ith 1: entering var

# Compute reduced costs ¢y = ¢y — cpA: -

(51,52) = (—1, —1) — (0,0)A = (—1, —1)

# All nonbasic variables {z, 22} have negative reduced
cost, can choose whichever to enter the basis

# Bland’s rule: choose entering nonbasic with least index
in {1, 29}, i.e. pick h = 1 (move along edge PS)

Z2

P z; entersthebasis S = J
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Example, itn 1: exiting var

Select exiting basic index [ T
bi b1 bo
| = argmln{— i€ BAa; >0} = argmln{ }
Aih all a21
2 2 :
= argmln{1 5t = argmin{2,1} = 2

Means: “select second basic variable to exit the basis”,
l.e. T4

Select new value ;Tlh for x;, (recall h = 1 corrresponds to
1) ) )

b 2

aj, a1 2
r1 enters, x4 exits (apply swap (1,4) to 3) J
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Example, ith 2: start
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# Start of new iteration: basisis g = {1,3}

1
s (11 g [0 3
2 0 ’ 1 —3

® xp = (z1,73) = B7'b = (1,1), thus current bfs is

(1,0,1,0) =S
\ZCQ
Q row 2x1 22 <2 -V
"R
//7/ //7/‘\\@\1\%\2@ <2
/// /// row 2
L P \ X1

|
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Example, ith 2: entering var

» Compute dictionary: b= B~16 = (1,1)",

_ . 0o 1 2 0
2

# Compute reduced costs:

(627 64) — (_17 O) o (_17 O)"Zl — (_1/27 1/2)
#® Pick h = 1 (corresponds to zo entering the basis)

*2
2:131 + a0 <2-Vf

R
\$1+2:172§2

///;

/ 7

xo enters basis

1

DO DO —

DO —
DO =

-

|
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Example, itn 2: exiting var

Compute [ and new value for xs:

by by .11
| = argmln{&ll, &21} = argmln{l/z, 32

= argmin{2,2/3} = 2

| =

| = 2 corresponds to second basic variable z3
New value for z5 entering basis: 2

r9 enters, x3 exits (apply swap (2, 3) to 3)

|
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Example, itn 3: start
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# Start of new iteration: basisis g = {1, 2}

1 2
B — L2 . Bl = -3 3
2 1 ’ s —

W

® xp = (x1,72) = B~'b= (%, %), thus current bfs is
(%,2,0,0) = R
%)
é row 1 211 22 <2 —Vf
:131 + 2x9 < 2
//////// /

e

Lecture
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Example, itn 3: termination

-

Compute dictionary: b = B~'b = (2/3, 2/3)T,

1 2 1
A=B'N=| 3 3 POY (3
_ 0 1 % _

Compute reduced costs:

(637 (_:4) — (Ov O) o (_17 _1)A — (1/37 1/3)
No negative reduced cost: algorithm terminates
Optimal basis: {1, 2}

wIno

)

Wl

wlino
W=

Optimal solution: R = (2, 2)

Optimal objective function value f(R) = —3
Permutation to apply to initial basis {3,4}: (1,4)(2, 3) J
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Optimality Conditions |

~» Ifwe can project improving direction —V f(z') onan |
active constraint g, and obtain a feasible direction d,
point z’ is not optimal

2

%y %x d Vi (z')
7 7®

\\ 92

V(')

e
g1 , X1
X C

Vagi(x')

® Implies —V f(2') € C (cone generated by active constraint

\_ gradients)

|
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=

# Geometric intuition: situation as above does not happen

Optimality Conditions |

-

when —V f(z*) € C, «* optimum

Z2

7

7
O
7
0

A
.
Ay
A
.

/\\
4
4
é

1

# Projection of —V f(2*) on active constraints IS never a

feasible direction

o

|
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Optimality Conditions Il

1. z* is a local minimum of problem
P = min{f(x) | g(x) < 0},

2. I 1s the index set of the active constraints at x*,
l.e. Vi e I (gi(z*) =0)

3. Vgr(z*) ={Vg;(z*) | i € I} Is a linearly independent
set of vectors

# then —V f(z*) is a conic combination of Vg;(z*), I.e.
3\ € Rl such that
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Karush-Kuhn-Tucker Conditions
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® Define
L@, A) = f(@*) + D Aigi(a
1=1

as the Lagrangian of problem P

o KKT: If z* is a local minimum of problem P and Vg(z*)
IS a linearly independent set of vectors, 3\ € R™ s.t.

Ve L(z,A\) = 0
Vi <m ( zgz( ) O)
\4) S m ()\z' O)

1V

o |

Lecture 27/2/2006 — p. 29/38



Weak duality

Let L(\) = xén;&)) L(x,\)

Let =* be the global optimum of P
Theorem: VA >0 L()\) < f(z*)

Proof: since A\ > 0, if x € F(P) then \;g;(x) < 0, hence
L(x,\) < f(z); result follows as we are taking the
minimum over all z € F'(P)

Important point: L()\) is a lower bound for P for all A > 0

The problem of finding the tightest Lagrangian lower
bound

max min L(xz,\)
A>0 zeF(P)

IS the Lagrangian dual of problem P J
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Dual of an LP |

-

® L(x,s,y)=c'ov—s'z+y'(b— Ax) where s € R"?, y ¢ R™

# Consider LP P in form: min{c'z | Az > b Az > 0}

# Lagrangian dual:

in (yb+ (c' —s—yA
&rr;%ménﬁ}gj)(y (¢’ —s—yA)z)

# KKT: for a point = to be optimal,

T

¢ —s—yA 0 (KKT1)
Vi <n(sjz; =0), Vi <m (y;(b; — Aiz) 0) (KKT2)

L’ Consider Lagrangian dual s.t. (KKT1), (KKT3): J
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Dual of an LP I
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o Obtain:
.
max yb
S,y
st. yA+s = ¢' ¢
s,y > 0 )

# Interpret s as slack variables, get dual of LP:

max  yb

y

st. y4 < (I D]
y 2
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Strong Duality

Assume z optimum, KKT conditions hold

Recall (KKT2) V5 < n(s;z; =0), Vi <m (y;(b; — Ajx) = 0)
Gety(b— Ax) = sz = yb = (yA + s)x

By (KKT1) yA+s=c'

Obtain yb = c'x

Theorem: if x Is optimum of a convex problem, primal
and dual objective functions attain the same values at «

© o o o o o

o |
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The dual of the Diet Problem
-

Recall diet problem: select minimum-cost diet of n
foods providing m nutrients

Suppose firm wishes to set the prices y > 0 for m
nutrient pills

To be competitive with normal foods, the equivalent in
pills of a food ; < n must cost less than the cost of the
food ¢;

Objective: max > b;y;
1<m
Constraints: Vj <n > a;;y; < ¢;

1<m

Economic interpretation:
at optimum, cost of pills = cost of diet J
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=

\
max Ii1 -+ X9
T1,L2

S.t. 1+ 219 <2 \ =
201 + 19 < 2
x>0

/

Example: Dual formulation

# Primal problem P and canonical form:

—min —I1 — X2
1,2

# Dual problem D and reformulation:

— INnax —2y1 — 2y2 \
Y1,Y2

St. —y; —2ys < —1
—2y1 —y2 < —1

o y >0 )

0

St. —x1 —2x9 > —2
—2x1 — L9 > —2
x>0

min 2y1 + 2y9
Y1,Y2
= St. y1 +2y2 > 1
21 +y2 2> 1
y =0

/

-

|
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Primal and Dual

",' G
e,
G
ECOLE
POLYTECHNIQUE

# Graphical representation

» By strong duality, c"R = (R')"b

® (R=24+2=-4_-1o1 1o (R)Tp

666666666666666666666666



Application: SLP

#® SLP: Successive Linear Programming
# Heuristic for solving bilinear programming problems

o Formulation includes bilinear terms z;y; where
iel,jeld
o Fact: fix x;,72 € I, get LPq; fix y;, 57 € J, get LP,

# Algorithm: solve LPq, get values for y, update and solve
LP,, get values for x, update and solve LP;, and so on

# |terate until no more improvement

o |
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1

2

Haverly’s pooling problem

< 2.5% Sulphur

. 3% Sulphur
_l_$ 6

_ 1% Sulphur
" $16

2% Sulphur
12

Y21

“$10

S.t.

6x11 + 16221 + 102190 —

—9(y11 + y21) — 15(y12 + y22)
11 + x21 — Y11 — y12 = O linear
x12 — Y21 — Y22 = Olinear
y11 + y21 < 100 linear
y12 + y22 < 200 linear
3x11 + 221 — p(y11 +y12) =0
py11 + 2y21 < 2.5(y11 + y21)
py12 + 2y22 < 1.5(y12 + y22)

< 1.5% Sulphur
Y22 > $15

=

< 100

< 200

|
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