Changing the rules of business™

ILOG CPLEX 10.0

User’'s Manual

January 2006

COPYRIGHT NOTICE

Copyright © 1987-2006, by ILOG S.A. and ILOG, Inc. All rights reserved.

General Use Restrictions

This document and the software described in this document are the property of ILOG and
are protected as ILOG trade secrets. They are furnished under alicense or nondisclosure
agreement, and may be used or copied only within the terms of such license or nondisclosure
agreement.

No part of thiswork may be reproduced or disseminated in any form or by any means,
without the prior written permission of ILOG S.A, or ILOG, Inc.
Trademarks

ILOG, the ILOG design, CPLEX, and all other logos and product and service names of
ILOG are registered trademarks or trademarks of ILOG in France, the U.S. and/or other
countries.

All other company and product names are trademarks or registered trademarks of their
respective holders.

Javaand all Java-based marks are either trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Microsoft and Windows are either trademarks or registered trademarks of Microsoft
Corporation in the United States and other countries.

document version 10.0

C N T E N T S
Table of Contents

Preface Meet ILOG CPLEX. e 23
Part | Languages and APIs 37
Chapter 1 ILOG Concert Technology forC++ Users., 39
Architecture of a CPLEX C++ Application. 40

LICBNSES . ot 40

Compiling and LiNKiNgo e 41

Creating a C++ Application with Concert Technology 41

Modeling an Optimization Problem with Concert Technology 41

MOdeliNng ClasSes.ot 42

Creating the Environment: IOENV. 42

Defining Variables and Expressions: lloNumVar 42

Declaring the Objective: lloObjective 43

Adding Constraints: lloConstraintand lloRange, 44

Formulating a Problem: lloModel 44

Data Management ClIasSesottt e e 45

Solving the Model 46

Extracting a Model o 47

Solving a Model e 48

Choosing an OptimIzer. e 49

ILOG CPLEX 10.0 — UsSER’'S MANUAL 3

Chapter 2

Controlling the Optimizers e 51

Accessing Solution Information. e 53
ACCESSING SOIULION StAtUS oo e 53
Querying SolUtioN Datat e 54
Accessing Basis Information 55
Performing Sensitivity ANalySis 55
Analyzing Infeasible Problems. 55
Solution QUAIILYot 56
Modifying a Model 57
Deleting and Removing Modeling Objects. 57
Changing Variable Type. e 58
Handling Errors 59
Example: Optimizing the Diet Problem in C++ i 61
Problem Representation 61

Creating a Model Row by ROW. e 61

Creating a Model Column by Column 62

Creating Multi-Dimensional Arrays with IOArray 63
Application DeSCriptioN. o 63

Using Arrays for INnput/OULPUL.ot e 63
Solving the Model with IIoCpIeX. 65
Complete Program.o e 66
ILOG Concert Technology forJavaUsers............, 67
Architecture of a CPLEX Java Application 68
LGNS . . . oo 69
Compiling and LiNKing 69
Creating a Java Application with Concert Technology 69
Modeling an Optimization Problem with Concert Technology 70
Using lloModeler 72

Modeling Variables. 72

BUIlding EXPreSSIONS . . . o . oottt 72

Ranged CoNSIraintsot e 73

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Chapter 3

Objective FUNCLIONSo e e e 74

The Active Model 74
Building the Model. 75
Solving the Model 77
Accessing Solution Information. 78
Choosing an Optimizer e 79
Solving a Single Continous Model e 80
Solving Subsequent Continuous RelaxationsinaMIP 81
Controlling ILOG CPLEX Optimizersot e 82
ParameterS. . . 82
Priority Orders and Branching Directions. i e 84
More Solution Information 84
Writing Solution Files oo e 84
Dual Solution Information. 85
Basis INformation 85
Infeasible Solution Information. e 86
Solution Qualityo e 86
Advanced Modeling with IOLPMatrix. e 87
Modeling by Column 88
Example: Optimizing the Diet ProbleminJdava.......... 89
Modifying the Model 90
ILOG Concert Technology for NETUSers........... ..., 93
DS I . 94

What IS KNOWN? . . .o 95

What are the UnKnoWNS? e 95

What are the CoNStraintS? e 95

What is the objective? 95
MOl . .o 96
BUild By ROWS . ..o 97
Build by ColUMNS 99
SOOIV L e 100

ILOG CPLEX 10.0 — UsSER’'S MANUAL 5

Chapter 4

Good Programming PractiCeso e 101

Example: Optimizing the Diet Problem in CENET i, 103
ILOG CPLEX Callable Library e 105
Architecture of the ILOG CPLEX Callable Library 106
LICBNSES . . oot 107
Compiling and Linkingo e 107
Using the Callable Library in an Application. 107
Initialize the ILOG CPLEX ENVIrONMENt. ot i e e 107
Instantiate the Problem ODbject. 108
Put Data in the Problem Object 108
Optimize the Problem. 109
Change the Problem Object. e 109
Destroy the Problem ODbject. 110
Release the ILOG CPLEX Environment it 110
ILOG CPLEX Programming Practices 110
Variable Names and Calling Conventionsottt e e e 110
Data TYPES. . . ottt 112
Ownership of Problem Data. e 112
Problem Size and Memory Allocation ISSUES. i 112
Status and Return Values 113
Symbolic CONSLANESot 113
Parameter ROULINESo 114
NUIL ATGUMENES. . . e e e e e 114
Row and Column References e 114
Character StrNGSot 115
Checking Problem Data. 115

Using the Data Checking Parameter e 115

Using Diagnostic Routines for Debuggingot 116
Callbackso 116
Portability . . . o 117

CPXPUBLIC . . . 117

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Part Il

Chapter 5

FUNCLION POINtErS e e e e e 117

CPXCHARptr, CPXCCHARptr, and CPXVOIDPtr 117
File POINters . . . 117
String FUNCHIONSo 118
FORTRAN INterface.o e e e s 118
CaSE-SeNSILIVILY . . . ot 118
UNAEISCOTE. . . .ttt it e e e e et e e e e e 118
Six-Character ldentifiers. 118
Call by Reference. 119
POIN IS . . 119
SHINGS . . .ttt e 119
CHt INterfaCe . . . o 119
Managing Parameters from the Callable Library 119
Example: Optimizing the Diet Problem in the Callable Library 121
Problem Representation 121
Creating a Model Row by ROW. 122
Creating a Model Column by Column 122
Program DesCription e 123
Solving the Model with CPXIpopt. e 123
Complete Program. 124
Programming Considerations. 125
Developing CPLEX Applications. e 127
Tips for Successful Application Development 127
Prototype the Model. 128
Identify ROULINES t0 USE.ot 128
TestInteractively 128
Assemble Data Efficiently e 128
TestData 129
Choose an OptiMIZEr ot 129
Program with a View toward Maintenance and Modifications 130

ILOG CPLEX 10.0 — UsSER’'S MANUAL 7

Chapter 6

CommeNnt YoUr COOEt e 130

Write Readable Code. 130
Avoid Side-Effects 131
Don't Change Argument Values. e 131
Declare the Type of Return Values i 131
Manage the Flow of Your Code e 131
Localize Variables e 131
Name Your CONStantsot e e 131
Choose Clarity First, Efficiency Later. e 132
Debug Effectivelyo 132
Test Correctness, Test Performancet e 132
Using the Interactive Optimizer for Debugging. 132
Eliminating Common Programming Errors. i 134
Check Your Include Files. 135
Clean House and Try AQain. ottt e e e e 135
Read YOoUr MESSAQES. . . v oottt et e e e 135
Check Return Valueso 135
Beware of Numbering Conventions e 135
Make Local Variables Temporarily Global 136
Solve the Problem You Intended e 136
Special Considerations for Fortran. 136
Tl US . 136
Managing Input and OUutput. e 137
Understanding File Formats 138
Working with LP Files. 138
Variable Orderand LP Files e 138
Working with MPS Fileso 139
Free Rows in MPS Files. 139
Ranged Rows in MPS Files 139
Extra Rim Vectors N MPS Files e 139
Naming Conventions in MPS Files. e 140

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Chapter 7

Part Il

Chapter 8

Error Checking in MPS Files e e 140

Saving Modified MPS Files 140
Converting File FOrmMats. e 140
Using Concert XML EXtENSIONSot e 141
Using Concert cSVReader 142
Managing Log Files 143
Creating, Renaming, Relocating Log Files i 143
Closing Log Fileso 143
Controlling Message Channels. 144
Parameter for Output Channels. 144
Callable Library Routines for Message Channels 145
Example: Callable Library Message Channels 146
Concert Technology Message Channels. e 148
Licensing an Application. 149
Types of ILM RUNtime LiCeNSESo 150
File-Based RTNODE, RTSTOKEN or TOKEN Keysot 150
Memory-Based RUNTIME Keys e 150
Routines and Methods Used for Licensing 150
EXamMples . . e 151
CPXputenv Routine for Cand C++ USEISt e e 151
The putenv Method for Java USers e 152
The Putenv Method for NET USErS.o it 152
CPXRegisterLicense RoutineforCand C++ USers.ttt i 152
The registerLicense Method for Java USers 153
The RegisterLicense Method for NET USers 153
SUMIMAIY . . oottt e e e e e e e e e e e e 154
Continuous Optimization. 155
Solving LPs: Simplex Optimizers e 157
Choosing an Optimizer for Your LP Problem 158

ILOG CPLEX 10.0 — UsSER’'S MANUAL 9

Automatic Selection of Optimizer. 159

Dual Simplex Optimizer 159
Primal Simplex Optimizer. 160
Network OptimIzZero e 160
Barrier Optimizer e 160
SIftiING OPtIMIZEr. . . . 160
Concurrent OPLIMIZEr ot e e e 161
Parameter Settings and Optimizer Choice. e 161
Tuning LP Performance. 161
PrEPrOCESSING . . oottt 162
Dual Formulation in Presolve 162
Dependency Checking in Presolve 162
Final Factor after Presolve 163
Memory Use and PresolVe 163
Controlling Passes in PreproCessingo vt it 163
Aggregator Fill in PreproCessingottt 164
Turning Off PreproCessing oottt e 164
Starting from an Advanced Basis. 164
Simplex Parameters. e 165
Pricing Algorithm and Gradient Parameters it 165
SCAlING . . oo 167
Refactoring FreqUENCYot 167
Crash .. 168
Memory Management and Problem Growth 168
Diagnosing Performance Problems 169
Lack Of MeMOTYo 169
Warning MESSAgES.o vttt e 169
Paging Virtual MemoOryo 170
Refactoring Frequency and Memory Requirements. it 170
Preprocessing and Memory Requirementsttt 170
Numeric DIfficulties 170

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Chapter 9

Numerical Emphasis Settings 171

Numerically Sensitive Data 171
Measuring Problem Sensitivity with Basis Condition Number 173
Repeated Singularities 173
Stalling DU t0 DEJENEIACY ottt it et e e e 174
Inability to Stay Feasible e 175
Diagnosing LP Infeasibility 175
Coping with an lll-Conditioned Problem or Handling Unscaled Infeasibilities 176
Interpreting Solution Quality. e 177
Maximum Bound Infeasibility: Identifying Largest Bound Violation 178
Maximum Reduced-Cost Infeasibility 178
Maximum Row Residual. e 178
Maximum Dual Residual 178
Maximum Absolute Values: Detecting lll-Conditioned Problems 179
Finding a Conflict o 179
Repairing Infeasibility: FeasOpt. e 179
Example: Using a Starting Basisinan LP Problem 180
Example lolpeX6.Cpp . . . o oot 180
Example [peX6.C. oo e 180
Solving LPs: Barrier Optimizer e 183
Introducing the Barrier Optimization e 184
Barrier SIMplexX CrOSSOVETo ottt e e e e 185
Differences between Barrier and Simplex Optimizers oo 185
Using the Barrier Optimizer e 186
Special OPtioNSt 187
Controlling CrOSSOVEr . . . ottt et e e 187
Using SOL File Format e e 188
Interpreting the Barrier Log File 188
Preprocessinginthe Log File. 189
Nonzeros in Lower Triangle of AATinthe Log Filecouiiieiieeonn.. 189
Ordering-Algorithm Time inthe Log File 190

ILOG CPLEX 10.0 — USER’'S MANUAL 11

Chapter 10

12

Cholesky Factorinthe Log File e 190

Iteration Progressinthe Log File.o 190
Infeasibility Ratiointhe Log File e 191
Understanding Solution Quality from the Barrier LP Optimizer 191
Tuning Barrier Optimizer Performance i 193
Memory Emphasis: Letting the Optimizer Use Disk for Storage 194
PreprOCESSING . . oot 195
Detecting and Eliminating Dense Columns 196
Choosing an Ordering Algorithm 196
Using a Starting-Point Heuristic. 197
Overcoming Numeric Difficulties e i 197
Numerical Emphasis Settings e 198
Difficulties in the Quality of Solution. 198
Difficulties during Optimization. 200
Difficulties with Unbounded Problems 201
Diagnosing Infeasibility Reported by Barrier Optimizer 202
Solving Network-Flow Problems. 203
Choosing an Optimizer: Network Considerationsc. i . 204
Formulating a Network Problem. 204
Example: Network Optimizer in the Interactive Optimizer................ 205
Understanding the Network Log File s 206
Tuning Performance of the Network Optimizer i 207

Controlling ToleranCeo 207

Selecting a Pricing Algorithm for the Network Optimizer 207

Limiting Iterations in the Network Optimizer. i 207
Solving Problems with the Network Optimizer i, 207
NEtWOrk EXIracCtionottt e e 208
Preprocessing and the Network Optimizer. e 209
Example: Using the Network Optimizer with the Callable Library netexl.c........... 209
Solving Network-Flow Problems as LP Problems 210
Example: Network to LP Transformation netex2.c............... 212

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Chapter 11

Chapter 12

Solving Problems with a Quadratic Objective (QP). 213
ldentifying Convex QPS. 214
ENtering QP S . .. o 215
MatriX VIO, . .o 215
Algebraic Viewo 216
Examples for Entering QPS oottt 216
Reformulating QPS t0 Save MemMOrYot 217
Saving QP Problems 218
Changing Problem Typein QPs e 218
Changing QuadratiC TermsSt e 219
OptiMizZINg QPSS .. 220
Diagnosing QP Infeasibility. 221
Example: Creating a QP, Optimizing, Finding a Solution 222
Example: l0gpeX . PP . « . v e et e e 222
Example: QPeXLjava.ottt 223
EXample: gpeXL.C. . .o oot e 223
Example: Reading a QP from aFile gpex2.c. 224
Solving Problems with Quadratic Constraints (QCP).................... 225
Identifying a Quadratically Constrained Program (QCP). 225
(0] 1=] Y 226
Semi-defiNiteNesS.o 228
Second Order Cone Programming (SOCP).t e e 228
Determining Problem Type 229
Concert Technology and QCP Problem Type e 229
Callable Library and QCP Problem Type.o e 229
Interactive Optimizer and QCP Problem Type. e 229
File Formats and QCP Problem Type 229
Changing Problem Type 235
Changing Quadratic CONStraints i e e 236
Solving with Quadratic ConStraints. e 236
Numeric Difficulties and Quadratic Constraints. 237

ILOG CPLEX 10.0 — USER’'S MANUAL 13

Part IV

Chapter 13

14

Examples: QCP 237

Discrete Optimization 239
Solving Mixed Integer Programming Problems (MIP). 241
Stating a MIP Problem 242
Considering Preliminary ISSUESot ti 243
Entering MIP Problems 243
Displaying MIP Problems. 244
Changing Problem Type in MIPS e 245
Changing Variable Type. o 246
Using the Mixed Integer Optimizer. e 247
Emphasizing Feasibility and Optimality 247
Terminating MIP Optimization 249
Tuning Performance Features of the Mixed Integer Optimizer 250
Branch & CUL 251
How Cutoff Values Are Applied 252
How Tolerance Parameters Are Applied i 252
When Heuristics Are Applied 252
When an Integer Solution Is Found: the Incumbent. 252
Controlling Strategies: Diving and Backtracking 253
Selecting NOUES 254
Selecting Variables. 255
Changing Branching Direction 255
Using Node Fileso 256
ProbINg. . o 256
CULS 257
CliqUe CULS. . .t 257
CoVer CULS . . 257
DISJUNCLIVE CULSot e e e e e 258
FIOW CoVer CULS. . . .o ot e 258
FIow Path CUtS. . . .o 258

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Gomory Fractional CULS e 258

Generalized Upper Bound (GUB) Cover CUtS oot i e i e 258
Implied Bound CULSo 258
Mixed Integer Rounding (MIR) CULS.ttt 258
Adding Cuts and Re-Optimizingt e 259
CoUNtiNg CULS. . . o oot e e 259
Parameters Affecting CULSo e 259
HeUNSHICS . . . o 260
Node HEUFISHICo 261
Relaxation Induced Neighborhood Search (RINS) Heuristic 261
Solution Polishing. o 261
Preprocessing: Presolver and AgQgregator.t 262
Starting from a SolUtioN 264
ISSUING Priority Orders 265
Using the MIP Solution 266
Progress Reports: Interpretingthe Node Log. 268
Troubleshooting MIP Performance Problems. 272
TooMuch Time at Node O i e 273
Trouble Finding More than One Feasible Solution. 274
Large Number of Unhelpful Cutso e 274
Lack of Movementinthe Best Node 274
Time Wasted on Overly Tight Optimality Criteria. e 275
Slightly Infeasible Integer Variables. e 276
Running out of MEMOrY 277
Reset the Tree Memory Parameter e 277
Use Node Files for Storaget 278
Change Algorithms. 280
Difficulty Solving Subproblems: Overcoming Degeneracy.ovvueinnenn.n. 281
Unsatisfactory Subproblem Optimization. e 281
ROOtAIg Parameter. 281
NOdeAIlg Parameter e 282

ILOG CPLEX 10.0 — USER’'S MANUAL 15

Chapter 14

Chapter 15

Chapter 16

16

Example: Optimizing a Basic MIP Problem i 283

Complete Program: ilomipeXL.CppP. . .« ot vttt e e 283
Complete Program: MIPeXL.C. . ..o ottt e 283
Example: Reading a MIP Problem from aFile........ 283
Complete Program: ilomipeX2.CpP . « .« v oottt e e 284
Complete Program: mMiPeX2.C.ottt e e e 284
Using Special Ordered Sets (SOS)ttt 285
What Is a Special Ordered Set (SOS)?. . ..ottt e 285
Example: SOS Type 1 for SizingaWarehouse............ i, 286
Declaring SOS Members 287
Example: Using SOS and Priority. 287
Complete Program: ilomipeX3.CpP . « .« o oottt e 287
Complete Program: mMipex3.C.ottt e 288
Using Semi-Continuous Variables: a Rates Example.................... 289
What Are Semi-Continuous Variables? 290
Describing the Problem. 290
Representing the Problem 291
Building a Model 291
Solving the Problem 292
Ending the Application e 292
Complete Program e 292

Using Piecewise Linear Functions in Optimization: a Transport Example .. 293

Piecewise Linearity in ILOG CPLEX. ot 294
What Is a Piecewise Linear FUNCHON?.o ittt 294
Syntax of Piecewise Linear FUNCLIONS 295
Discontinuous Piecewise Linear FUNCtions i 295
Isolated Points in Piecewise Linear FUNCLIONS.t 297
Using lloPiecewiselinear. 297
Describing the Problem. 298
Variable Shipping CostS.ot 298

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Chapter 17

Chapter 18

Chapter 19

Model with Varying COStS.o e 300

Developing aModel 301
Representing the Data.ttt 301
Adding CONSEIAINTS.t e 301
Checking Convexity and CONCAVILYot e e e i 302
Adding an ObjectiVe. 302
Solving the Problem e 303
Displaying a Solution. e 303
Ending the Application 303
Complete Program: tranSport.CPP . . oo vttt e e e 303
Logical Constraints in Optimization. 305
What Are Logical ConstraintS?. e 306
What Can Be Extracted from a Model with Logical Constraints?................... 306
Logical Constraints inthe C++ AP e 306
Logical Constraints inthe Java APl 307
Logical Constraints inthe NET APl e 307
Which Nonlinear Expressions Can Be Extracted? 308
Logical Constraints for Counting.t 309
Logical Constraints as Binary Variables 309
How Are Logical Constraints Extracted? 309
Using Indicator Constraints.ttt 311
What Is an Indicator CoNnstraint? 311
Example: fiXnet.C e 312
Indicator Constraints in the Interactive Optimizer o, 312
What Are Indicator Variables? 313
Restrictions on Indicator Constraints it 313
Best Practices with Indicator Constraints.c. it 313
Using Logical Constraints: Food Manufacture 2. 315
Describing the Problem. 316
Representing the Data. o 316

ILOG CPLEX 10.0 — USER’'S MANUAL 17

Chapter 20

Chapter 21

18

What IS UnKnOWN? o 317
What Are the CoNnStraintS?.o e 318
What Is the Objective?. 319
Developing the Model e 319
Using Logical CoNStraints. i e 321
Solving the Problem e 321
Ending the Program. 322
Early Tardy Scheduling i 323
Describing the Problem. 324
Understanding the Data File e 324
Reading the Data 325
Creating Variables e 325
Stating Precedence CONStraintS.t e e e 326
Stating Resource CoNnstraints.t e e e e 326
Representing the Piecewise Linear Cost Function............... 326
Transforming the Problem 327
Solving the Problem e 328
Using Column Generation: a Cutting Stock Example.................... 329
What Is Column Generation?ttt 330
Column-Wise Models in Concert Technology. 330
Describing the Problem. 331
Representing the Data. 332
Developing the Model: Building and Modifying 333
Adding Extractable Objects: Both Ways i 333

Using a Template to Add Objects. 333

Using a Method to Add ODJECESttt e 334
Adding ColumnstoaModel. 334
Changing the TypeofaVariable 335
Cut Optimization Model e 335

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Part V

Chapter 22

Chapter 23

Chapter 24

Pattern Generator Model e 336

Changing the Objective FUNCHiON. e 336
Solving the Problem: Using More than One Algorithm 336
Ending the Program. 337
Complete Program e 338
Infeasibility and Unboundedness................. 339
Preprocessing and Feasibility. 341
Managing Unboundednesst e 343
What IS Unboundedness?ot e 344
Avoiding Unboundedness. 344
Diagnosing Unboundedness 345
Diagnosing Infeasibility by Refining Conflicts 347
What Is @ Conflict?. 347
What a Conflict IS NOt 348
How to Invoke the Conflict Refiner. s 349
How a Conflict Differs froman lIS 349
Meet the Conflict Refiner in the Interactive Optimizer 350
A Model forthe Conflict Refiner. 350
Optimizing the Example e 351
Interpreting the Results and Detecting Conflict 351
Displaying a Conflict. 352
Interpreting ConfliCt 352

Deleting a Constraint 353

Understanding a Conflict Report 354

Summing Equality Constraints e e 354

ChangingaBound e 354

Adding @ CONSErainto e 355

Changing Bounds 0N CoOStot 356

Relaxing @ Constraint.ot 356

ILOG CPLEX 10.0 — USER’'S MANUAL 19

Chapter 25

Part VI

Chapter 26

Chapter 27

Chapter 28

20

More about the Conflict Refiner e 357

Using the Conflict Refiner in an Application. i 359
What Belongs in an Application to Refine Conflict. 361
Conflict Application vs Interactive Optimizer it 361

Preferences inthe Conflict Refiner. 362

Groups inthe Conflict Refiner 362
Repairing Infeasibilities with FeasOpt 365
What IS Feas Ot 2. . . o 365
INVOKING FEaSOPL. . . .ot 366
Specifying Preferences 367
Example: FeasOpt in Concert Technology i 367
Advanced Programming Techniques.............. 373
Using Query Routines in the Callable Library 375
Using Surplus Arguments for Array Allocations 375
Example: Using Query Routines Ipex7.C. e 377
User-Cut and Lazy-Constraint Pools 379
What Are Pools of User Cuts or Lazy Constraints? i, 380
Adding User Cuts and Lazy CoNnstraintst 382
Using Component Libraries 382
Using the Interactive Optimizer e 382
Reading and Writing LP Files. e 382

GENEIAl SYNEAX. . . o ottt e 383

EXample . . 383
Reading and Writing SAV Files 384
Reading and Wrtiting MPS Files 384
Deleting User Cuts and Lazy Constraintsttt 385
USIiNG GOalS. . ..o 387
Branch & Cut with Goals. 388

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Chapter 29

Chapter 30

Chapter 31

The Goal StaCK e 392

Memory Management and Goals 393
CULS @nd GOalS.o 394
Injecting Heuristic SOIUtIONS. e 396
Controlling Goal-Defined Search e 397
SearCh Limits 401
Using Callbacks 403
Diagnostic Callbacks. 404
Implementing Callbacks in ILOG CPLEX with Concert Technology................. 404
Writing Callback Classes by Hand. 405
Writing Callbacks with Macros 406
Callback Interface 408
The Continuous Callback. 408
Example: Deriving the Simplex Callback ilolpex4.cpp........ ..o .. 408
Implementing Callbacks in the Callable Library 410
Setting Callbackso 410
Callbacks for Continuous and Discrete Problems 411
Return Values for Callbacks. 411
Interaction Between Callbacks and ILOG CPLEX Parallel Optimizers 412
Example: Using Callbacks Ipex4.C. e 412
Control Callbacks for HoCplex e 413
Example: Controlling Cuts iloadmipeX5.cpp. . .. oo e 414
Goals and Callbacks: a Comparison 421
Advanced Presolve ROULINES i 423
Introduction to Presolve 424

A Proposed Example 425
Restricting Presolve Reductions 425

Example: Adding Constraints to the First Solution. 426
Manual Control of Presolve. 428
Modifying a Problem 430

ILOG CPLEX 10.0 — USER’'S MANUAL 21

Chapter 32

Chapter 33

22

Advanced MIP Control Interface i 433
Introduction to MIP Callbacks. 434
Heuristic Callback 435
Cut Callback 436
Branch Selection Callback 437
Incumbent Callback 438
Node Selection Callback 439
Solve Callback 439
Parallel Optimizers 441
Thr AU .. 442
Example: Threads and LiCENSING.ottt e e 443
Threads and Performance Considerations 443
NONAEterMIN SN . . .o e 443
Clock Settings and Time Measurementttt e 444
Using Parallel Optimizers in the Interactive Optimizer. 444
Using Parallel Optimizers in the ILOG CPLEX Component Libraries................ 445
Parallel Barrier Optimizer e 445
Concurrent OPtiMIzZer 446
Parallel MIP Optimizer e e 446
Memory Considerations and the Parallel MIP Optimizer. 448
Output from the Parallel MIP Optimizer e e 448
... 451

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Meet ILOG CPLEX

ILOG CPLEX offers C, C++, Java, and .NET librariesthat solve linear programming (LP)
and related problems. Specifically, it solveslinearly or quadratically constrained
optimization problems where the objective to be optimized can be expressed as a linear
function or a convex quadratic function. The variables in the model may be declared as
continuous or further constrained to take only integer values.

This preface introduces the ILOG CPLEX User’s Manual. The manual assumes that you are
familiar with ILOG CPLEX from reading Getting Sarted with ILOG CPLEX and from
following the tutorials there. This preface covers these topics:

[What IsILOG CPLEX? on page 24

[What Does ILOG CPLEX Do? on page 24
[What You Need to Know on page 26

[In This Manual on page 26

[Related Documentation on page 32
[Further Reading on page 35

ILOG CPLEX 10.0 — USER’'S MANUAL 23

What Is ILOG CPLEX?

ILOG CPLEX comesin three forms to meet a wide range of users needs:

[ThelLOG CPLEX Interactive Optimizer isan executable program that can read a
problem interactively or from filesin certain standard formats, solve the problem, and
deliver the solution interactively or into text files. The program consists of thefile
cplex.exe on Windows platforms or cplex on UNIX platforms.

1L OG Concert Technology isaset of libraries offering an API that includes modeling
facilitiesto alow a programmer to embed ILOG CPLEX optimizersin C++, Java, or
.NET applications. The library is provided in filesilocplex91.1ib, concert.1lib
and cplex91.jar aswell ascplex91.d11 and concert21.d11 on Windows
platformsandin 1ibilocplex.a, libconcert.a and cplex.jar on UNIX
platforms, and makes use of the Callable Library (described next).

[ThelLOG CPLEX CallableLibrary isaC library that allows the programmer to
embed ILOG CPLEX optimizersin applications written in C, Visual Basic, Fortran or
any other language that can call C functions. Thelibrary is provided asaDLL on
Windows platforms and in alibrary (that is, with file extensions . a, .so, or .s1) on
UNIX platforms.

In this manual, the phrase ILOG CPLEX Component Librariesisused when referring
equally to any of these libraries. While all libraries are callable, the term ILOG CPLEX
Callable Library as used here refers specifically to the C library.

What Does ILOG CPLEX Do?

ILOG CPLEX isatool for solving, first of all, linear optimization problems. Such problems
are conventionally written like this:

Minimize (or maximize) C1X1 + CoXo + ... + CpXp

subject to apqXq tagXo + ...+ aXy ~ by
ap1X1 + agoXo +. .. + agpXp ~ by
miXp + ampX2 * ...t ampXn ~ by

with these bounds <X <uy, o Sx, <0,

where the relation ~ may be greater than or equal to, lessthan or equal to, or simply equal to,
and the upper bounds u; and lower bounds I; may be positive infinity, negative infinity, or
any real number.

24 ILOG CPLEX 10.0 — USER'S MANUAL

When alinear optimization problem is stated in that conventional form, its coefficients and
values are customarily referred to by these terms:

objective function coefficients C1, e, Ch
constraint coefficients ajy, ..., Amn
right-hand side by, e, bm
upper bounds uq, e, Up
lower bounds 11, o I
variables or unknowns X1, e, Xn

In the most basic linear optimization problem, the variables of the objective function are
continuous in the mathematical sense, with no gaps between real values. To solve such linear
programming problems, ILOG CPLEX implements optimizers based on the simplex
algorithms (both primal and dual simplex) aswell as primal-dual logarithmic barrier
algorithms and a sifting algorithm. These alternatives are explained more fully in Chapter 8,
Solving LPs: Simplex Optimizers.

ILOG CPLEX can also handle certain problems in which the objective function is not linear
but quadratic. Such problems are known as quadratic programs or QPs. Chapter 11, Solving
Problems with a Quadratic Objective (QP), covers those kinds of problems.

ILOG CPLEX also solves certain kinds of quadratically constrained problems. Such
problems are known as quadratically constrained programs or QCPs. Chapter 12, Solving
Problemswith Quadratic Constraints (QCP), tells you more about the kinds of quadratically
constrained problems that ILOG CPLEX solves, including the special case of second order
cone programming (SOCP) problems.

ILOG CPLEX isaso atool for solving mathematical programming problemsin which some
or all of the variables must assume integer values in the solution. Such problems are known
as mixed integer programs or M1Ps because they may combine continuous and discrete (for
example, integer) variables in the objective function and constraints. MIPs with linear
objectives are referred to as mixed integer linear programs or MILPs, and MIPs with
quadratic objective terms are referred to as mixed integer quadratic programs or MIQPs.
Likewise, MIPsthat are also quadratically constrained in the sense of QCP are known as
mixed integer quadratically constrained programs or MIQCPs.

Within the category of mixed integer programs, there are two kinds of discrete integer
variables: if the integer values of the discrete variables must be either O (zero) or 1 (one),
then they are known as binary; if the integer values are not restricted in that way, they are
known as general integer variables. This manual explains more about the mixed integer
optimizer in Chapter 13, Solving Mixed Integer Programming Problems (MIP).

ILOG CPLEX also offers a Network Optimizer aimed at a specia class of linear problem
with network structures. ILOG CPLEX can optimize such problems as ordinary linear
programs, but if ILOG CPLEX can extract al or part of the problem as a network, then it

ILOG CPLEX 10.0 — USER’'S MANUAL 25

will apply its more efficient Network Optimizer to that part of your problem and use the
partia solution it finds there to construct an advanced starting point to optimize the rest of
the problem. Chapter 10, Solving Network-Flow Problems offers more detail about how the
ILOG CPLEX Network Optimizer works.

What You Need to Know

Before you begin using ILOG CPLEX, it isagood ideato read Getting Sarted with
ILOG CPLEX and to try the tutorialsinit. It isavailable in the standard distribution of the
product.

In order to use ILOG CPLEX effectively, you need to be familiar with your operating
system, whether UNIX or Windows. A list of the machine-types and library formats
(including version numbers of compilers and JDKSs) is available in the standard distribution
of your product inthefile yourcpPLEXinstallation/mptable.html.

This manual assumes that you are familiar with the concepts of mathematical programming,
particularly linear programming. In case those concepts are new to you, the bibliography in
Further Reading on page 35 in this preface indicates references to help you there.

This manual also assumes you already know how to create and manage files. In addition, if
you are building an application that uses the Component Libraries, this manual assumes that
you know how to compile, link, and execute programs written in ahigh-level language. The
Callable Library iswritten in the C programming language, while Concert Technology is
written in C++, Java, and .NET. This manual also assumes that you already know how to
program in the appropriate language and that you will consult a programming guide when
you have questionsin that area.

In This Manual

26

This manual consists of these parts:
[Part |, Languages and APls

This part collects chapters about each of the application programming interfaces (APIS)
availablefor ILOG CPLEX. It isnot necessary to read each of these chapters thoroughly.
In fact, most users will concentrate only on the chapter about the API that they plan to
use, whether C, C++, Java, .NET, or others.

[—Part |1, Programming Considerations

This part documents concepts that are valid as you develop an application, regardless of
the programming language that you choose. It highlights software engineering concepts

ILOG CPLEX 10.0 — UsSER’'S MANUAL

implemented in ILOG CPLEX, concepts that will enable you to develop effective
applications to exploait it efficiently.

[Part 111, Continuous Optimization

This part focuses on algorithmic considerations about the optimizers of ILOG CPLEX
that solve problems formulated in terms of continuous variables. While ILOG CPLEX is
delivered with default settings that enable you to solve many problems without changing
parameters, these chapters also document features that you can customize for your
application.

[Part 1V, Discrete Optimization

This part focuses on algorithmic considerations about the optimizers of ILOG CPLEX
that solve problems formulated in terms of discrete variables, such as integer, Boolean,
piecewise-linear, or semi-continuous variables. Again, though default settings of

ILOG CPLEX enable you to solve many problems without changing parameters, these
chapters also document features that enable you to tune performance.

—Part V, Infeasibility and Unboundedness

This part confronts unsatisfactory results of optimization, such as infeasibility of
solutions or unboundedness of decision variables, and suggests ways of formulating or
reformulating amodel to eliminate or at least to minimize such obstacles.

[—Part VI, Advanced Programming Techniques

This part documents advanced programming techniques for users of ILOG CPLEX. It
shows you how to apply query routinesto gather information while ILOG CPLEX is
working. It demonstrates how to redirect the search with goals or callbacks. This part
also covers pools of user-defined cuts and pools of lazy constraints. It documents the
advanced MIP control interface and the advanced aspects of preprocessing: presolve and
aggregation. It also introduces special considerations about parallel programming with
ILOG CPLEX. This part of the manual assumesthat you are aready familiar with earlier
parts of the manual.

Part I, Languages and APIs

Chapter 1, ILOG Concert Technology for C++ Users, introduces Concert Technology. It
provides an overview of the design of the library, explains modeling techniques, and offers
an example of programming with Concert Technology. It aso provides information about
controlling parameters.

Chapter 2, ILOG Concert Technology for Java Users, exploresthe full range of features that
the ILOG CPLEX Java APl offersto solve mathematical programming problems. An
overview of the architecture is given, then techniques for creating models are explained
through examples.

Chapter 3, ILOG Concert Technology for .NET Users, offers an example of this API.

ILOG CPLEX 10.0 — USER’'S MANUAL 27

28

Chapter 4, ILOG CPLEX Callable Library, introduces the ILOG CPLEX Callable Library.
It sketches the architecture of the product, explains the relation between the Interactive
Optimizer and the Callable Library, and offers an example of programming with the Callable
Library. It also provides an overview about the parameters you control in ILOG CPLEX.

Part Il, Programming Considerations

Chapter 5, Developing CPLEX Applications, provides tips for devel oping applications with
ILOG CPLEX, suggests ways to debug your applications built around ILOG CPLEX, and
provides a checklist to help avoid common programming errors.

Chapter 6, Managing Input and Output, explains how to enter mathematical programs
efficiently and how to generate meaningful output from your ILOG CPLEX applications. It
also liststhe available file formats for entering datainto ILOG CPLEX and writing bases
and solutions from ILOG CPLEX.

Chapter 7, Licensing an Application, tells you what you must consider when you want to
license your ILOG CPLEX application for deployment.

Part Ill, Continuous Optimization

Chapter 8, Solving LPs: Smplex Optimizers, goes deeper into aspects of linear programming
with ILOG CPLEX. It explains how to tune performance and how to diagnose infeasibility
inamodel. It also offers an example showing you how to start optimizing from an advanced
basis.

Chapter 9, Solving LPs. Barrier Optimizer, continues the exploration of optimizersfor linear
programming problems. It tells how to use the primal-dual logarithmic barrier algorithm
implemented in the ILOG CPLEX Barrier Optimizer to solve large, sparse linear
programming problems.

Chapter 10, Solving Network-Flow Problems, shows how to use the ILOG CPLEX Network
Optimizer on linear programming problems based on a network model.

Chapter 11, Solving Problems with a Quadratic Objective (QP), takes up programming
problems in which the objective function may be quadratic. It, too, includes examples.

Chapter 12, Solving Problems with Quadratic Constraints (QCP), introduces problems
where the constraints are not strictly linear but may also include convex quadratic
constraints and shows how to use the barrier optimizer to solve them.

Part IV, Discrete Optimization

Chapter 13, Solving Mixed Integer Programming Problems (MIP), showsyou how to handle
MIPs. It particularly emphasizes performance tuning and offers a series of examples.

Chapter 14, Using Special Ordered Sets (SOS), sketches how to declare and use special
ordered setsin formulating your model.

Chapter 15, Using Semi-Continuous Variables: a Rates Example, demonstrates how to use
semi-continuous variables in arate-setting problem.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Chapter 16, Using Piecewise Linear Functionsin Optimization: a Transport Example,
applies piecewise linear functions to model a transportation problem.

Chapter 17, Logical Constraints in Optimization, introduces logical constraints asthey are
implemented in Concert Technology and in the Callable Library.

Chapter 18, Using Indicator Constraints, explains a technique for expressing relations
among constraintsin amodel by means of binary variables that turn on or off enforcement of
agiven constraint.

Chapter 19, Using Logical Constraints: Food Manufacture 2, follows up that introduction to
logical constraints with an example borrowed from awell known textbook about modeling.

Chapter 20, Early Tardy Scheduling, demonstrates logical constraints, piecewise linear
functions in optimization, and aggressive MIP emphasis in a production planning example
that includes penalties for earliness and tardiness.

Chapter 21, Using Column Generation: a Cutting Sock Example, shows how to formulate a
model by generating columns one by one. It uses a cutting stock example to illustrate the
technique.

Part V, Infeasibility and Unboundedness

Chapter 22, Preprocessing and Feasibility introduces you to the effects of preprocessing on
feasibility and infeasibility.

Chapter 23, Managing Unboundedness explains what a report of unbounded means,

suggests ways to avoid an unbounded outcome, and outlines means to diagnose the cause of
unboundedness in your model.

Chapter 24, Diagnosing Infeasibility by Refining Conflicts, describes the conflict refiner, a
feature of ILOG CPLEX that helps you identify contradictory constraints and bounds within
your model.

Chapter 25, Repairing Infeasibilities with FeasOpt, documents a feature of ILOG CPLEX
that may enable you to repair detected infeasibilitiesin your model.

Part VI, Advanced Programming Techniques

Chapter 26, Using Query Routinesin the Callable Library, shows how to accessinformation
about the model you currently have in memory through query routines of the Callable
Library.

Chapter 27, User-Cut and Lazy-Constraint Pools, formerly available only through Customer
Support, is now part of the standard documentation. It explainsin greater detail how to
manage your own pools of cuts and lazy constraints.

Chapter 28, Using Goals, shows how to use goals to control a MIP search.
Chapter 29, Using Callbacks shows how to use callbacks to control a MIP search.

Chapter 30, Goals and Callbacks: a Comparison, compares the two different approaches.

ILOG CPLEX 10.0 — USER’'S MANUAL 29

Chapter 31, Advanced Presolve Routines, formerly available only through Technical

Support, is now part of the standard document
presolve and aggregation more fully.

Chapter 32, Advanced MIP Control Interface,
Support, is now part of the standard document

ation. It documents advanced aspects of

formerly available only through Technical
ation. It shows you how to exploit advanced

features of MIP. It provides important additional information if you are using callbacksin

your application.

Chapter 33, Parallel Optimizers, explains how to exploit parallel optimizersin case your

hardware supports parallel execution.

The Index on page 451 compl etes this manual.

Examples Online

For the examples explained in the manual, you will find the complete code for the solution
inthe examples subdirectory of the standard distribution of ILOG CPLEX, so that you can
see exactly how ILOG CPLEX fitsinto your own applications. Table 1 lists the examplesin

this manual and indicates where to find them.

Tablel Examples

Example

Source File

In This Manual

dietary optimization: building a model by
rows (constraints) or by columns
(variables), solving with T1oCplex in C++

ilodiet.cpp

Example: Optimizing the Diet Problem in C++
on page 61

dietary optimization: building a model by
rows (constraints) or by columns (vari-
ables), solving with I1oCplex in Java

Diet.java

Example: Optimizing the Diet Problem in Java
on page 89

dietary optimization: building a model by Diet.cs Example: Optimizing the Diet Problem in
rows (constraints) or by columns (vari- C#.NET on page 103

ables), solving with cplex in C#£.NET

dietary optimization: building a model by diet.c Example: Optimizing the Diet Problem in the

rows (constraints) or by columns
(variables), solving with the Callable Library

Callable Library on page 121

linear programming: starting from an

advanced basis

ilolpex6.cpp
lpex6.c

Example ilolpex6.cpp on page 180
Example Ipex6.c on page 180

network optimization: using the Callable

Library

netexl.c

Example: Using the Network Optimizer with the
Callable Library netex1.c on page 209

30

ILOG CPLEX 10.0 —

USER'S MANUAL

Tablel Examples

Example

Source File

In This Manual

network optimization: relaxing a network
flow to an LP

netex2.c

Example: Network to LP Transformation
netex2.c on page 212

guadratic programming: maximizing a QP

ilogpexl.cpp
QPex1.java

Example: ilogpex1.cpp on page 222
Example: QPex1.java on page 223

gpexl.c Example: gpex1.c on page 223
guadratic programming: reading a QP from |gpex2.c Example: Reading a QP from a File gpex2.c on
a formatted file page 224
guadratically constrained programming: gcpexl.c Examples: QCP on page 237

QCP

ilogcpexl.cpp
QCPexl.java

mixed integer programming: optimizing a
basic MIP

ilomipexl.cpp
mipexl.c

Example: Optimizing a Basic MIP Problem on
page 283

mixed integer programming: reading a MIP
from a formatted file

ilomipex2.cpp
mipex2.c

Example: Reading a MIP Problem from a File
on page 283

mixed integer programming: using special
ordered sets (SOS) and priority orders

ilomipex3.cpp
mipex3.c

Example: Using SOS and Priority on page 287

cutting stock: using column generation

cutstock. cpp

What Is Column Generation? on page 330

transport: piecewise-linear optimization

transport.cpp

Complete Program: transport.cpp on page 303

food manufacturing 2: using logical
constraints

foodmanufac.cpp

Using Logical Constraints: Food Manufacture 2
on page 315

early tardy scheduling etsp.cpp Early Tardy Scheduling on page 323

input and output: using the message lpex5.c Example: Callable Library Message Channels
handler on page 146

using query routines lpex7.c Example: Using Query Routines Ipex7.c on

page 377

using callbacks

ilolpex4.cpp

lpex4.c
iloadmipex5.cpp

Example: Deriving the Simplex Callback
ilolpex4.cpp on page 408

Example: Using Callbacks Ipex4.c on page 412
Example: Controlling Cuts iloadmipex5.cpp on
page 414

Notation in This Manual

Like the reference manual, this manual uses the following conventions:

ILOG CPLEX 10.0

USER'S MANUAL

31

[Important ideas are italicized the first time they appear.

[_The names of C routines and parametersin the ILOG CPLEX Callable Library begin
with cpx; the names of C++ and Javaclassesin ILOG CPLEX Concert Technology
begin with 110; and both appear in this typeface, for example: cPXcopyobjnames
Of IloCplex.

[_The names of .NET classes and interfaces are the same as the corresponding entity in
Java, except the name is not prefixed by 110. Names of .NET methods are the same as
Java methods, except the .NET nameis capitalized (that is, uppercase) to conform to
Microsoft naming conventions.

[—Where use of a specific language (C++, Java, C, C#, and so on) is unimportant and the
effect on the optimization algorithms is emphasized, the names of ILOG CPLEX
parameters are given as their Concert Technology variant. The reference manual
ILOG CPLEX Parameters contains a table showing the correspondence of these names
to the Callable Library and the Interactive Optimizer.

[Text that is entered at the keyboard or displayed on the screen and commands and their
options available through the Interactive Optimizer appear in this typeface, for
example, set preprocessing aggregator n.

[Values that you must fill in (for example, the value to set a parameter) also appear in the
same typeface as the command but modified to indicate you must supply an appropriate
value; for example, set simplex refactor i indicatesthat you must fill inavaue
for i.

[Matrices are denoted in two ways:

. Inprintable material where superscripts and bold type are available, the product of A
and its transpose is denoted like this: AAT. The superscript T indicates the matrix
transpose.

. In computer-generated samples, such as log files, where only ASCII characters are
available, the product of A and its transpose are denoted like this: a*a . The asterisk
(*) indicates matrix multiplication, and the prime (') indicates the matrix transpose.

Related Documentation

32

The online information files are distributed with the ILOG CPLEX libraries. On UNIX
platforms, they can be found in yourcplexHome/doc. On Windows platforms, the online
documentation can be found in the ILOG Optimization suite, for example, in

Start > Programs > |LOG > Optim or in ¢: \ILOG\Optim.

The complete documentation set for ILOG CPLEX consists of the following material:

ILOG CPLEX 10.0 — UsSER’'S MANUAL

L OG CPLEX Getting Sarted: It isagood ideafor new users of ILOG CPLEX to
start with that manual. It introduces ILOG CPLEX through the I nteractive Optimizer,
and contains tutorials for ILOG CPLEX Concert Technology for C++, Java, and .NET
applications aswell asthe ILOG CPLEX Callable Library.

ILOG CPLEX Getting Sarted is supplied in HTML, in Microsoft compiled HTML help
(.chm), and as a PDF file.

[LOG CPLEX User’'sManual: Thismanua explains the topics covered in the Getting
Sarted manual in greater depth, with individual chapters about:

. LP(Linear Programming) problems;
- Network-Flow problems;
- QP (Quadratic Programming) problems;

. QCP (Quadratically Constrained Programming), including the special case of second
order cone programming (SOCP) problems, and

. MIP (Mixed Integer Programming) problems.
There is aso detailed information about:

. Mmanaging input and output,

. using query routines,

- using callbacks, and

. using parallel optimizers.

The ILOG CPLEX User’s Manual is supplied in HTML form, in Microsoft compiled
HTML help (.chm), and as a PDF file.

1L OG CPLEX CallableLibrary Reference Manual: This manual supplies detailed
definitions of the routines, macros, and functionsin the ILOG CPLEX Callable Library
C application programming interface (API). It isavailable online asHTML and as
Microsoft compiled HTML help (.chm). The routines are organized into groups, such as
optim.cplex.callable.optimizers, optim.callable.debug, OF
optim.cplex.callable.callbacks, to help you locate routines by their purpose.

As part of that online manual, you can also access other reference material:

. Overview of the API offersyou navigationa links into the HTML reference manual
organized into categories of tasks you may want to perform in your applications. Each
category includes atable linking to the corresponding C routine, C++ class or method,
and Javainterface, class, or method to accomplish the task. There are also indications
about the name of the corresponding .NET method so you can locate it in the
Microsoft compiled HTML help (.chm).

ILOG CPLEX 10.0 — USER’'S MANUAL 33

. ILOG CPLEX Error Codes documents error codes by name in the group
optim.cplex.errorcodes. YOU can also access error codes by number in the
Overview of the API through the link Interpreting Error Codes.

. ILOG CPLEX Solution Quality Codes documents solution quality codes by name
in the group optim.cplex.solutionquality.

. ILOG CPLEX Solution Satus Codes documents solution status codes by namein
the group optim.cplex.solutionstatus. YOU can aso access solution status
codes by number in the Overview of the API through the link Interpreting Solution
Satus Codes.

[ILOG CPLEX C++ API Reference Manual: This manual supplies detailed definitions
of the classes, macros, and functionsin the ILOG CPLEX C++ application programming
interface (API). It isavailable online asHTML and as Microsoft compiled HTML help
(.chm).

1L OG CPLEX Parameters Reference Manual: This manual lists the parameters of
ILOG CPLEX with their namesin the Callable Library, in Concert Technology, and in
the Interactive Optimizer. It also shows their default settings with explanations of the
effect of other settings. Normally, the default settings of ILOG CPLEX solve awide
range of mathematical programming problems without intervention on your part, but
these parameters are available for fine tuning in special cases.

1L OG CPLEX File Formats Reference M anual: This manual documents thefile
formats recognized and supported by ILOG CPLEX.

1L OG CPLEX Interactive Optimizer Reference Manual: This manual liststhe
commands of the I nteractive Optimizer, along with their options and links to exampl es of
their usein the ILOG CPLEX User’s Manual.

1L OG CPLEX .NET Reference Manual: This manua documentsthe .NET API of
Concert Technology for ILOG CPLEX. It is available as Microsoft compiled HTML
help (.chm).

1L OG CPLEX Java Reference Manual: This manual supplies detailed definitions of
the Concert Technology interfaces and ILOG CPLEX Java classes. It isavailable online
asHTML and as Microsoft compiled HTML help (.chm).

1L OG License Manager (ILM): ILOG products are protected by the ILOG License
Manager. Before you can use ILOG CPLEX, you need to set up ILM. Itsonline
documentation explains how to do so step-by-step, for different platforms. Itisin HTML
form, included with your distribution.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Announcements and Updates

The electronic mailing list is available to keep you informed about important product
updates. If you subscribe to thislist, you will receive announcements when new rel eases are
available, updates to FAQs and code samples, or possibly an invitation to beta testing.

To subscribe to thislist, go to the ILOG Customer Support web site and navigate to the
ILOG CPLEX product support pages in the Products section. The link Subscribe to Users
List enables you access a page where you can subscribe to the ILOG CPLEX mailing list.

Only the product manager of ILOG CPLEX posts announcementsto thislist. Your name and
mailing address will not be published for any other purpose than receiving these official
product announcements.

Further Reading

In case you want to know more about optimization and mathematical or linear
programming, hereisabrief selection of printed resources:

Williams, H. P. Model Building in Mathematical Programming, 4th ed. New York: John
Wiley & Sons, 1999. Thistextbook includes many examples of how to design mathematical
models, including linear programming formulations. (How you formulate your model is at
least asimportant as what ILOG CPLEX does withit.) It also offers a description of the
branch & bound algorithm. In fact, Williams's book inspired some of the models delivered
with ILOG CPLEX.

Chvatal, Vasek, Linear Programming, New York: W.H. Freeman and Company, 1983. This
standard textbook for undergraduate students introduces both theory and practice of linear
programming.

Wolsey, Laurence A., Integer Programming, New York: John Wiley & Sons, 1998. This
book explains branch and cut, including cutting planes, in detail.

Nemhauser, George L. and Laurence A. Wolsey, Integer and Combinatorial Optimization,
New York: John Wiley & Sons, 1999. A reprint of the 1988 edition. This book isawidely
cited and comprehensive reference about integer programming.

Gill, Philip E., Walter Murray, and Margaret H. Wright, Practical Optimization. New York:
Academic Press, 1982 reprint edition. This book covers, among other topics, quadratic
programming.

ILOG CPLEX 10.0 — USER’'S MANUAL 35

36

ILOG CPLEX 10.0

USER'S MANUAL

Part |

Languages and APIs

This part of the manual collects chapters about each of the application programming
interfaces (APIs) available for ILOG CPLEX. It is not necessary to read each of these
chapters thoroughly. In fact, most users will concentrate only on the chapter about the API
that they plan to use, whether C, C++, Java, or .NET. This part contains:

[1L.OG Concert Technology for C++ Users on page 39
[1L.OG Concert Technology for Java Users on page 67
[1L.OG Concert Technology for .NET Users on page 93
[11L.OG CPLEX Callable Library on page 105

ILOG Concert Technology for C++ Users

This chapter shows how to write C++ programs using ILOG CPLEX Concert Technology
for C++ users. It includes sections about:

[—Architecture of a CPLEX C++ Application on page 40, including information about
licensing, compiling, and linking your programs

[Creating a C++ Application with Concert Technology on page 41

[Modeling an Optimization Problem with Concert Technology on page 41
[—Jolving the Model on page 46

[Accessing Solution Information on page 53

[Modifying a Model on page 57

[Handling Errors on page 59

[HExample: Optimizing the Diet Problemin C++ on page 61

ILOG CPLEX 10.0 — USER’'S MANUAL 39

Architecture of a CPLEX C++ Application

40

Figure 1.1, A View of Concert Technology for C++ Users shows a program using

ILOG CPLEX Concert Technol ogy to solve optimization problems. The optimization part of
the user’s application program is captured in a set of interacting C++ objects that the
application creates and controls. These objects can be divided into two categories:

1. Modéding objects are used to define the optimization problem. Generally an application
creates several modeling objects to specify the optimization problems. Those objects are
grouped into an T11oModel object representing the compl ete optimization problem.

2. Solving abjectsin an instance of I11oCplex are used to solve models created with the
modeling objects. An instance of T1oCplex reads amodel and extractsits datato the
appropriate representation for the ILOG CPLEX optimizers. Then the 11ocplex object
isready to solve the model it extracted. After it solvesamodel, it can be queried for
solution information.

User-Written Application

Concert Technology
modeling objects > _

\/

ILOG CPLEX
internals

Figure1.1 A View of Concert Technology for C++ Users

Licenses

ILOG CPLEX runs under the control of the ILOG License Manager (ILM). Before you can
run any application program that calls ILOG CPLEX, you must have established avalid
license that it can read. Licensing instructions are provided to you separately when you buy
or upgrade ILOG CPLEX. Contact your local ILOG support department if thisinformation
has not been communicated to you or if you find that you need help in establishing your
ILOG CPLEX license. For details about contacting ILOG support, click "Customer
Support" at the bottom of the first page of ILOG CPLEX online documentation.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Compiling and Linking

Compilation and linking instructions are provided with the files that come in the standard
distribution of ILOG CPLEX for your computer platform. Check the readme . html filefor
details.

Creating a C++ Application with Concert Technology

The remainder of this chapter is organized by the steps most applications are likely to follow.

[_Hirst, create amodel of your problem with the modeling facilities of Concert Technol ogy.
Modeling an Optimization Problem with Concert Technology on page 41 offers an
introduction to creating amodel.

[When the model isready to be solved, hand it over to ILOG CPLEX for solving. Solving
the Model on page 46 explains how to do so. It includes asurvey of the T1oCplex
interface for controlling the optimization. Individual controls are discussed in the

chapters explaining the individual optimizers.

[—Accessing Solution Information on page 53, shows you how to access and interpret
results from the optimization after solving the model.

[After analyzing the results, you may want to make changes to the model and study their
effect. Modifying a Model on page 57 explains how to make changes and how
ILOG CPLEX dealswith them.

[Handling Errors on page 59, discusses the error handling and debugging support
provided by Concert Technology and ILOG CPLEX.

[Example: Optimizing the Diet Problemin C++ on page 61 presents a complete program.

Not covered in this chapter are advanced features, such as the use of goals or callbacks for
querying data about an ongoing optimization and for controlling the optimization itself.
Goals, callbacks, and other advanced features are discussed in Part VI, Advanced
Programming Techniques.

Modeling an Optimization Problem with Concert Technology

This section briefly introduces Concert Technology for modeling optimization problems to
be solved by 11oCplex. It highlights these topics:

[Modeling Classes on page 42

. Creating the Environment: 110Env on page 42

ILOG CPLEX 10.0 — USER’'S MANUAL 41

42

. Defining Variables and Expressions. IloNumVar on page 42
. Declaring the Objective: [100Objective on page 43
. Adding Constraints: lloConstraint and IloRange on page 44
. Formulating a Problem: IloModel on page 44

[Data Management Classes on page 45

Modeling Classes

A Concert Technology model consists of a set of C++ objects. Each variable, each
constraint, each special ordered set (SOS), and the objective function in amodel are all
represented by objects of the appropriate Concert Technology class. These objects are
known as modeling objects. They are summarized in Table 1.1 on page 47.

Creating the Environment: lloEnv

Before you create modeling objects, you must construct an object of the class 110Env. This
object known as the environment. It is constructed with the statement:

IloEnv env;

That statement is usually the first Concert Technology statement in an application. At the
end, you must close the environment by calling:

env.end() ;

That statement is usually the last Concert Technology statement in an application. The end
method must be called because, like most Concert Technology classes, theclass 11oEnvisa
handleclass. That is, an 110Env object isreally only apointer to an implementation object.
Implementation objects are destroyed by calling the end method. Failing to call the end
method can result in memory leaks.

Users familiar with the ILOG CPLEX Callable Library are cautioned not to confuse the
Concert Technology environment object with the ILOG CPLEX environment object of type
CPXENVptr, used for setting ILOG CPLEX parameters. Such an object is not needed with
Concert Technology, as parameters are handled directly by each instance of the class
IloCplex. In other words, the environment in Concert Technology always refersto the
object of class 110Env required for all other Concert Technology objects.

Defining Variables and Expressions: lloNumVar

Probably the first modeling class you will need is 11oNumvar. Objects of this class
represent decision variablesin amodel. They are defined by the lower and upper bound for
the variable, and atype which can be one of ILOFLOAT, ILOINT, Or ILOBOOL for
continuous, integer, or Boolean variables, respectively. The following constructor creates an
integer variable with bounds -1 and 10:

IloNumVar myIntVar (env, -1, 10, ILOINT) ;

ILOG CPLEX 10.0 — UsSER’'S MANUAL

The class T11oNumvar provides methods that allow querying of the data needed to specify a
variable. However, only bounds can be modified. Concert Technology provides a modeling
object class T1oConversion to change the type of avariable. This conversion allows you
to use the same variable with different types in different models.

Variables are usually used to build up expressions, which in turn are used to define the
objective or constraints of the optimization problem. An expression can be explicitly
written, asin

1*x[1] + 2*x[2] + 3*x[3]

where x isassumed to be an array of variables (I1oNumvarArray). Expressions can also be
created piece by piece, with aloop:
IloExpr expr (env) ;

for (int i = 0; i < x.getSize(); ++i)
expr += datali] * x[i];

Whenever possible, build your expressions in terms of datathat is either integer or
double-precision (64-bit) floating point. Single-precision (32-bit) floating point data should
be avoided, asit can result in unnecessarily ill conditioned problems. For more information,
refer to Numeric Difficulties on page 170.

While Concert Technology supports very general expressions, only linear, quadratic,
piecewise-linear, and logical expressions can be used in modelsto be solved with
IloCplex. For more about each of those possibilities, see these chapters of this manual:

. Chapter 8, Solving LPs: Smplex Optimizers and Chapter 9, Solving LPs: Barrier
Optimizer both discuss linear expressions.

. Chapter 11, Solving Problems with a Quadratic Objective (QP) discusses quadratic
expressions in an objective function.

. Chapter 12, Solving Problems with Quadratic Constraints (QCP) discusses quadratic
expressionsin quadratically constrained programming problems (QCPs), including
the special case of second order cone programming (SOCP) problems.

. Chapter 16, Using Piecewise Linear Functionsin Optimization: a Transport Example
introduces piecewise-linear expressions through a transportation example.

. Chapter 17, Logical Constraintsin Optimization introduces logical constraints
handled by ILOG CPLEX. Chaptersfollowing it offer examples.

When you have finished using an expression (that is, you created a constraint with it) you
need to deleteit by calling its method end, for example:

expr.end() ;

Declaring the Objective: lloObjective

Objects of class T1100bjective represent objective functions in optimization models.
IloCplex may only handle models with at most one objective function, though the

ILOG CPLEX 10.0 — USER’'S MANUAL 43

44

modeling API provided by Concert Technology does not impose this restriction. An
objective function is specified by creating an instance of 11o0bjective. For example:
IloObjective obj (env,

1*x[1] + 2*x[2] + 3*x[3],
IloObjective: :Minimize) ;

defines the objectiveto minimize the expression 1*x [1] + 2*x[2] + 3*x[3].

Adding Constraints: lloConstraint and lloRange

Similarly, objects of the class 11oConstraint represents constraintsin your model. Most
constraints will belong to the subclass 11orange, derived from I1oConstraint, andthus
inherit its constructors and methods. 11oRange represent constraints of the form

lower bound < expression < upper bound. In other words, an instance of
I1loRange iSaconvenient way to express aranged constraint, that is, a constraint with
explicit upper or lower bounds. Any floating-point valueor +I11oInfinity oOr
-IloInfinity canbe used for the bounds. For example:

IloRange rl(env, 3.0, x[1] + x[2], 3.0);
definesthe constraint x [1] + x[2] == 3.0.

Formulating a Problem: lloModel

To formulate afull optimization problem, the objects that are part of it need to be selected.
Thisis done by adding them to an instance of 11oMode1, the class used to represent
optimization problems. For example:

IloModel model (env) ;

model .add (obj) ;
model .add (rl) ;

definesamodel consisting of the objective ob5, constraint r1, and all the variables they use.
Notice that variables need not be added to a model explicitly, asthey areimplicitly
considered if any of the other modeling objects in the model use them. However, variables
may be explicitly added to amodel if you want.

For convenience, Concert Technology provides the functions 11oMinimize and
IloMaximize to define minimization and maximization objective functions. Also,
operators <=, ==, and >= are overloaded to create 11orRange constraints. This allows you
to rewrite the above examplesin a more compact and readable way, like this:

IloModel model (env) ;

model .add (IloMinimize (env, 1*x[1] + 2*x[2] + 3*x[3]);
model.add (x[1] + x[2] == 3.0);

With this notation, the C++ variables obj and r1 need not be created.

The class T1oModel isitself aclass of modeling objects. Thus, one model can be added to
another. A possible use of thisfeatureisto capture different scenariosin different models, al
of which are extensions of a core model. The core model could be represented as an

ILOG CPLEX 10.0 — UsSER’'S MANUAL

I1loModel object itself and added to the T11oModel objects that represent the individual
scenarios.

Data Management Classes

Usually the data of an optimization problem must be collected before or during the creation
of the Concert Technology representation of the model. Though, in principle, modeling does
not depend on how the data is generated and represented, this task may be facilitated by
using the array or set classes, such as 11oNumsSet, provided by Concert Technol ogy.

For example, objects of class T1oNumArray can be used to store numeric datain arrays.
Elements of the class 11oNumArray can be accessed like elements of standard C++ arrays,
but the class also offers awealth of additional functions. For example, Concert Technology
arrays are extensible; in other words, they transparently adapt to the required size when new
elements are added using the method add. Conversely, elements can be removed from
anywhere in the array with the method remove. Concert Technology arrays also provide
debugging support when compiled in debug mode by using assert statements to make sure
that no element beyond the array bounds is accessed. Input and output operators (that is,
operator << and operator >>) are provided for arrays. For example, the code:

IloNumArray data(env, 3, 1.0, 2.0, 3.0);
cout << data << endl;

produces the foll owing outpult:

[1.0, 2.0, 3.0]

When you have finished using an array and want to reclaim its memory, call method eng;
for example, data . end. When the environment ends, all memory of arrays belonging to the
same environment is returned to the system aswell. Thus, in practice you do not need to call
end on an array (or any other Concert Technology object) just before calling env . end.

The constructor for arrays specifies that an array of size 3 with elements 1.0, 2.0, and 3.0 is
constructed. This output format can be read back in with, for example:

cin >> data;

The example at the end of this chapter (Example: Optimizing the Diet Problemin C++ on
page 61) takes advantage of this function and reads the problem data from afile.

Finally, Concert Technology provides the template class T1oArray<X> to create array
classes for your own type X. This technique can be used to generate multidimensional
arrays. All the functions mentioned here are supported for I1oArray classes except for
input/output, which depends on the input and output operator being defined for type X.

ILOG CPLEX 10.0 — USER’'S MANUAL 45

Solving the Model

46

ILOG CPLEX generaly does not need to be involved while you create your model.
However, after the model is set up, it istimeto create your cplex object, that is, an instance
of the class 11oCplex, to be used to solve the model. T11ocplex isaclass derived from
IloAlgorithm. There are other Concert Technology algorithm classes, also derived from
IloAlgorithm, asdocumented in the ILOG CPLEX Reference Manual. Some models
might also be solved by using other algorithms, such asthe class 11o0solver for constraint
programming, or by using a hybrid algorithm consisting of both ILOG Solver and

ILOG CPLEX. Some models, on the other hand, cannot be solved with ILOG CPLEX.

The makeup of the model determines whether or not ILOG CPLEX can be used to solve it.
More precisely, in order to be handled by 11oCplex objects, amodel may only consist of
modeling objects of the classeslisted in Table 1.1.

Instances of I1oConstraint extracted by ILOG CPLEX can be created in avariety of
ways. Most often, they can be generated by means of overloaded C++ operators, such as ==,
<=, Or >=, intheform expressionl operator expression2.Instancesof both
IloConstraint and IloRange generated in that way may be built from either linear or
guadratic expressions. Constraints and ranges may also include piecewise linear terms.
(Other sections of this manual, not specific to C++, show you how to use quadratic
expressions. Solving Problems with a Quadratic Objective (QP) on page 213 and Solving
Problems with Quadratic Constraints (QCP) on page 225. Likewise, Using Piecewise
Linear Functions in Optimization: a Transport Example on page 293 shows you how to
apply piecewise linear termsin a C++ application.)

For more detail about solving problemswith T1ocplex, seethe following sections of this
manual:

[Extracting a Model on page 47
[—Jolving a Model on page 48

[Choosing an Optimizer on page 49

[Controlling the Optimizers on page 51

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Table 1.1 Concert Technology Modeling Objectsin C++

To model: Use:

numeric variables objects of the class I1oNumVar, as long as they are not
constructed with a list of feasible values

semi-continuous variables objects of the class I1oSemiContVar

linear objective function an object of the class I1o0bjective with linear or
piecewise linear expressions

quadratic objective function |an object of the class I1o0Objective with quadratic
expressions

linear constraints objects of the class I1oRange

(lower bound <= expression <= upper bound)

or

objects of the class T1oConstraint (exprl relation expr2)
involving strictly linear or piecewise linear expressions

quadratic constraints objects of the class I1loConstraint that contain quadratic
expressions as well as linear expressions or piecewise
linear expressions

logical constraints objects of the class I1oConstraint or generated ranges
with linear or piecewise linear expressions

variable type-conversions objects of the class I1oConversion

special ordered sets of type 1 | objects of the class I10S0s1

special ordered sets of type 2 | objects of class 11050S2

For an explanation of quadratic constraints, see Solving Problems with Quadratic
Constraints (QCP) on page 225. For more information about quadratic objective functions,
see Solving Problems with a Quadratic Objective (QP) on page 213. For exampl es of
piecewise linear constraints, see Using Piecewise Linear Functions in Optimization:

a Transport Example on page 293. For more about logical constraints, see

Logical Constraints in Optimization on page 305. For a description of special ordered sets,
see Using Special Ordered Sets (SOS) on page 285.

Extracting a Model

This manual defines only one optimization model and uses only one instance of T1oCplex
at atime to solve the model. Consequently, it talks about these as the model and the cplex
object. It should be noted, however, that in Concert Technology an arbitrary number of

ILOG CPLEX 10.0 — USER’'S MANUAL 47

48

models and algorithm-objects can be created. The cplex object can be created by the
constructor:

IloCplex cplex(env) ;

To useit to solve the model, the model must first be extracted to cplex by acal likethis:

cplex.extract (model) ;

This method copies the data from the model into the appropriate efficient data structures,
which ILOG CPLEX uses for solving the problem. It does so by extracting each of the
modeling objects added to the model and each of the objects referenced by them. For every
extracted modeling object, corresponding data structures are created internally in the cplex
object. For readers familiar with the sparse matrix representation used internally by

ILOG CPLEX, avariable becomes a column and a constraint becomes arow. As discussed
later, these data structures are synchronized with the modeling objects even if the modeling
objects are modified.

If you consider avariable to be part of your model, even though it is not (initially) used in
any constraint, you should add this variable explicitly to the model. This practice makes sure
that the variable will be extracted. This practice may also be important if you query solution
information for the variable, since solution information is available only for modeling
objects that are known to ILOG CPLEX because they have been extracted from a model.

If you fed uncertain about whether or not an object will be extracted, you can add it to the
model to be sure. Even if an object is added multiple times, it will be extracted only once
and thus will not slow the solution process down.

Since the sequence of creating the cplex object and extracting the model to it issuch a
common one, I1oCplex provides the shortcut:

IloCplex cplex(model) ;

This shortcut is completely equivalent to separate calls and makes sure that the environment
used for the cplex object will be the same as that used for the model when it is extracted, as
reguired by Concert Technology. The shortcut uses the environment from the model to
construct the cplex object before extraction.

Solving a Model

Once the model is extracted to the cplex object, you are ready to solve it. Thisis done by
caling

cplex.solve() ;

For most problemsthisis al that is needed for solving the model. Nonethel ess,
ILOG CPLEX offers avariety of controls that allow you to tailor the solution process for
your specific needs.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Choosing an Optimizer

Solving the extracted model with ILOG CPLEX involves solving one or a series of
continuous relaxations:

[Only one continuous relaxation needs to be solved if the extracted model is continuous
itself, that is, if it does not contain integer variables, Boolean variables, semi-continuous
or semi-integer variables, logical constraints, special ordered sets (SOS), or piecewise
linear functions. Chapter 8, Solving LPs: Smplex Optimizers and Chapter 9, Solving
LPs: Barrier Optimizer discuss the algorithms available for solving LPs. Similarly,
Chapter 11, Solving Problemswith a Quadratic Objective (QP), discusses the algorithms
available for solving QPs. Chapter 12, Solving Problems with Quadratic Constraints
(QCP) re-introduces the barrier optimizer in the context of quadratically constrained
programming problems (QCPs). Chapter 16, Using Piecewise Linear Functionsin
Optimization: a Transport Example introduces piecewise-linear functions through a
transportation example. Chapter 17, Logical Constraints in Optimization introduces
logical constraints, and chapters following it offer examples.

[1n all other cases, the extracted problem that ILOG CPLEX seesisindeed aMIP and, in
general, aseries of continuous relaxations needs to be solved. The method
cplex.isMIP returns IloTrue in such acase. Chapter 13, Solving Mixed Integer
Programming Problems (MIP) discusses the algorithms applied.

The optimizer option used for solving the first continuous relaxation (whether it is the only
oneor just thefirst in a series of problems) is controlled by setting the root algorithm
parameter:

cplex.setParam(IloCplex: :RootAlg, alg);

where alg isamember of the nested enumeration I1oCplex: :Algorithm.

As anested enumeration, the fully qualified names that must be used in the program are

IloCplex::Primal, IloCplex: :Dual, and so on. Table 1.2 displays the meaning of the
optimizer options defined by I1oCplex: :Algorithm.

The choice sifting isnot available for QP models. Only the Barrier option is available
for QCP models. Table 1.3 on page 50 summarizes these options.

ILOG CPLEX 10.0 — USER’'S MANUAL 49

50

Table 1.2 Optimizer Optionsin lloCplex:: Algorithm

IloCplex: :AutoAlg

IloCplex: :Primal

IloCplex: :Dual

IloCplex: :Network

IloCplex: :Barrier

IloCplex::Sifting

IloCplex: :Concurrent

let CPLEX decide which algorithm to use
use the primal simplex algorithm
use the dual simplex algorithm

use the primal network simplex algorithm on an embedded
network followed by the dual simplex algorithm for LPs
and the primal simplex algorithm for QPs on the entire
problem

use the barrier algorithm. The type of crossover performed
after the barrier algorithm is determined by parameter
IloCplex: :BarCrossAlg.

use the sifting algorithm

use multiple algorithms concurrently on a multiprocessor
system

Table 1.3 Algorithm Available at Root by Problem Type

. LP? |[QP? QCP?
Value |Algorithm Type

g yp MILP? | MIQP? MIQCP?

0 IloCplex: :AutoAlg yes yes yes

1 IloCplex: :Primal yes yes not
available

2 IloCplex: :Dual yes yes not
available

3 IloCplex: :Network yes yes not
available

4 IloCplex: :Barrier yes yes yes

5 IloCplex::Sifting yes not not
available available

6 IloCplex: :Concurrent yes yes not
available

If the extracted model requires the solution of more than one continuous rel axation, the
algorithm for solving the first one at the root is controlled by the Roota1g parameter. The
algorithm at all other nodes except the root is controlled by the Nodealg parameter:

cplex.setParam(IloCplex: :NodeAlg, alg).

ILOG CPLEX 10.0

— USER’'S MANUAL

Table 1.4 on page 51 summarizes the options available at nodes.
Table 1.4 Algorithm Types for NodeAlg

Value |Algorithm Type MILP? | MIQP? MIQCP?
0 IloCplex: :Auto yes yes yes
1 IloCplex: :Primal yes yes not
available
2 IloCplex: :Dual yes yes not
available
3 IloCplex: :Network yes not not
available available
4 IloCplex: :Barrier yes yes yes
5 IloCplex::Sifting yes not not
available available

Controlling the Optimizers

Though ILOG CPLEX defaults will prove sufficient to solve most problems, ILOG CPLEX
offersavariety of parameters to control various algorithmic choices. ILOG CPLEX
parameters can assume values of type bool, num, int, and string. I1oCplex provides
four categories of parameters that are listed in the nested enumeration types

IloCplex: :BoolParam, IloCplex: :IntParam, IloCplex::NumParam,
IloCplex: :StringParam.

To access the current value of a parameter that interests you from Concert Technology, use
the method get Param. To access the default value of a parameter, use the method
getDefault. Usethe methods getMin and getMax to access the minimum and maximum
values of num and int type parameters.

ILOG CPLEX 10.0 — USER’'S MANUAL 51

52

Some integer parameters are tied to nested enumerations that define symbolic constants for
the values the parameter may assume. Table 1.5 summarizes those parameters and their
enumeration types.

Table 1.5 Integer Parameters Tied to Nested Enumerations

This Enumeration: Is Used for This Parameter:
IloCplex: :Algorithm IloCplex: :RootAlg
IloCplex: :Algorithm IloCplex: :NodeAlg
IloCplex: :MIPEmphasisType IloCplex: :MIPEmphasis
IloCplex::VariableSelect IloCplex: :VarSel
IloCplex: :NodeSelect IloCplex: :NodeSel
IloCplex: :PrimalPricing IloCplex: :PPriInd
IloCplex: :DualPricing IloCplex: :DPriInd
IloCplex: :BranchDirection IloCplex: :BrDir

There are, of course, routines in Concert Technology to set these parameters. Use the
following methods to set the values of ILOG CPLEX parameters:

IloCplex: :setParam(BoolParam, value) ;
IloCplex: :setParam(IntParam, value);
IloCplex: :setParam (NumParam, value) ;
IloCplex: :setParam(StringParam, value);

For example, the numeric parameter T1oCplex: : EpOpt controlling the optimality
tolerance for the simplex algorithms can be set to 0.0001 by calling

cplex.setParam(IloCplex: :EpOpt, 0.0001);

The reference manual ILOG CPLEX Parameters documents the type of each parameter
(bool, int, num, string) aong with the Concert Technology enumeration value, symbolic
constant, and reference number representing the parameter.

Themethod setDefaults resetsall parameters (except thelog file) to their default values,
including the ILOG CPLEX callback functions. This routine resets the callback functionsto
NULL.

When solving MIPs, additional controls of the solution process are provided. Priority orders
and branching directions can be used to control the branching in a static way. These are
discussed in Heuristics on page 260. These controls are static in the sense that they allow
you to control the solution process based on data that does not change during the solution
and can thus be set up before solving the model.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Dynamic control of the solution process of MIPsis provided through goals or control
callbacks. They are discussed in Using Goals on page 387, and in Using Callbacks on
page 403. Goals and callbacks allow you to control the solution process based on
information that is generated during the solution process. Goals and Callbacks: a
Comparison on page 421 contrasts the advantages of each approach.

Accessing Solution Information
Information about solution feasibility, solution variables, basis information, and solution
quality can be accessed with the methods documented in the following sections.
[Accessing Solution Satus on page 53
[Querying Solution Data on page 54
[Accessing Basis Information on page 55
[Performing Sensitivity Analysis on page 55
[—Analyzing Infeasible Problems on page 55
[—Jolution Quality on page 56

Accessing Solution Status

Calling cplex. solve returns a Boolean indicating whether or not a feasible solution (but
not necessarily the optimal one) has been found. To obtain more of the information about the
model that ILOG CPLEX found during the call to the solve method, cplex.getStatus
can be called. It returns a member of the nested enumeration T1oalgorithm: : Status.
The fully qualified names of those symbols have the 11oa1gorithm prefix. Table 1.6
shows what each return status means for the extracted model.

ILOG CPLEX 10.0 — USER’'S MANUAL 53

Table 1.6 Algorithm Satus and |nformation About the Model

Return Status Extracted Model

Feasible has been proven to be feasible. A feasible solution can be
queried.

Optimal has been solved to optimality. The optimal solution can be
queried.

Infeasible has been proven to be infeasible.

Unbounded has been proven to be unbounded. The notion of

unboundedness adopted by I1oCplex does not include that
the model has been proven to be feasible. Instead, what has
been proven is that if there is a feasible solution with
objective value x*, there exists a feasible solution with
objective value x*-1 for a minimization problem, or x*+1 for a
maximization problem.

InfeasibleOrUnbounded | has been proven to be infeasible or unbounded.

Unknown has not been able to be processed far enough to prove
anything about the model. A common reason may be that a
time limit was hit.

Error has not been able to be processed or an error occurred
during the optimization.

As can be seen, these statuses indicate information about the model that the ILOG CPLEX
optimizer was able to prove during the last call to method solve. In addition, the

ILOG CPLEX optimizer providesinformation about how it terminated. For example, it may
have terminated with only afeasible but not optimal solution becauseit hit alimit or because
auser callback terminated the optimization. Further information is accessible by calling
solution query routines, such as method cplex.getCplexStatus, which returnsa
member of the nested enumeration type I1oCplex: : CplexStatus, Of methods
cplex.isPrimalFeasible Of cplex.isDualFeasible.

For more information about those status codes, see the ILOG CPLEX Reference Manual.

Querying Solution Data

If cplex.solve returns I1oTrue, afeasible solution has been found and solution values
for model variables are available to be queried. For example, the solution value for the
numeric variable vari can be accessed asfollows:

IloNum x1 = cplex.getValue (varl) ;

ILOG CPLEX 10.0 — UsSER’'S MANUAL

However, querying solution values variable by variable may result in ugly code. Here the
use of Concert Technology arrays provides a much more compact way of accessing the
solution values. Assuming your variables are stored in an IloNumvarArray var, you can
use

IloNumArray x(env) ;
cplex.getValues (x, var);

to access the solution values for all variablesin var at once. Valuex [1] containsthe
solution value for variable var [i].

Solution datais not restricted to the solution values of variables. It also includes values of
slack variablesin constraints (whether the constraints are linear or quadratic) and the
objective value. If the extracted model does not contain an objective object, IT1oCplex
assumes a 0 expression objective. The objective valueis returned by calling method
cplex.getObjvalue. Slack values are accessed with the methods get S1ack and
getSlacks, which take linear or quadratic constraints as a parameter.

For LPs and QPs, solution dataincludesinformation such asdual variables and reduced cost.
Such information can be queried with the methods, getbual, getDuals,
getReducedCost, and getReducedCosts.

Accessing Basis Information

When solving LPs or QPs with either the simplex algorithm or the barrier optimizer with
crossover enabled, basisinformation is available aswell. Basis information can be consulted
by the method 11oCplex: :getBasisStatuses Which returns basis statusinformation for
variables and constraints.

Such information is encoded by the nested enumeration I1oCplex: :BasisStatus.

Performing Sensitivity Analysis

The availability of abasisfor an LP allows you to perform sensitivity analysis for your
model, if itisan LP. Such analysistells you by how much you can modify your model
without affecting the solution you found. The modifications supported by the sensitivity
analysis function include bound changes, changes of the right hand side vector and changes
of the objective function. They are analyzed by methods 11oCplex: :getBoundsSa,
IloCplex: :getRHSSA, and IloCplex: : getObjSA, respectively.

Analyzing Infeasible Problems

An important feature of ILOG CPLEX isthat even if no feasible solution has been found,
(that is, if cplex.solve returns 11oFalse), someinformation about the problem can be
queried. All the methods discussed so far may successfully return information about the
current (infeasible) solution which ILOG CPLEX maintains.

ILOG CPLEX 10.0 — USER’'S MANUAL 55

56

Unfortunately, there is no simple comprehensive rule about whether or not current solution
information can be queried because, by default, ILOG CPLEX uses a presolve procedure to
simplify the model. If, for example, the model is proven to be infeasible during the presol ve,
no current solution is generated by the optimizer. If, in contrast, infeasibility is proven by the
optimizer, current solution information is available to be queried. The status returned by
caling cplex.getCplexStatus may help to determine which case you arefacing, but it is
probably safer and easier to include the methods for querying solution within try/catch
statements.

When an LP has been proven to be infeasible, ILOG CPLEX provides assistance for
determining the cause of the infeasibility. In one approach, known as FeasOpt,

ILOG CPLEX accepts an infeasible model and selectively relaxes bounds and constraints to
find aminimal set of changes that would make the model feasible. It then reports these
suggested changes and the solution they would produce for you to decide whether to apply
them in your model. For more about this approach, see Repairing Infeasibility: FeasOpt on
page 179.

In another approach, ILOG CPLEX can detect a conflict among the constraints and bounds
of an infeasible model and refine the conflict to report to you aminimal conflict to repair
yourself. For more about this approach, see Diagnosing Infeasibility by Refining Conflicts
on page 347.

For more about these and other ways of overcoming infeasibility, see Diagnosing LP
Infeasibility on page 175.

Solution Quality

The ILOG CPLEX optimizer uses finite precision arithmetic to compute solutions. To
compensate for numeric errors due to this convention, tolerances are used by which the
computed solution is allowed to violate feasibility or optimality conditions. Thus the
solution computed by the so1ve method may in fact dightly violate the bounds specified in
the model, for example. You can call:

IloNum violation = cplex.getQuality(IloCplex::MaxPrimalInfeas) ;

to query the maximum bound violation among all variables and slacks. If you are also
interested in the variable or constraint where the maximum violation occurs, call instead:

IloRange maxrange;

IloNumVar maxvar;

IloNum violation = cplex.getQuality(IloCplex::MaxPrimalInfeas,
&maxrange,
&maxvar) ;

ILOG CPLEX will copy the variable or constraint handle in which the maximum violation
OCCUrsto maxvar Of maxrange and make the other handle an empty one. The maximum
primal infeasibility is only one example of awealth of quality measures. Thefull list is
defined by the nested enumeration type I1oCplex: :Quality. All of these can beused asa

ILOG CPLEX 10.0 — UsSER’'S MANUAL

parameter for the getQuality methods, though some measures are not available for all
optimizer option choices. A list of solution qualities appearsin the ILOG CPLEX Reference
Manual, Callable Library and C++ API, asthe group optim.cplex.solutionquality.

Modifying a Model

In some applications you may want to solve the modification of another model, in order, for
example, to analyze a scenario or to make adaptations based on the solution of the first
model. To do this, you do not have to start a new model from scratch, but instead you can
take an existing model and change it to your needs. To do so, call the modification methods
of the individual modeling objects.

When an extracted model is modified, the modification is tracked in the cplex object
through notification. Whenever a modification method is called, cplex objectsthat have
extracted the model are notified about it. The cplex objects then track the modification in
their internal data structures.

Not only does ILOG CPLEX track all modifications of the model it has extracted, but also it
tries to maintain as much solution information from a previous invocation of solve asis
possible and reasonable.

You have already encountered what is perhaps the most important modification method, that
is, the method T11oModel : : add for adding modeling objects to a model. Conversely, you
may call I1oModel: : remove to remove a modeling object from a model.

Objective functions can be modified by changing their sense and by editing their expression,
or by changing their expression compl etely.

Similarly, the bounds of constraints and their expressions can be modified.

For acomplete list of supported modifications, see the documentation of the individual
modeling objects in the reference manual .

Deleting and Removing Modeling Objects

A special type of modification is that of deleting a modeling object by calling itsend
method. Consider, for example, the deletion of avariable. What happens if the variable you
delete has been used in constraints or in the objective function, or has been extracted to
ILOG CPLEX?If you call its end method, Concert Technology carefully removes the
deleted variable from all other modeling objects and algorithms that may keep areferenceto
the variable in question. This applies to any modeling object to be removed. However,
user-defined handles to the removed variable are not managed by Concert Technol ogy.
Instead, it is up to the user to make sure that these handles are not used after the deletion of
the modeling object. The only operation allowed then is the assignment operator.

ILOG CPLEX 10.0 — USER’'S MANUAL 57

58

Concert Technology also provides away to remove a modeling object from al other
modeling objects and algorithms exactly the same way as when deleting it, yet without
deleting the modeling object: call the method removeFromall. This method may be helpful
to temporarily remove a variable from your model while keeping the option to add it back
later.

It isimportant to understand the difference between calling end and calling

model . remove (ob7j) for an object obj. Inthe case of acall to remove, obj ishot
necessarily removed from the problem ILOG CPLEX maintains. Whether or not anything
appears to happen depends on whether the removed object is referenced by yet another
extracted modeling object. For example, when you add a modeling object, such as a ranged
constraint, to amodel, all the variables used by that modeling object implicitly become part
of the model as well. However, when you remove that modeling object (for example, that
ranged constraint), those variables are not implicitly removed because they may be
referenced by other elements (such as the objective function or abasis, for example). For
that reason, variables can be explicitly removed from a model only by acall to itsend
member function.

Usually when a constraint is removed from the extracted model, the constraint is also
removed from ILOG CPLEX aswell, unlessit was added to the model more than once.

Consider the case where avariable is removed from ILOG CPLEX after one of the end or
remove operations. If the cplex object contains a simplex basis, by default the status for
that variable is removed from the basis as well. If the variable happens to be basic, the
operation corruptsthe basis. If thisis not desired, ILOG CPLEX provides adelete mode that
first pivots the variable out of the basis before removing it. The resulting basisis not
guaranteed to be feasible or optimal, but it will still constitute avalid basis. To select this
mode, call the method:

cplex.setDeleteMode (I1loCplex: :FixBasis) ;

Similarly, when removing a constraint with the FixBasis delete mode, ILOG CPLEX will
pivot the corresponding slack or artificial variable into the basis before removing it, to make
sure of maintaining avalid basis. In either case, if no valid basis was available in the first
place, no pivot operation is performed. To set the del ete mode back to its default setting,
call:

cplex.setDeleteMode (IloCplex: :LeaveBasis) ;

Changing Variable Type

The type of avariable cannot be changed by calling modification methods. Instead, Concert
Technology provides the modeling class I1oConversion, the objects of which allow you
to override the type of avariablein amodel. Thisdesign alows you to use the same variable
in different models with different types. Consider for example mode11 containing integer
variable x. You can then create mode12, asacopy of model1, that treats x as a continuous
variable, with the following code:

ILOG CPLEX 10.0 — UsSER’'S MANUAL

IloModel model2 (env) ;
model2.add (modell) ;
model2.add (IloConversion(env, x, ILOFLOAT)) ;

A conversion object, that is, an instance of T1oConversion, can specify atypeonly for a
variable that isin amodel. Converting the type more than once is an error, because thereis
no rule about which would have precedence. However, this convention is not too restrictive,
since you can remove the conversion from amodel and add a new one. To remove a
conversion from amodel, use the method 11oExtractable: : end. To add a new one, use
the method11oModel : : add. For asample of code using these methods in this procedure,
see the documentation of the class 11oConversion inthe ILOG CPLEX C++ Reference
Manual.

Handling Errors

In Concert Technology two kinds of errors are distinguished:
1. Programming errors, such as:
. accessing empty handle objects;
. mixing modeling objects from different environments;
. accessing Concert Technology array elements beyond an array’s size; and
. passing arrays of incompatible size to functions.

Such errors are usually an oversight of the programmer. After they are recognized and
fixed thereisusually no danger of corrupting an application. In a production application,
it is not necessary to handle these kinds of errors.

In Concert Technology such error conditions are handled using assert statements. |f
compiled without - DNDEBUG, the error check is performed and the code aborts with an
error message indicating which assertion failed. A production application should then be
compiled with the -DNDEBUG compiler option, which removes al the checking. In other
words, no CPU cycles are consumed for checking the assertions.

2. Runtime errors, such as memory exhaustion.

A correct program assumes that such failures can occur and therefore must be treated,
even in a production application. In Concert Technology, if such an error condition
occurs, an exception is thrown.

All exceptions thrown by Concert Technology classes (including 11oCplex) are derived
from 11oException. Exceptionsthrown by algorithm classes such as 11oCplex are
derived from its child class T1oalgorithm: : Exception. The most common exceptions
thrown by ILOG CPLEX are derived from I1loCplex: : Exception, achild class of
IloAlgorithm: :Exception.

ILOG CPLEX 10.0 — USER’'S MANUAL 59

60

Objects of the exception class 11oCplex: : Exception correspond to the error codes
generated by the ILOG CPLEX Callable Library. The error code can be queried from a
caught exception by calling method:

IloInt IloCplex::Exception::getStatus() const;

The error message can be queried by calling method:

const char* IloException::getMessage() const;

which is avirtual method inherited from the base class 11oException. If you want to
access only the message for printing to a channel or output stream, it is more convenient to
use the overloaded output operator (operator<<) provided by Concert Technology for
IloException.

In addition to exceptions corresponding to error codes from the C Callable Library, acplex
object may throw exceptions pertaining only to 11ocplex. For example, the exception
IloCplex: :MultipleObjException isthrown if amode isextracted containing more
than one objective function. Such additional exception classes are derived from class
IloCplex: : Exception; objects can be recognized by a negative status code returned
when calling method getStatus.

In contrast to most other Concert Technology classes, exception classes are not handle
classes. Thus, the correct type of an exceptionislost if it is caught by value rather than by
reference (that is, using catch (IloException& e) {...}). Thisisone reason that
catching 11oException objects by referenceisagood idea, as demonstrated in al
examples. See, for example, ilodiet . cpp. Some derived exceptions may carry
information that would be lost if caught by value. So if you output an exception caught by
reference, you may get a more precise message than when outputting the same exception
caught by value.

There is a second reason for catching exceptions by reference. Some exceptions contain
arrays to communicate the reason for the failure to the calling function. If thisinformation
were lost by calling the exception by value, method end could not be called for such arrays
and their memory would be leaked (until env . end iscalled). After catching an exception by
reference, calling the exception’s method end will free all the memory that may be used by
arrays (or expressions) of the actual exception that was thrown.

In summary, the preferred way of catching an exception is:
catch (IloException& e) {
e.end() ;
}

where I1oException may be substituted for the desired Concert Technology exception
class.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Example: Optimizing the Diet Problem in C++

The optimization problem solved in this example isto compose adiet from a set of foods, so
that the nutritional requirements are satisfied and the total cost is minimized. The example
ilodiet . cpp illustrates these procedures:

[Creating a Model Row by Row on page 61;

[Creating a Model Column by Column on page 62;
[Creating Multi-Dimensional Arrays with IloArray on page 63;
[—Wsing Arrays for Input/Output on page 63;

[—Jolving the Model with I1oCplex on page 65.

Problem Representation

The problem contains a set of foods, which are the modeling variables; a set of nutritional
reguirements to be satisfied, which are the constraints; and an objective of minimizing the
total cost of the food. There are two ways of looking at this problem:

[_The problem can be modeled by rows, by entering the variablesfirst and then adding the
constraints on the variables and the objective function.

[_The problem can be modeled by columns, by constructing a series of empty constraints
and then inserting the variables into the constraints and the objective function.

Concert Technology is equally suited for both kinds of modeling; in fact, you can even mix
both approachesin the same program. If anew food product is created, you can create anew
variablefor it regardless of how the model was originally built. Similarly, if anew nutrientis
discovered, you can add a new constraint for it.

Creating a Model Row by Row

You walk into the store and compile alist of foods that are offered. For each food, you store
the price per unit and the amount in stock. For some foods that you particularly like, you
aso set aminimum amount you would like to use in your diet. Then, for each of the foods,
you create amodeling variable to represent the quantity to be purchased for your diet.

Now you get a nutrition book and look up which nutrients are known and relevant for you.
For each nutrient, you note the minimum and maximum amounts that should be found in
your diet. Also, you go through the list of foods and determine how much afood item will
contribute for each nutrient. This gives you one constraint per nutrient, which can naturally
be represented as a range constraint in pseudo-code like this:

nutrMin[i] <= sum_j (nutrPer[i] [j] * Buyl[j]l) <= nutrMax[i]

ILOG CPLEX 10.0 — USER’'S MANUAL 61

62

where 1 represents the number of the nutrient under consideration, nutrMin [1] and
nutrMax [i] the minimum and maximum amount of nutrient 1 and nutrpPer[i] [] the
amount of nutrient i infood 5.

Finally, you specify your objective function in pseudo-code like this:

minimize sum j (cost[j] * Buyl[jl)

The loop in the example combines those two ideas and looks like this:

mod.add (IloMinimize (env, IloScalProd(Buy, foodCost))) ;
for (i = 0; 1 < m; i++)
IloExpr expr (env) ;
for (§ = 0; F < n; j++) {
expr += Buy[j] * nutrPer[i] [j];

mod.add (nutrMin[i] <= expr <= nutrMax[i]) ;
expr.end () ;

Thisway of creating the model appears in the function buildmModelByRow, in the example
ilodiet.cpp.

Creating a Model Column by Column

You start with the nutrition book where you compile the list of nutrients that you want to
make sure are properly represented in your diet. For each of the nutrients, you create an
empty constraint:

nutrMin[i] £ ... < nutrMax[i]

where . . . isleft to befilled once you walk into the store. Also, you set up the objective
function to minimize the cost. Constraint i isreferred to as range [i] and to the objective
ascost.

Now you walk into the store and, for each food, you check the price and nutritional content.
With this data you create a variable representing the amount you want to buy of the food
type and install the variable in the objective function and constraints. That is, you create the
following column in pseudo code, like this:

cost (foodCost [j]) "+" "sum i" (range[i] (nutrPer[i] [j]))

where the notation + and sum indicate in pseudo code that you add the new variable 5 to the
objective cost and constraints range[i]. The value in parentheses is the linear coefficient
that is used for the new variable. This notation is similar to the syntax actually used in

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Concert Technology, as demonstrated in the function buildModelByColumn, in the
example ilodiet . cpp.

for (§ = 0; F < n; j++) {
IloNumColumn col = cost (foodCost[j]);
for (i = 0; 1 < m; i++)
col += range[i] (nutrPer[i] [j]);
}
Buy.add (IloNumVar (col, foodMin[j], foodMax[j]l, type));
col.end() ;

}

Creating Multi-Dimensional Arrays with lloArray

All data defining the problem are read from afile. The nutrients per food are stored in a
two-dimensiona array, IloNumArray?2.

Application Description

Inilodiet.cpp, themain part of the application starts by declaring the environment and
terminates by calling the method end for that environment. The code in between is
encapsulated in atry block that catches all Concert Technology exceptions and prints them
to the C++ error stream cerr. All other exceptions are caught as well, and a simple error
message isissued. Thefirst action of the program is to evaluate command-line options and
call the function usage in cases of misuse.

Note: In such cases, an exception isthrown. This practice makes sure that env.end is
called before the program is ter minated.

Using Arrays for Input/Output

If al goeswell, theinput fileis opened in thefile i st ream. After that, the arrays for
storing the problem data are created by declaring the appropriate variables. Then the arrays
arefilled by using the input operator with the data file. The data is checked for consistency
and, if it fails, the program is aborted, again by throwing an exception.

After the problem data has been read and verified, it istime to build the model. To do so,
construct the model object with this declaration:

IloModel mod (env) ;

The array Buy is created to store the modeling variables. Since the environment is not passed
to the constructor of Buy, an empty handle is constructed. So at this point the variable Buy
cannot be used.

Depending on the command-line option, either buildMethodByRow Of
buildMethodByColumn iscalled. Both create the model of the diet problem from the input
dataand return an array of modeling variables as an instance of the class I11oNumvarArray.

ILOG CPLEX 10.0 — USER’'S MANUAL 63

64

At that point, Buy is assigned to an initialized handle containing all the modeling variables
and can be used afterwards.

Building the Model by Row

The model is created by rows using the function buildModelByRow. It first getsthe
environment from the model object passed to it. Then the modeling variables Buy are
created. Instead of calling the constructor for the variables individually for each variable,
create the full array of variables, with the array of lower and upper bounds and the variable
type as parameter. In this array, variable Buy [1] is created such that it haslower bound
foodMin [i], upper bound foodMax [1], and type indicated by type.

The statement:

mod.add (IloMinimize (env, IloScalProd(Buy, foodCost)));

creates the objective function and adds it to the model. The 110Scalprod function creates
theexpresson>j (Buy![j] * foodCost [§]) which isthen passed to the function
IloMinimize. That function creates and returnsthe actual 1100bjective object, whichis
added to the model with the call mod . add.

The following loop creates the constraints of the problem one by one and adds them to the
model. First the expression 25 (Buy[j] * nutrPer[i] [§]) iscreated by building a
Concert Technology expression. An expression variable expr of type 11oExpr is created,
and linear terms are added to it by using operator+= inaloop. The expression isused with
the overloaded operator<= to construct a range constraint (an I1orRange object) whichis
added to the model:

mod.add (nutrMin[i] <= eXpr <= nutrMax[i]);

After an expression has been used for creating a constraint, it is deleted by acall to
expr .end.

Finally, the array of modeling variables Buy isreturned.

Building the Model by Column

The function buildModelByColumn implements the creation of the model by columns. It
begins by creating the array of modeling variables Buy of size 0. Thisislater populated
when the columns of the problem are created and eventually returned.

The statement:

IloObjective cost = IloAdd(mod, IloMinimize (env)) ;

creates a minimization objective function object with 0 expressions and adds it to the model.
The objective object is created with the function I11oMinimize. The template function
I1oadd isused to add the objective as an object to the model and to return an objective
object with the same type, so that the objective can be stored in the variable cost. The
method I1oModel : : add returns the modeling object asan I1oExtractable, which
cannot be assigned to a variable of aderived class such as 11o0bjective. Similarly, an

ILOG CPLEX 10.0 — UsSER’'S MANUAL

array of range constraints with O (zero) expressionsis created, added to the model, and
stored in the array range.

In the following loop, the variables of the model are created one by onein columns; thus, the
new variables are immediately installed in the model. An I1oNumColumn oObject col is
created and initialized to define how each new variable will be appended to the existing
objective and constraints.

The 11oNumColumn object col isinitialized to contain the objective coefficient for the new
variable. Thisis created with cost (foodCost [§1), that is using the overloaded
operator () for Iloobjective. Next, an I1oNumColumn Object is created for every
congtraint, representing the coefficient the new variable has in that constraint. Again these
IloNumColumn Objects are created with the overloaded operator (), thistime of
IloRange. The I1oNumColumn Objects are merged together to an aggregate
IloNumColumn Object using operator +=. The coefficient for row i is created with
range[i] (nutrPer[i] [§1), which callsthe overloaded operator () for I1orange
objects.

When acolumn is completely constructed, a new variableis created for it and added to the
array of modeling variables Buy. The construction of the variable is performed by the
constructor:

IloNumVar (col, foodMin[j], foodMaxI[j]l, type)

which creates the new variable with lower bound foodMin [§1, upper bound foodMax []
and type type, and adds it to the existing objective and ranges with the coefficients
specified in column col. After creating the variable for this column, the 11oColumn object
isdeleted by calling col . end.

Solving the Model with lloCplex

After the model has been populated, it istime to create the cplex object and extract the
model to it by caling:

IloCplex cplex(mod) ;

It isthen ready to solve the model, but for demonstration purposes the extracted model will
first be written to thefile diet . 1p. Doing so can help you debug your model, as the file
contains exactly what ILOG CPLEX sees. If it does not match what you expected, it will
probably help you locate the code that generated the wrong part.

The model isthen solved by calling method solve. Finaly, the solution status and solution
vector are output to the output channel cplex.out. By default this channel isinitialized to
cout. All logging during optimization is also output to this channel. To turn off logging, you
would set the out stream of cplex to anull stream by calling

cplex.setOut (env.getNullStream()).

ILOG CPLEX 10.0 — USER’'S MANUAL 65

66

Complete Program

The complete program ilodiet . cpp isavailable onlinein the standard distribution at
yourCPLEXinstallation/examples/src.

Notes:

Al the definitions needed for an ILOG CPLEX Concert Technology application are
imported by including thefile <ilcplex/ilocplex.hs>.

[Theline ILOSTLBEGIN isa macro that is needed for portability. Microsoft Visual C++
code varies, depending on whether you use the STL or not. This macro allows you to
switch between both types of code without the need to otherwise change your source
code.

[_Thefunction usage iscalled in case the program is executed with incorrect command
line arguments.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

ILOG Concert Technology for Java Users

This chapter explores the features ILOG CPLEX offers to Java users to solve mathematical
programming problems. The chapter offers an overview of the architecture, and then
explains techniques for creating models with ranged constraints and for creating objective
functions. These elements are then used to build and solve the diet problem.

[Architecture of a CPLEX Java Application on page 68

[Modeling an Optimization Problem with Concert Technology on page 70
[Building the Model on page 75

[Jolving the Model on page 77

[Accessing Solution Information on page 78

[Choosing an Optimizer on page 79

[Controlling ILOG CPLEX Optimizers on page 82

[More Solution Information on page 84

[Advanced Modeling with IloLPMatrix on page 87

[Modeling by Column on page 88

[_Example: Optimizing the Diet Problemin Java on page 89

ILOG CPLEX 10.0 — USER’'S MANUAL 67

Architecture of a CPLEX Java Application

68

A user-written application first creates an 11oCplex object. It then uses the Concert
Technology modeling interface implemented by 11oCplex to create the variables, the
congtraints, and the objective function of the model to be solved. For example, every
variable in amodel is represented by an object that implements the Concert Technology
variable interface 11oNumvar. The user code accesses the variable only through its Concert
Technology interface. Similarly, all other modeling objects are accessed only through their
respective Concert Technology interfaces from the user-written application, while the actua
objects are maintained in the ILOG CPLEX database.

Figure 2.1 illustrates how an application uses Concert Technology, IloCplex, andthe
ILOG CPLEX internas. The Javainterfaces, represented by the dashed outline, do not
actually consume memory. The ILOG CPLEX interna sinclude the computing environment,
its communication channels, and your problem objects.

For users familiar with object-oriented design patterns, this design isthat of afactory, where
IloCplex isafactory for modeling objects. The advantage of such adesign isthat code
which creates amodel using the Concert Technology modeling interface can be used not
only with T1ocplex, but aso with any other factory class, for instance 11osolver. This
allowsyou to try different ILOG optimization technologies for solving your model.

User-Written Application

|

|

| Concert Technology |
| modeling interfaces | lloCplex

|

|

ILOG CPLEX internals

Figure2.1 A View of Concert Technology for Java Users

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Licenses

ILOG CPLEX runs under the control of the ILOG License Manager (ILM). Before you can
run any application program that calls ILOG CPLEX, you must have established avalid
license that it can read. Licensing instructions are provided to you separately when you buy
or upgrade ILOG CPLEX. Contact your local ILOG support department if thisinformation
has not been communicated to you or if you find that you need help in establishing your
ILOG CPLEX license. For details about contacting ILOG support, click "Customer
Support" at the bottom of the first page of ILOG CPLEX online documentation.

Compiling and Linking

Compilation and linking instructions are provided with the files that come in the standard
distribution of ILOG CPLEX for your computer platform. Check the file readme . html for
details.

Creating a Java Application with Concert Technology

This chapter covers the steps most Java applications are likely to follow.

First, create amodel of your problem with the modeling facilities of Concert Technology.
Modeling an Optimization Problem with Concert Technology on page 70 offers an
introduction to creating amodel. Building the Model on page 75 goes into more detail.

When the model isready to be solved, hand it over to ILOG CPLEX for solving. Solving the
Model on page 77 explains how to do so. It includes a survey of the 11ocplex interface for
controlling the optimization. Individual controls are discussed in the chapters explaining the
individual optimizers.

Accessing Solution Information on page 78 shows you how to access and interpret results
from the optimization after solving the model.

After analyzing the results, you may want to make changes to the model and study their
effect. Modifying the Model on page 90 explains how to make changes and how ILOG
CPLEX dealswith them in the context of the diet problem.

Example: Optimizing the Diet Problemin Java on page 89 presents a complete program.

Not covered in this chapter are advanced features, such as the use of goals or callbacks for
querying data about an ongoing optimization and for controlling the optimization itself.
Goals, callbacks, and other advanced features are discussed in Advanced Programming
Techniques on page 373.

ILOG CPLEX 10.0 — USER’'S MANUAL 69

Modeling an Optimization Problem with Concert Technology

An optimization problem is represented by a set of interconnected modeling objects in an
instance of T1oCplex Or T1oCplexModeler. Modeling objectsin Concert Technology are
objects of type 11oNumvar and its extensions, or I1oAddable and its extensions. Since
these are Javainterfaces and not classes, objects of these types cannot be created explicitly.
Rather, modeling objects are created using methods of an instance of 11oModeler oOr one
of its extensions, such as I11oMPModeler OF I1oCPModeler.

Notes:

The class l1loCplex extends IloCplexModel er. All the modeling methodsin IloCplex derive
from IloCplexModel er. [1oCplex implements the solving methods.

The class IloCplexModeler, which implements IloMPModeler, makes it possible for a user
to build models in a Java application as pure Java objects, without using the class
IloCplex.

In particular, a model built with lloCplexModeler using no instance of 110Cplex does not
require loading of the CPLEX.dIl nor any shared library.

Furthermore, IloCplexModeler is serializable. For example, a user may develop a pure
Java application that builds a model with IloCplexModeler and sends the model and
modeling objects off to an optimization server that uses [loCplex.

The example CplexServer.java shows you how to write an optimization server that accepts
pure Java model taking advantage of the class IloCplexModeler in a native J2EE client
application.

This discussion concentrates on I1oModeler and I1oMPModeler because the classes
IloCplex and IloCplexModeler implement theseinterfacesand thusinherit their
methods. To create a new modeling object, you must first createthe 11oModeler which will
be used to create the modeling object. For the discussion here, the model will be an instance
of T1oCplex, and it iscreated like this:

IloCplex cplex = new IloCplex() ;

Since class 11oCplex implements 11oMPModeler (and thusits parent interface
IloModeler) al methodsfrom r1oMPModeler and I1oModeler can be used for building
amodel. I1loModeler definesthe methodsto:

. create modeling variables of type integer, floating-point, or Boolean;
. construct simple expressions using modeling variables;
. create objective functions; and

. create ranged constraints, that is, constraints of the form:

lowerbound < expression < upperbound

70 ILOG CPLEX 10.0 — USER’'S MANUAL

Models that consist only of such constructs can be built and solved with any ILOG optimizer
implementing the 11oModeler interface, including 11ocplex, which implementsthe
IloMPModeler extension.

The 11oMPModeler interface extends 11oModeler by adding functionality specific to
mathematical programming applications. This functionality includes these additional
modeling object types:

- semi-continuous variables;
. special ordered sets; and
. piecewiselinear functions.
It also includes these modeling features to support specific needs:
. change of type for previously declared variables;
. modeling by column; and

- general manipulations of model entities.

Table 2.1 recapitul ates those observations about the interfaces of ILOG CPLEX with
Concert Technology for Java users.

Table2.1 Modeling Classes of ILOG CPLEX with Concert Technology for Java Users

To Model This

Use an Object of This Class or Interface

variable

IloNumVar and its extensions IloIntVar and I1loSemiContVar

range constraint

IloRange With (piecewise) linear or quadratic expressions

other relational constraint IloConstraint of the form exprl relation expr2, where both expressions are

linear or quadratic and may optionally contain piecewise linear terms.

LP matrix

IloLPMatrix

linear or quadratic objective | IloObjective with (piecewise) linear or quadratic expressions

variable type-conversion IloConversion

special ordered set

I1oS0S1 or I10S0S2

logical constraints

I1lo0r, I1loAnd, and methods such as not

For an explanation of quadratic constraints, see Solving Problems with Quadratic
Constraints (QCP) on page 225. For more information about quadratic objective functions,
see Solving Problems with a Quadratic Objective (QP) on page 213. For exampl es of
piecewise linear constraints, see Using Piecewise Linear Functions in Optimization:

a Transport Example on page 293. For a description of special ordered sets, see Using
Foecial Ordered Sets (SOS) on page 285. For more about logical constraints, see

Logical Constraints in Optimization on page 305.

ILOG CPLEX 10.0 — USER’'S MANUAL 71

72

Using lloModeler

IloModeler defines an interface for building optimization models. This interface defines
methods for constructing variable, constraint, and objective function objects.

Modeling Variables

A modeling variable in Concert Technology is represented by an object of type I1oNumvar
or one of its extensions. You can choose from a variety of methods defined in I1oModeler
and r1oMPModeler to create one or multiple modeling variable objects. An example of the
method is:

IloNumVar x = cplex.numVar (lb, ub, IloNumVarType.Float, "xname");

This constructor method allows you to set all the attributes of avariable: itslower and upper
bounds, its type, and its name. Names are optional in the sense that nu11 strings are
considered to be valid aswell.

The other constructor methods for variables are provided mainly for ease of use. For
example, because names are not frequently assigned to variables, all variable constructors
come in pairs, where one variant requires a name string as the last parameter and the other
one does not (defaulting to anull string).

Integer variables can be created by the intvar methods, and do not require the type
IloNumVarType . Int to be passed, asthisisimplied by the method name. The bound
parameters are al so specified more consistently asintegers. These methods return objects of
type IloIntVar, an extension of interface 11oNumvar that allows you to query and set
bounds consistently using integers, rather than doubles as used for 11oNumvar.

Frequently, integer variables with 0/1 bounds are used as decision variables. To help create
such variables, the boolvar methods are provided. In the Boolean type, o (zero) and 1 (one)
areimplied, so these methods do not need to accept any bound values.

For al these constructive methods, there are al so equival ent methods for creating acomplete
array of modeling variables at one time. These methods are called numvararray,
intVarArray, and boolVarArray.

Building Expressions

Modeling variables are typically used in expressions that define constraints or objective
functions. Expressions are represented by objects of type 11oNumExpr. They are built using
methods such as sum, prod, diff, negative, and square. For example, the expression

x1 + 2*x2
where x1 and x2 are I1oNumvar objects, is constructed by calling:

IloNumExpr expr = cplex.sum(xl, cplex.prod(2.0, x2));

It followsthat asingle variable is a special case of an expression, since I1loNumvar iSan
extension of I1oNumExpr.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

The special case of linear expressions is represented by objects of type
IloLinearNumExpr. Such expressions are editable, which is especially convenient when
building up linear expressionsin aloop, like this:

IloLinearNumExpr lin = cplex.linearNumEXpr () ;

for (int 1 = 0; 1 < num; ++1i)
lin.addTerm(value[i], variablel[i]) ;

It should be noted that the special case of the scalar product of an array of values with an
array of variablesisdirectly supported through the method scalprod. Thus the above loop
can be rewritten as:

IloLinearNumExpr lin = cplex.scalProd(value, variable) ;
It is recommended that you build expressionsin terms of datathat is either integer or
double-precision (64 bit) floating-point. Single-precision (32 bit) floating-point data should
be avoided as it can result in unnecessarily ill-conditioned problems. For more information,
refer to Numeric Difficulties on page 170.

Ranged Constraints
Ranged constraints are constraints of theform: 1b < expression< ub and are
represented in Concert Technology by objects of type 11orange. The most general
constructor is:

IloRange rng = cplex.range (lb, expr, ub, name);
where 1b and ub are double values, expr is of type I1oNumExpr, and name iSastring.
By choosing the range bounds appropriately, ranged constraints can be used to model any of
the more commonly found constraints of the form:

expr relation rhs,

where relation istherelation=, <, or >. The following table shows how to choose 1b and
ub for modeling these relations:

relation Ib ub method
= rhs rhs eq
< -Double.MAX VALUE rhs le
> rhs Double.MAX VALUE ge

The last column contains the method provided with T1oModeler to use directly to create
the appropriate ranged constraint, when you specify the expression and right-hand side
(RHS). For example, the constraint expr < 1.0 iscreated by calling

IloRange le = cplex.le(expr, 1.0);

Again, al constructors for ranged constraints come in pairs, one constructor with and one
without a name parameter.

ILOG CPLEX 10.0 — USER’'S MANUAL 73

74

Objective Functions

The objective function in Concert Technology is represented by objects of type
I1loObjective. Such objects are defined by an optimization sense, an expression, and an
optional name. The objective expression is represented by an I1oNumExpr. The objective
sense is represented by an object of class 11o00bjectiveSense and can take two values,
IloObjectiveSense.Maximize Of IloObjectiveSense.Minimize. The most genera
constructor for an objective function object is:

IloObjective obj = cplex.objective (sense, expr, name) ;

where sense iSOf type I1o0bjectiveSense, expr iSOf type I1oNumExpr, and name isa
string.

For convenience, the methods maximize andminimize areprovided to create a
maximization or minimization objective respectively, without using an
IloObjectiveSense parameter. Names for objective function objects are optional, so all
constructor methods come in pairs, one with and one without the name parameter.

The Active Model

Modeling objects, constraints and objective functions, created as explained in Using
IloModeler on page 72, are now added to the active model. The active model is the model
implemented by the T1oCplex object itself. Infact, 11oModeler is an extension of the
IloModel interface defining the model API. Thus, I1oCplex implements I1oModel, OF in
other words, an 11oCplex object isamodel. The model implemented by the 11oCplex
object itself isreferred to as the active model of the 11ocplex object, or if thereisno
possibility of confusion between several optimizers, simply as the active model.

A model isjust aset of modeling objects of type I1oAddable such as I1o0bjective and
IloRange. Objects of classesimplementing thisinterface can be added to an instance of
IloModel. Other 11oAddable objects usable with T1oCplex are I1oLPMatrix,
IloConversion, I10S0S1, and I10s0s2. These will be covered in the 11oMPModeler
section.

Variables cannot be added to a model because 11oNumvar is not an extension of
IloAddable. All variablesused by other modeling objects (11oaddable objects) that have
been added to amodel areimplicitly part of this optimization model. The explicit addition of
avariable to amodel can thus be avoided.

During modeling, atypical sequence of operationsisto create a modeling object and
immediately add it to the active model. To facilitate this, for most constructors with a name
such as constructorName, thereis also amethod addconstructorName which
immediately adds the newly constructed modeling object to the active model. For example,
the call

IloObjective obj = cplex.addMaximize (expr) ;

isequivalent to

ILOG CPLEX 10.0 — UsSER’'S MANUAL

IloObjective obj = cplex.add(cplex.maximize (expr)) ;

Not only do the add ConstrucorName methods simplify the program, they are also more
efficient than the two equivalent calls because an intermediate copy can be avoided.

Building the Model

All the building blocks are now in place to implement a method that creates a model. The
diet problem consists of finding the least expensive diet using a set of foods such that all
nutritional requirements are satisfied. The example in this chapter builds the specific diet
model, chooses an optimizing algorithm, and shows how to access more detailed
information about the solution.

The example includes a set of foods, where food 5 has a unit cost of foodcost [§1. The
minimum and maximum amount of food j which can be used in the diet is designated
foodMin [§] and foodMax [§], respectively. Each food 5 also has a nutritional value
nutrPerFood[i] [§] for al possible nutrients i. The nutritional requirement states that in
the diet the amount of every nutrient i consumed must be within the bounds nut rMin [1]
and nutrMax [i].

Mathematically, this problem can be modeled using a variable Buy [§]1 for each food 5
indicating the amount of food j to buy for the diet. Then the objectiveis:

minimize Zj (Buy[j] * foodCost[j])

The nutritional requirements mean that the following conditions must be observed; that is,
forall i:

nutriMin[i] < Zi nutrPerFood[i] [j] * Buy[j] SnutriMax[i]
Finally, every food must be within its bounds; that is, for all §:

foodMin[j] €£Buy[j] £ foodMax[j]

ILOG CPLEX 10.0 — USER’'S MANUAL 75

76

With what you have learned so far, you can implement a method that creates such a model.

static void buildModelByRow (IloModeler model,
Data data,
IloNumVar [] Buy,

IloNumVarType type)
throws IloException {
int nFoods
int nNutrs

data.nFoods;
data.nNutrs;

for (int j = 0; j < nFoods; j++) {
Buy[j] = model.numVar (data.foodMin([j], data.foodMax[j], type);

model .addMinimize (model.scalProd(data.foodCost, Buy)) ;

for (int i = 0; i < nNutrs; i++) {
model .addRange (data.nutrMin[i],
model.scalProd(data.nutrPerFood[i], Buy),
data.nutrMax[i]) ;

The function receives several parameters. The parameter model is used for two things:
[areating other modeling objects, and
[nepresenting the model being created.

The argument data contains the data for the model to be built. The argument Buy isan
array, initialized to length data . nFoods, containing the model's variables. Finaly,
parameter type is used to specify the type of the variables being created.

The function starts by creating the modeling variables, one by one, and storing them in
array Buy. Each variable 5 isinitialized to have bounds data. foodMin [§] and
data.foodMax [§] andto be of type type.

The variables are first used to construct the objective function expression with method
model.scalProd (foodCost, Buy). Thisexpressionisimmediately used to create the
minimization objective which is directly added to the active model by addMinimize.

In the loop that follows, the nutritional constraints are added. For each nutrient i the
expression representing the amount of nutrient in a diet with food levels Buy is computed
using model .scalProd (nutrPerFood[i], Buy). Thisamount of nutrient must be
within the ranged constraint bounds nutrMin [i] and nutrMax [1]. Thisconstraint is
created and added to the active model with addrange.

Note that function buildModelByRow USeSinterface I1oModeler rather than 11ocplex.
This alows the function to be called without change in another implementation of
IloModeler, suchas IloSolver.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Solving the Model

Once you have created an optimization problem in your active model, the I11ocplex object
isready to solveit. Thisis done, for amodel represented by cplex by calling:

cplex.solve() ;

The solve method returns a Boolean indicating whether or not a feasible solution was found
and can be queried. However, when t rue isreturned, the solution that was found may not be
the optimal one; for example the optimization may have terminated prematurely because it
ran into an iteration limit.

Additional information about a possible solution availablein the 11o0cplex object can be
queried with the method getStatus returning an IloCplex.Status object. Possible
statuses are summarized in Table 2.2.

Table2.2 Solution Satus

Return Status Active Model

Error It has not been possible to process the active model, or an
error occurred during the optimization.

Unknown It has not been possible to process the active model far
enough to prove anything about it. A common reason may be
that a time limit was reached.

Feasible A feasible solution for the model has been proven to exist.

Bounded It has been proven that the active model has a finite bound in
the direction of optimization. However, this does not imply the
existence of a feasible solution.

Optimal The active model has been solved to optimality. The optimal
solution can be queried.

Infeasible The active model has been proven to possess no feasible
solution.
Unbounded The active model has been proven to be unbounded. The

notion of unboundedness adopted by I1oCplex is
technically that of dual infeasibility; this does not include the
notion that the model has been proven to be feasible.
Instead, what has been proven is that if there is a feasible
solution with objective value z*, there exists a feasible
solution with objective value z*-1 for a minimization problem,
or z*+1 for a maximization problem.

InfeasibleOrUnbounded | The active model has been proven to be infeasible or
unbounded.

ILOG CPLEX 10.0 — USER’'S MANUAL 77

For example, an optimal status indicates that an optimal solution has been found and can
be queried, whereas an 1nfeasible statusindicates that the active model has been proven
to be infeasible. See the online ILOG CPLEX Java Reference Manual for more information
about these statuses.

More detailed information about the status of the optimizer can be queried with method
getCplexStatus returning an object corresponding to ILOG CPLEX status codes. Again
the online ILOG CPLEX Java Reference Manual contains further information about this.

Accessing Solution Information

If a solution was found with the so1ve method, it can be accessed and then queried using a
variety of methods. The objective function can be accessed by calling

double objval = cplex.getObjValue() ;
The values of individual modeling variables for the solution are accessed by calling methods
IloCplex.getValue, for example:

double x1 = cplex.getValue (varl) ;

Frequently, solution values for an array of variables are needed. Rather than having to
implement aloop to query the solution values variable by variable, the method
IloCplex.getValues isprovided to do so with only one function call:

double[] x = cplex.getValues (vars) ;
Similarly, slack values can be queried for the constraints in the active model using the
methods T1oCplex.getSlack Of IloCplex.getSlacks.
Printing the Solution to the Diet Model

This can now be applied to solving the diet problem discussed earlier, and printing its
solution.

78 ILOG CPLEX 10.0 — USER’'S MANUAL

IloCplex cplex
IloNumVar [] Buy

new IloCplex() ;
new IloNumVar [nFoods] ;

if (byColumn) buildModelByColumn (cplex, data, Buy, varType) ;
else buildModelByRow (cplex, data, Buy, varType) ;

// Solve model

if (cplex.solve()) {
System.out .println() ;
System.out.println(“Solution status = “ + cplex.getStatus());
System.out .println() ;
System.out.println(“ cost = “ + cplex.getObjValue()) ;
for (int i = 0; i < nFoods; i++) {
System.out.println(™ Buy” + i + “ = " +

cplex.getValue (Buy[i])) ;

}

System.out.println() ;

These lines of code start by creating anew I1ocCplex object and passing it, along with the
raw datain another object, either to the method buildModelByColumn or to the method
buildModelByRow. Thearray of variablesreturned by it is saved asthe array Buy. Then the
method solve is called to optimize the active model and, upon success, solution
information is printed.

Choosing an Optimizer

The algorithm used in the so1ve methods can be controlled and if necessary tailored to the
particular needs of the model. The most important control is that of selecting the optimizer.
For solving the active model, ILOG CPLEX solves one continuous relaxation or a series of
continuous relaxations.

A singleLPissolvedif I1oCplex.isMIP, I1loCplex.isQ0, and IloCplex.isQC
return false. Thisisthe caseif the active model does not include:

- integer variables, Boolean variables, or semi-continuous variables;
. gpecial ordered sets (SOS);

. piecewise linear functions among the constraints; or

. quadratic termsin the objective function or among the constraints.

IloCplex provides several optimizing algorithms to solve LPs. For more about those
optimizers, see Chapter 8, Solving LPs: Smplex Optimizers, Chapter 9, Solving LPs:
Barrier Optimizer, and Chapter 10, Solving Network-Flow Problems in this manual.

ILOG CPLEX 10.0 — USER’'S MANUAL 79

80

A single QPissolvedif both T1oCplex.isMIP and IloCplex. isQC return false and
IloCplex.isQoO returns true. Thisisthe case if the active model contains a quadratic
(and positive semi-definite) objective but does not contain:

. integer variables, Boolean variables, or semi-continuous variables;
- Quadratic terms among the constraints;

. special ordered sets; or

. piecewise linear functions among the constraints.

Asinthe case of LPs, 11oCplex provides several optimizing algorithms to solve QPs.
For more about identifying this kind of problem, see Chapter 11, Solving Problems with
a Quadratic Objective (QP).

A single QCPissolved if T1oCplex.isMIP returns false and IloCplex.isQC
returns true, indicating that it detected a quadratically constrained program (QCP). This
isthe caseif the active model contains one or more quadratic (and positive semi-definite)
constraints but does not contain:

. integer variables, Boolean variables, or semi-continuous variables;
. special ordered sets; or
. piecewiselinear functions.

IloCplex solves QCP models using the barrier optimizer. For more about this kind of
problem, see Chapter 12, Solving Problems with Quadratic Constraints (QCP), where
the special case of second order cone programming (SOCP) problemsis also discussed.

In short, an LP model has alinear objective function and linear constraints; a QP model has
a quadratic objective function and linear constraints, a QCP includes quadratic constraints,
and it may have alinear or quadratic objective function. A problem that can be represented
asLP, QP, or QCPisalso known collectively as a continuous model or a continuous
relaxation.

A series of relaxationsis solved if the active model isa MIP, which can be recognized by
IloCplex.isMIP returning true. Thisisthe caseif the model containsany of the objects
excluded for single continuous models. If a MIP contains a purely linear objective function,
(that is, 11oCplex.isQO returns false), the problem is more precisely called an MILP. If
it includes a positive semidefinite quadratic term in the objective, it is called an MIQP. If it
includes a constraint that contains a positive semidefinite quadratic term, it is called an
MIQCP. MIPs are solved using branch & cut search, explained in more detail in Chapter 13,
Solving Mixed Integer Programming Problems (MIP).

Solving a Single Continous Model

To choose the optimizer to solve a single continous model, or the first continuous relaxation
inaseries, use

ILOG CPLEX 10.0 — UsSER’'S MANUAL

IloCplex.setParam(IloCplex.IntParam.RootAlg, alg)

where alg isan integer specifying the algorithm type. Table 2.3 shows you the available
types of algorithms.

Table 2.3 Algorithm Types for RootAlg

alg Algorithm Type LP? |QP? QCP?
0 IloCplex.Algorithm.Auto yes |yes yes
1 IloCplex.Algorithm.Primal yes |yes not
available
2 IloCplex.Algorithm.Dual yes |yes not
available
3 IloCplex.Algorithm.Network yes |yes not
available
4 IloCplex.Algorithm.Barrier yes |yes yes
5 IloCplex.Algorithm.Sifting yes | not not
available available
6 IloCplex.Algorithm.Concurrent |yes |yes not
available

You are not obliged to set this parameter. In fact, if you do not explicitly cal
IloCplex.setParam(IloCplex.IntParam.RootAlg, alg),|LOG CPLEX will use
the default: 11oCplex.Algorithm.Auto. In contrast, any invalid setting, such asavalue
other than those of the enumeration, will produce an error message.

TheIloCplex.Algorithm.Sifting agorithmisnot availablefor QP. I1locCplex will
default to the T1oCplex.Algorithm.Auto Setting when the parameter
IloCplex.IntParam.RootAlgiSSetto IloCplex.Algorithm.Sifting for aQP.

Only the settings I11oCplex.Algorithm.Auto and IloCplex.Algorithm.Barrier
are available for a QCP.

Solving Subsequent Continuous Relaxations in a MIP

Parameter I1oCplex. IntParam.RootAlg aso controlsthe algorithm used for solving the
first continuous relaxation when solving a MIP. The algorithm for solving al subsequent

ILOG CPLEX 10.0 — USER’'S MANUAL 81

continous relaxations is then controlled by the parameter 11oCplex. IntParam.NodeAlg.
The algorithm choices appear in Table 2.4

Table2.4 Algorithm Types for NodeAlg

alg Algorithm Type MILP? | MIQP? MIQCP?
0 IloCplex.Algorithm.Auto yes yes yes
1 IloCplex.Algorithm.Primal yes yes not
available
2 IloCplex.Algorithm.Dual yes yes not
available
3 IloCplex.Algorithm.Network yes not not
available available
4 IloCplex.Algorithm.Barrier yes yes yes
5 IloCplex.Algorithm.Sifting yes not not
available available

Controlling ILOG CPLEX Optimizers

82

Though ILOG CPLEX defaults will prove sufficient to solve most problems, ILOG CPLEX
offersavariety of other parameters to control various algorithmic choices. ILOG CPLEX
parameters can take values of type boolean, int, double, and string. The parameters
are accessed via parameter names defined in classes I1oCplex.BooleanParam,
IloCplex.IntParam, IloCplex.DoubleParam, and IloCplex.StringParam
corresponding to the parameter type.

Parameters
Parameters are manipulated by means of T1oCplex.setParam. For example:

cplex.setParam(IloCplex.BooleanParam.PreInd, false);

sets the Boolean parameter preInd to false, instructing ILOG CPLEX not to apply
presolve before solving the problem.

Integer parameters often indicate a choice from anumbered list of possibilities, rather than a
quantity. For example, the class 11oCplex. PrimalPricing defines constants with the
integer parameters shown in Table 2.5, Constants in [loCplex.Primal Pricing for better
maintainability of the code.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Table2.5 Constantsin lloCplex.PrimalPricing

Integer Parameter | Constant in class IloCplex.PrimalPricing
0 IloCplex.PrimalPricing.Auto

1 IloCplex.PrimalPricing.Devex

2 IloCplex.PrimalPricing.Steep

3 IloCplex.PrimalPricing.SteepQStart

4 IloCplex.PrimalPricing.Full

Thus, the suggested method for setting steepest-edge pricing for use with the primal simplex

agorithm looks like this:

cplex.setParam(IloCplex.IntParam.PPriInd,
IloCplex.PrimalPricing.Steep) ;

Table 2.6 gives an overview of the classes defining constants for parameters.

Table2.6 Classeswith Parameters Defined by Integers.

class for use with parameters:

IloCplex.Algorithm IloCplex.IntParam.RootAlg
IloCplex.IntParam.NodeAlg

IloCplex.MIPEmphasis IloCplex.IntParam.MIPEmphasis
IloCplex.VariableSelect IloCplex.IntParam.VarSel
IloCplex.NodeSelect IloCplex.IntParam.NodeSel
IloCplex.DualPricing IloCplex.IntParam.DPriInd
IloCplex.PrimalPricing IloCplex.IntParam.PPriInd

Parameters can be queried with method 11oCplex.getParam and reset to their default
settings with method 11oCplex. setDefaults. The minimum and maximum value to
which an integer or double parameter can be set is queried with methods
IloCplex.getMin and IloCplex.getMax, respectively. The default value of aparameter
isobtained with T1oCplex.getDefault.

ILOG CPLEX 10.0 — USER’'S MANUAL 83

Priority Orders and Branching Directions

When CPLEX is solving aMIP, another important way for you to control the solution
processis by providing priority orders and branching directions for variables. The methods
for doing so are:

e IloCplex.setDirection,
e IloCplex.setDirections,
. IloCplex.setPriority, and

e IloCplex.setPriorities.

Priority orders and branch directions allow you to control the branching performed during
branch & cut in a static way.

Dynamic control of the solution process of MIPsis provided through goals or control
callbacks. Goals are discussed for C++ in Using Goals on page 387. Control callbacks are
discussed in Using Callbacks on page 403. (Java goas and callbacks are similar to the C++
goals and callbacks.) Goals and callbacks allow you to control the solution process when
solving MIPs based on information generated during the solution process itself. Goals and
Callbacks: a Comparison on page 421 contrasts the advantages of both.

More Solution Information

84

Depending on the model being solved and the algorithm being used, more solution
information is generated in addition to the objective value and solution values for variables
and slacks. The following sections explain how to access that additional information.

[Witing Solution Files on page 84

[—Dual Solution Information on page 85
[Basis Information on page 85

[Witing Solution Files on page 84

[Infeasible Solution Information on page 86
—Jolution Quality on page 86

Writing Solution Files

Theclass 11oCplex offersavariety of waysto write information about a solution that it has
found.

If you have used the barrier optimizer without crossover, for example, you can call the
method I1loCplex.writeVectors towrite solutioninformation into afilein VEC format.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

That format is documented in the reference manual ILOG CPLEX File Formats. The barrier
optimizer is explained in detail in Solving LPs: Barrier Optimizer on page 183.

After solving, you can call the method 11oCplex.writeMIPstart towriteaMIP basis
suitable for arestart. Thefileit writesisin MST format. That format is documented in the
reference manual |LOG CPLEX File Formats.

The method I1oCplex.exportModel Writesthe active model to afile. The format of the
file depends on the file extension in the name of thefile that your application passes as an
argument to this method. A model exported in thisway to afile can be read back into
ILOG CPLEX by means of the method T11oCplex. importModel. Both these methods are
documented more fully in the reference manual of the Java API.

Dual Solution Information

When solving an LP or QP, al the algorithms also compute dual solution information that
your application can then query. (However, no dual information is available for QCP
models.) You can access reduced costs by calling the method 11oCplex.getReducedCost
Or IloCplex.getReducedCosts. Similarly, you can access dual solution valuesfor the
ranged constraints of the active model by using the methods I11oCplex.getDual Or
IloCplex.getDuals.

Basis Information

When solving an LP using al but 11oCplex.Algorithm.Barrier without crossover, or
when solving a QP with a Simplex optimizer, basis information is available as well. Basis
information can be queried for the variables and ranged constraints of the active model using
method 11oCplex.getBasisStatus. This method returns basis statuses for the variables
or constraints using objects of type I1oCplex.BasisStatus, With possible values:

IloCplex.BasisStatus.Basic,
IloCplex.BasisStatus.AtLower,
IloCplex.BasisStatus.AtUpper, and
IloCplex.BasisStatus.FreeOrSuperbasic.

The availability of abasisfor an LP allows you to perform sensitivity analysis for your
model. Such analysistells you by how much you can modify your model without affecting
the solution you found. The modifications supported by the sensitivity analysis function
include variable bound changes, changesto the bounds of ranged constraints, and changesto
the objective function. They are analyzed by methods T1oCplex.getBoundsa,
IloCplex.getRangeSA, IloCplex.getRHSSA and IloCplex.getObjSa, r%pectively.

ILOG CPLEX 10.0 — USER’'S MANUAL 85

86

Infeasible Solution Information

Animportant feature of ILOG CPLEX isthat even if no feasible solution has been found,
(thatis, if cplex.solve returns false), someinformation about the problem can till be
queried. All the methods discussed so far may successfully return information about the
current (infeasible) solution that ILOG CPLEX maintains.

Unfortunately, there is no simple comprehensive rule about whether or not current solution
information can be queried. Thisis because by default, ILOG CPLEX uses a presolve
procedure to simplify the model. If, for example, the model is proven to be infeasible during
the presolve, no current solution is generated by the optimizer. If, in contrast, infeasibility is
only proven by the optimizer, current solution information is available to be queried. The
status returned by calling cplex.getCplexStatus may help to determine which case you
arefacing, but it is probably safer and easier to include the methods for querying the solution
within try / catch statements.

The method 11oCplex.isPrimalFeasible can be called to learn whether aprimal
feasible solution has been found and can be queried. Similarly, the method
IloCplex.isDualFeasible can be called tolearn whether a dual feasible solution has
been found and can be queried.

When an LP has been proven to beinfeasible, ILOG CPLEX provides assistance for
determining the cause of the infeasibility through two different approaches: the conflict
refiner and FeasOpt.

One approach, invoked by the method I1oCplex.refineConflict, computesaminimal
set of conflicting constraints and bounds and reports them to you for you to take action to
remove the conflict from your infeasible model. For more about this approach, see
Diagnosing Infeasibility by Refining Conflicts on page 347.

Another approach to consider is the method 11oCplex. feasoOpt to explore whether there
are modifications you can make that would render your model feasible. Repairing
Infeasibility: FeasOpt on page 179 explains that feature of ILOG CPLEX more fully, with
examples of its use.

Solution Quality

The ILOG CPLEX optimizer uses finite precision arithmetic to compute solutions. To
compensate for numeric errors due to this, tolerances are used by which the computed
solution is allowed to violate feasibility or optimality conditions. Thus the solution
computed by the so1ve method may in fact dlightly violate the bounds specified in the
active model.

IloCplex providesthe method getQuality to alow you to analyze the quality of the
solution. Several quality measures are defined in class 11oCplex.QualityType. For
example, to query the maximal bound violation of variables or slacks of the solution found
by cplex.solve cal getQuality, likethis:

ILOG CPLEX 10.0 — UsSER’'S MANUAL

IloCplex.QualityType inf =
cplex.getQuality (IloCplex.QualityType.MaxPrimalInfeas) ;

double maxinfeas = inf.getValue() ;

The variable or constraint for which this maximum infeasibility occurs can be queried by
caling inf .getNumvar Of inf .getRange, one of which returnsnu11. Not al quality
measures are available for solutions generated by different optimizers. Seethe

ILOG CPLEX Java Reference Manual for further details.

Advanced Modeling with lloLPMatrix

So far the constraints have been considered only individually as ranged constraints of type
I1loRange; this approach is known as modeling by rows. However, mathematically the
models that can be solved with T1ocplex are frequently represented as:

Minimize (or Maximize) f(x)
suchthat L < Ax<U
with these boundsL < x < U

where A isasparse matrix. A sparse matrix is onein which a significant portion of the
coefficients are zero, so algorithms and data structures can be designed to take advantage of
it by storing and working with the substantially smaller subset of honzero coefficients.

Objects of type 11oLPMatrix are provided for use with T1oCplex to express constraint
matrices rather than individual constraints. An I1oLpPMatrix object allowsyouto view a
set of ranged constraints and the variables used by them asamatrix, thatis,as. . < ax < U

Every row of an I1oLPMatrix object correspondsto an I1oRange constraint, and every
column of an T1oLPMatrix object corresponds to a modeling variable (an instance of
IloNumvar).

An IloLPMatrix object iscreated with the method LpMatrix defined in I1oMPModeler
like this:

IloLPMatrix lp = cplex.LPMatrix() ;

(or cplex.addLPMatrix toaddit immediately to the active model). The rows and columns
are then added to it by specifying the non-zero matrix coefficients. Alternatively, you can
add complete 11orange and I1oNumvar objectsto it to create new rows and columns.
When adding ranged constraints, columnswill be implicitly added for all the variablesin the
constraint expression that do not already correspond to a column of the 11oLPMatrix. The
IloLPMatrix object will make sure of consistency between the mapping of rowsto
constraints and columns to variables. For example, if aranged constraint that uses variables
not yet part of the I1oLPMatrix iSaddedtothe I11oLPMatrix, new columns will
automatically be added and associated to those variables.

ILOG CPLEX 10.0 — USER’'S MANUAL 87

See the online ILOG CPLEX Java Reference Manual for more information about
IloLPMatrix methods.

Modeling by Column

88

The concept of modeling by column modeling comes from the matrix view of mathematical
programming problems. Starting from a (degenerate) constraint matrix with al its rows but
no columns, you populate it by adding columnsto it. The columns of the constraint matrix
correspond to variables.

Modeling by column in ILOG CPLEX is not limited to 11oLPMatrix, but can be
approached through 1100bjective and I1oRange oObjects aswell. In short, for

ILOG CPLEX, modeling by column can be more generally understood as using columns to
hold aplace for new variablestoinstall in modeling objects, such as an objective or row. The
variables are created as explained in the procedure.

Procedure for Modeling by Column

Start by creating a description of how to install a new variable into existing modeling
objects. Such adescription is represented by 11oColumn objects. Individual 11oColumn
objects define how to install a new variable in one existing modeling object and are created
with one of the T1oMPModeler . column methods. Several 11oColumn objects can be
linked together (with the T11oCplex.and method) to install anew variablein all modeling
objectsin which it isto appear. For example:

IloColumn col = cplex.column(obj, 1.0).and(cplex.column(rng, 2.0));

can be used to create a new variable and install it in the objective function represented by
obj with alinear coefficient of 1.0 and in the ranged constraint rng with alinear
coefficient of 2. 0.

Once the proper column object has been constructed, it can be used to create a new variable
by passing it as the first parameter to the variable constructor. The newly created variable
will be immediately installed in existing modeling objects as defined by the T1o0Column
object that has been used. So thelline,

IloNumVar var = cplex.numVar(col, 0.0, 1.0);
creates a new variable with bounds 0. 0 and 1. 0 and immediately installs it in the objective
ob3j with linear coefficient 1. 0 and in the ranged constraint rng with linear coefficient 2. o.

All constructor methods for variables comein pairs, one with and one without a first
IloColumn parameter. Methods for constructing arrays of variables are also provided for
modeling by column. These methods take an 11oColumnarray object asaparameter that
defines how each individual new variableisto beinstalled in existing modeling objects.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Example: Optimizing the Diet Problem in Java

The problem solved in this example is to minimize the cost of a diet that satisfies certain
nutritional constraints. You might also want to compare this approach through the Java API
of ILOG CPLEX with similar applications in other programming languages:

[HExample: Optimizing the Diet Problemin C++ on page 61
[HExample: Optimizing the Diet Problemin C£NET on page 103
[HExample: Optimizing the Diet Problemin the Callable Library on page 121

This example was chosen because it is simple enough to be viewed from arow as well as
from a column perspective. Both ways are shown in the example. In this example, either
perspective can be viewed as natural . Only one approach will seem natural for many models,
but thereis no general way of determining which is more appropriate (rows or columns) in a
particular case.

The example accepts a filename and two options -c and -i as command line arguments.
Option -1 adlowsyou to create a MIP model where the quantities of foods to purchase must
be integers. Option -c can be used to build the model by columns.

The example starts by evaluating the command line arguments and reading the input data
file. The input data of the diet problem isread from afile using an object of the embedded
classpiet .Data. Itsconstructor requires afile name as an argument. Using the class
InputDataReader, it reads the data from that file. This classis distributed with the
examples, but will not be considered here as it does not use ILOG CPLEX or Concert
Technology in any specia way.

Once the data has been read, the 11oCplex modeler/optimizer is created.

IloCplex cplex
IloNumVar [] Buy

new IloCplex() ;
new IloNumVar [nFoods] ;

if (byColumn) buildModelByColumn (cplex, data, Buy, varType);
else buildModelByRow (cplex, data, Buy, varType) ;

Array T1loNumvar [] Buy iSalso created where the modeling variables will be stored by
buildModelByRow Of buildModelByColumn.

You have already seen amethod very similar to buildModelByRow. Thisfunctionis called
when bycolumn isfalse, which isthe case when the example is executed without the -c
command line option; otherwise, buildModelByColumn is caled. Note that unlike
buildModelByRow, this method requires 11oMPModeler rather than I1loModeler as
parameter since modeling by column is not available with T1oModeler.

First, the function creates an empty minimization objective and empty ranged constraints,
and adds them to the active model.

IloObjective cost = model.addMinimize () ;

ILOG CPLEX 10.0 — USER’'S MANUAL 89

IloRange[] constraint = new IloRange [nNutrs];

for (int i = 0; i < nNutrs; i++) {
constraint [1] = model.addRange (data.nutrMin[i], data.nutrMax[i]);
}

Empty means that they use a 0 expression. After that the variables are created one by one,
and installed in the objective and constraints modeling by column. For each variable, a
column object must be created. Start by creating a column object for the objective by
caling:

IloColumn col = model.column (cost, data.foodCost[j]);

The column is then expanded to include the coefficients for al the constraints using
col.and with the column objects that are created for each constraint, asin the following
loop:

0; 1 < nNutrs; i++) {
col.and(model.column (constraint [i], data.nutrPerFood[i] [j])) ;

for (int i
col

}

When the full column object has been constructed it isfinally used to create and install the
new variable using:

Buy[j] = model.numVar (col, data.foodMin[j], data.foodMax[j], type);

Once the model is created, solving it and querying the solution is straightforward. What
remains to be pointed out is the exception handling. In case of an error, ILOG CPLEX will
throw an exception of type I1oException or one of its subclasses. Thus the entire

ILOG CPLEX programisenclosed in try/catch statements. The InputDataReader Ccan
throw exceptions of type java.io.IOException Of

InputDataReader. InputDataReaderException.

Since none of these three possible exceptionsis handled elsewhere, the main function ends
by catching them and issuing appropriate error messages.

The call to the method cplex. end frees the memory that ILOG CPLEX uses.

The entire source code listing for the example isavailable aspiet . java in the standard
distribution at yourCcPLEXinstallation/examples/src.

Modifying the Model

90

An important feature of ILOG CPLEX isthat you can modify a previously created model to
consider different scenarios. Furthermore, depending on the optimization model and
algorithm used, ILOG CPLEX will save as much information from a previous solution as
possible when optimizing a modified model.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

The most important modification method is 11oModel . add, for adding modeling objectsto
the active model. Conversely, you can use I1oModel . remove to remove amodeling object
from amodel, if you have previously added that object.

When you add a modeling object such as aranged constraint to amodel, all the variables
used by that modeling object implicitly become part of the model aswell. However, when
you remove amodeling object, no variables are implicitly removed from the model. Instead,
variables can only be explicitly removed from amodel by calling 11oMPModeler.delete.
(The interface T1oMPModeler derives from the class 11oModel, among others. It is
implemented by the class 11ocplex.) Thiscall will cause the specified variablesto be
deleted from the model, and thus from all modeling objectsin the model that are using these
variables. In other words, deleting variables from a model may implicitly modify other
modeling objects in that model.

The API of specific modeling objects may provide modification methods. For example, you
can change variable bounds by using the methods 11oNumvar. setLB and
IloNumvar.setUB. Similarly, you can change the bounds of ranged constraints by using
IloRange.setLB and I1oRange.setUB.

Because not al the optimizers that implement the 11oModeler interface support the ability
to modify amodel, modification methods are implemented in 11oMPModeler. These
methods are for manipulating the linear expressions in ranged constraints and objective
functions used with I1oCplex. The methods I1oMPModeler . setLinearCoef,
IloMPModeler.setLinearCoefs, and IloMPModeler .addToExpr apply inthis
situation.

The type of avariable cannot be changed. However, it can be overwritten for a particular
model by adding an 11oConversion object, which alows you to specify new types for
variables within that model. When ILOG CPLEX finds a conversion object in the active
model, it uses the variable types specified in the conversion object instead of the original
type specified for the optimization. For example, in amodel containing the following lines,
ILOG CPLEX will only generate solutions where variable x is an integer (within
tolerances), yet the type returned by x . get Type Will remain T1oNumvarType . Float.

IloNumVar x = cplex.numVar (0.0, 1.0);
cplex.add(cplex.conversion(x, IloNumVarType.Int));

A variable can be used only in at most one conversion object, or the model will no longer be
unambiguously defined. This convention does not imply that the type of a variable can be
changed only once and never again after that. Instead, you can remove the conversion object
and add a new one to implement consecutive variabl e type changes. To remove the
conversion object, use the method 11oModel . remove.

ILOG CPLEX 10.0 — USER’'S MANUAL 91

92

ILOG CPLEX 10.0

USER'S MANUAL

ILOG Concert Technology for .NET Users

This chapter explores the features that ILOG CPLEX offersto users of C#NET through
Concert Technology. It walks you through an application based on the widely published diet
problem. It includes these topics:

[_Describe on page 94 contains the problem description.
[Model on page 96 shows how to represent the problem.
[—Jolve on page 100 demonstrates how to solve the problem and display the solution.

[®Good Programming Practices on page 101 adds other features of the working
application.

[HExample: Optimizing the Diet Problemin C#£NET on page 103 tells you where to find
the complete application and problem data.

The .NET API can be used from any progaming language in the .NET framework. This
chapter concentrates on an example using C#.NET. There are also examples of VB.NET
(Visual Basic inthe .NET framework) delivered with ILOG CPLEX in
yourCPLEXhome\examples\src. Because of their .NET framework, those VB.NET

examples differ from the traditional Visual Basic examples that may already be familiar to
some |ILOG CPLEX users.

ILOG CPLEX 10.0 — USER’'S MANUAL 93

Note: Thischapter consists of a tutorial based on a procedure-based |earning strategy. The
tutorial is built around a sample problem, availablein a file that can be opened in an
integrated devel opment environment, such as Microsoft Visual Sudio. As you follow the
stepsin the tutorial, you can examine the code and apply concepts explained in the
tutorials. Then you compile and execute the code to analyze the results. Ideally, as you
work through the tutorial, you are sitting in front of your computer with ILOG Concert
Technology for .NET users and ILOG CPLEX already installed and available in your
integrated development environment.

For hints about checking your installation of ILOG CPLEX and ILOG Concert Technology
for .NET users, seethe online manual Getting Sarted. It isalso agood ideato try the tutorial
for .NET usersin that manual before beginning this one.

Describe

94

The aim of thistutorial isbuild a simple application with ILOG CPLEX and Concert
Technology for .NET users. Thetutorial is based on the well known diet problem: to
minimize the cost of adaily diet that satisfies certain nutritiona constraints. The
conventional statement of the problem assumes dataindicating the cost and nutritional value
of each available food.

The finished application accepts a filename and two options -c and -i as command line
arguments. Option -1 allows you to create aMIP model where the quantities of foods to
purchase must be integers (for example, 10 carrots). Otherwise, the application searches for
a solution expressed in continuous variables (for example, 1.7 kilos of carrots). Option -c
can be used to build the model by columns. Otherwise, the application builds the model by
rows.

The finished application starts by evaluating the command line arguments and reading the
input datafile. Theinput datafor this exampleisthe same data as for the corresponding C++
and Java examplesin this manual. The datais available in the standard distribution at:

your CPLEXhome\ examples\data\diet .dat

Describe the Problem
Write a natural language description of the problem and answer these questions:
[What is known about this problem?
[What are the unknown pieces of information (the decision variables) in this problem?

[What are the limitations (the constraints) on the decision variables?

ILOG CPLEX 10.0 — UsSER’'S MANUAL

[What is the purpose (the objective) of solving this problem?
What is known?

The amount of nutrition provided by a given quantity of a given food.
The cost per unit of food.

The upper and lower bounds on the foods to be purchased for the diet

What are the unknowns?
The quantities of foods to buy.

What are the constraints?
The food bought to consume must satisfy basic nutritional requirements.
The amount of each food purchased must not exceed what is available.

What is the objective?
Minimize the cost of food to buy

Open the file

Open thefile yourCPLEXhome\examples\src\tutorials\Dietlesson.cs inyour
integrated development environment, such as Microsoft Visual Studio. Then go to the
comment Sep 2inbietlesson.cs, and add the following linesto declare a class, akey
element of this application.

ILOG CPLEX 10.0 — USER’'S MANUAL 95

public class Diet ({
internal class Data {

internal
internal
internal
internal
internal
internal
internal
internal

internal

int nFoods;
int nNutrs;
double []
double []
double []
double []
double []
double [] []

Data (string

foodCost;
foodMin;
foodMax;
nutrMin;
nutrMax;
nutrPerFood;

filename) {

InputDataReader reader = new InputDataReader (filename) ;

foodCost = reader.
foodMin = reader.
foodMax = reader.
nutrMin = reader.
nutrMax = reader.

nutrPerFood = rea
nFoods = foodMax.Length;

nNutrs = nutrMax.
if (nFoods != fo
nFoods != fo

ReadDoubleArray
ReadDoubleArray
ReadDoubleArray
ReadDoubleArray
ReadDoubleArray () ;

der .ReadDoubleArrayArray () ;

)i
)i
)i
)i

Length;

odMin.Length ||
odMax.Length)

throw new ILOG.CONCERT.Exception("inconsistent data in file "

if (nNutrs != nu

nNutrs != nu

+ filename) ;
trMin.Length I
trPerFood.Length)

throw new ILOG.CONCERT.Exception("inconsistent data in file "

for (int i = 0; 1

if

}

(nutrPerFo
throw new I

+ filename) ;
< nNutrs; ++1i) {
od[i] .Length != nFoods)
LOG.CONCERT.Exception ("inconsistent data in file "
+ filename) ;

Theinput data of the diet problem is read from afile into an object of the nested class
Diet.Data. Itsconstructor requires afile name as an argument. Using an object of the class
InputDataReader, Yyour application reads the data from that file.

Model

96

This example was chosen because it is simple enough to be viewed by rows as well as by
columns. Both ways are implemented in the finished application. In this example, either
perspective can be viewed as natural . Only one approach will seem natural for many models,
but thereis no general way of determining which is more appropriate (rows or columns) in a

particular case.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Create the model

Go to the comment Step 3inDietlesson. cs, and add this statement to create the cplex
model for your application.

Cplex cplex = new Cplex();

Create an array to store the variables

Go to the comment Step 4 inDietlesson.cs, and add this statement to create the array of
numeric variables that will appear in the solution.

INumVar [] Buy = new INumVar [nFoods] ;

At this point, only the array has been created, not the variables themselves. The variables
will be created later as continuous or discrete, depending on user input. These numeric
variables represent the unknowns: how much of each food to buy.

Indicate by row or by column

Go to the comment Step 5inDietlesson.cs, and add the following lines to indicate
whether to build the problem by rows or by columns.

if (byColumn) BuildModelByColumn (cplex, data, Buy, varType);
else BuildModelByRow (cplex, data, Buy, varType);

The finished application interprets an option entered through the command line by the user
to apply this conditional statement.

Build by Rows

Thefinished application is capable of building amodel by rows or by columns, according to
an option entered through the command line by the user. The next stepsin thistutorial show
you how to add a static method to your application. This method builds a model by rows.

ILOG CPLEX 10.0 — USER’'S MANUAL 97

Set up rows

Go to the comment Step 6inDietlesson.cs, and add the following lines to set up your
application to build the model by rows.

internal static void BuildModelByRow (IModeler model,
Data data,
INumvar [] Buy,

NumVarType type) {
int nFoods
int nNutrs

data.nFoods;
data.nNutrs;

Those lines begin the static method to build amodel by rows. The next stepsin this tutorial
show you the heart of that method.

Create the variables: build and populate by rows

Go to the comment Step 7 inpietlesson.cs, and add the following lines to create aloop
that creates the variables of the problem with the bounds specified by the input data.

for (int j = 0; j < nFoods; j++) {
Buy[j] = model.NumVar (data.foodMin[j], data.foodMax[j]l, type);

Add objective

Go to the comment Step 8inDietlesson. cs, and add this statement to add the objective
to the model.

model.AddMinimize (model.ScalProd (data.foodCost, Buy));

The objective function indicates that you want to minimize the cost of the diet computed as
the sum of the amount of each food to buy Buy [i] timesthe unit price of that food
data.foodCost [i].

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Add nutritional constraints

Go to the comment Step 9inDietlesson.cs, and add the following lines to add the
ranged nutritional constraints to the model.

for (int i = 0; i < nNutrs; i++) {
model .AddRange (data.nutrMin[i],
model.ScalProd(data.nutrPerFood[i], Buy),
data.nutrMax[i]) ;

Build by Columns

As noted in Build by Rows on page 97, the finished application is capable of building a
model by rows or by columns, according to an option entered through the command line by
the user. The next stepsin this tutorial show you how to add a static method to your
application to build amodel by columns.

Set up columns

Go to the comment Step 10 inDietlesson.cs, and add the following lines to set up your
application to build the problem by columns.

internal static void BuildModelByColumn (IMPModeler model,
Data data,
INumvVar[] Buy,
NumVarType type) {
int nFoods
int nNutrs

data.nFoods;
data.nNutrs;

Those lines begin a static method that the next steps will complete.

Add empty objective function and constraints

Go to the comment Sep 11inbietlesson.cs, and add thefollowing linesto create empty
columns that will hold the objective and ranged constraints of your problem.

model .AddMinimize () ;
new IRange [nNutrs];

IObjective cost
IRange[] constraint

for (int i = 0; i < nNutrs; i++) {
constraint [i] = model.AddRange(data.nutrMin[i], data.nutrMax[i]);
}

ILOG CPLEX 10.0 — USER’'S MANUAL 99

Create variables

Go to the comment Step 12 inDietlesson.cs, and add the following lines to create each
of the variables.

for (int j = 0; j < nFoods; j++) {

Column col = model.Column (cost, data.foodCost[j]);

7

for (int i = 0; i < nNutrs; i++) {
col = col.And(model.Column (constraint [i],
data.nutrPerFood[i] [])) ;
}

Buy[j] = model.NumVar (col, data.foodMin[j], data.foodMax[j], type);

For each food 5, a column object col isfirst created to represent how the new variable for
that food isto be added to the objective function and constraints. Then that column object is
used to construct the variable Buy [§1 that represents the amount of food § to be purchased
for the diet. At thistime, the new variable will be installed in the objective function and
constraints as defined by the column object col.

Solve

After you have added lines to your application to build a model, you are ready for the next
steps: adding lines for solving and displaying the solution.

Solve

Go to the comment Step 13 inDietlesson.cs, and add this statement to solve the
problem.

if (cplex.Solve()) {

100 ILOG CPLEX 10.0 — USER’'S MANUAL

Display the solution

Go to the comment Step 14 inDietlesson.cs, and add the following lines to display the

solution.

System.Console.WriteLine() ;

System.Console.WriteLine ("Solution status = "
+ cplex.GetStatus()) ;

System.Console.WriteLine () ;

System.Console.WriteLine (" cost = " + cplex.ObjValue);
for (int i = 0; i1 < nFoods; i++) {

System.Console.WriteLine ("
+
+
+

}

System.Console.WriteLine () ;

End and free license

Go to the comment Step 15inDietlesson.cs,

used by ILOG CPLEX.

cplex.End() ;

Buy"
i

cplex.GetValue (Buy[i])) ;

and add this statement to free the license

Good Programming Practices

The next steps of this tutorial show you how to add features to your application.

ILOG CPLEX 10.0 — USER’'S MANUAL 101

102

Read the command line (data from user)

Go to the comment Step 16 inDietlesson.cs, and add thefollowing linesto read the data
entered by the user at the command line.

for (int i = 0; i < args.Length; i++) {
if (args[i] .ToCharArray() [0] == '-') {
switch (args[i].ToCharArray() [1])
case 'c':
byColumn = true;
break;
case 'i':
varType = NumVarType.Int;
break;
default:
Usage () ;
return;
1
}
else {
filename = argsl([i];
break;
}
1

Data data = new Data(filename) ;

Show correct use of command line

Go to the comment Step 17 inDietlesson.cs, and add the following lines to show the
user how to use the command correctly (in case of inappropriate input from a user).

internal static void Usage() ({
System.Console.WriteLine (" ") ;
System.Console.WriteLine ("usage: Diet [options] <data file>");
System.Console.WriteLine ("options: -c¢ build model by column") ;
System.Console.WriteLine (" -1 use integer variables");
System.Console.WriteLine (" ") ;

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Enclose the application in try catch statements

Go to the comment Sep 18 inDietlesson.cs, and add the following lines to enclose your
application in atry and catch statement in case of anomalies during execution.

catch (ILOG.CONCERT.Exception ex) {
System.Console.WriteLine ("Concert Error: " + ex);
}

catch (InputDataReader.InputDataReaderException ex) {
System.Console.WriteLine ("Data Error: " + ex);

catch (System.IO.IOException ex) {
System.Console.WriteLine ("IO Error: " + ex);
}

}

Thetry part of that try and catch statement is already available in your origina copy of
Dietlesson.cs. When you finish the steps of thistutorial, you will have a complete
application ready to compile and execute.

Example: Optimizing the Diet Problem in C#£NET

You can see the complete program online at:
yourCPLEXhome\examples\src\Diet.cs

Thereisaproject for this example, suitable for use in an integrated devel opment
environment, such as Microsoft Visual Studio, at:

yourCPLEXhome\examples\x86 .net2003_7.1\format\Diet.csproj
The empty lesson, suitable for interactively following thistutorial, is avail able at:

yourCPLEXhome\examples\tutorials\Dietlesson.cs

ILOG CPLEX 10.0 — USER’'S MANUAL 103

104 ILOG CPLEX 10.0 — USER’'S MANUAL

ILOG CPLEX Callable Library

This chapter shows how to write C applications using the ILOG CPLEX Callable Library. It
includes sections abouit:

[Architecture of the ILOG CPLEX Callable Library on page 106, including information
about licensing and about compiling and linking your programs

[Wsing the Callable Library in an Application on page 107

[1L.OG CPLEX Programming Practices on page 110

[Managing Parameters from the Callable Library on page 119

[Example: Optimizing the Diet Problemin the Callable Library on page 121

ILOG CPLEX 10.0 — USER’'S MANUAL 105

Architecture of the ILOG CPLEX Callable Library

106

ILOG CPLEX includesacallable C library that makes it possible to develop applicationsto
optimize, to modify, and to interpret the results of mathematical programming problems
whether linear, mixed integer, or convex quadratic ones.

You can use the Callable Library to write applications that conform to many modern
computer programming paradigms, such as client-server applications within distributed
environments, multithreaded applications running on multiple processors, applications
linked to database managers, or applications using flexible graphic user interface builders,
just to name afew.

The Callable Library together with the ILOG CPLEX database make up the ILOG CPLEX
core, asyou seein Figure4.1. The ILOG CPLEX database includes the computing
environment, its communication channels, and your problem objects. You will associate the
core with your application by calling library routines.

User-Written Application

A

Y

ILOG CPLEX Callable Library

A

A

ILOG CPLEX database

Figure4.1 A View of the|LOG CPLEX Callable Library

The ILOG CPLEX Callable Library itself contains routines organized into several
categories:

[_problem modification routines let you define a problem and change it after you have
created it within the ILOG CPLEX database;

[—optimization routines enable you to optimize a problem and generate results;
Catility routines handle application programming issues,

[—problem query routines access information about a problem after you have created it;

ILOG CPLEX 10.0 — UsSER’'S MANUAL

[file reading and writing routines move information from the file system of your
operating system into your application, or from your application into the file system;

[parameter routines enable you to query, set, or modify parameter values maintained by
ILOG CPLEX.

Licenses

ILOG CPLEX runs under the control of the ILOG License Manager (ILM). Before you can
run any application program that calls ILOG CPLEX, you must have established avalid
license that it can read. Licensing instructions are provided to you separately when you buy
or upgrade ILOG CPLEX. Contact your local ILOG support department if thisinformation
has not been communicated to you or if you find that you need help in establishing your
ILOG CPLEX license. For details about contacting ILOG support, click "Customer
Support" at the bottom of the first page of ILOG CPLEX online documentation.

Compiling and Linking

Compilation and linking instructions are provided with the files that come in the standard
distribution of ILOG CPLEX for your computer platform. Check the readme . html filefor
details.

Using the Callable Library in an Application

This section tells you how to usethe Callable Library in your own applications. Briefly, you
must initialize the ILOG CPLEX environment, instantiate a problem object, and fill it with
data. Then your application calls one of the ILOG CPLEX optimizers to optimize your
problem. Optionally, your application can also modify the problem object and re-optimizeit.
ILOG CPLEX isdesigned to support this sequence of operations—modification and
re-optimization of linear, quadratic, or mixed integer programming problems (LPs, QPs, or
MIPs)—efficiently by reusing the current feasible solution (basis or incumbent) of a
problem as its starting point (when applicable). After it finishes using ILOG CPLEX, your
application must free the problem object and release the ILOG CPLEX environment it has
been using. The following sections explain these stepsin greater detail.

Initialize the ILOG CPLEX Environment

ILOG CPLEX needs certain internal data structures to operate. In your own application, you
use aroutine from the Callable Library to initialize these data structures. You must initialize
these data structures before your application calls any other routine in the ILOG CPLEX
Callable Library.

ToinitializealLOG CPLEX environment, you must use the routine CPxopenCPLEX.

ILOG CPLEX 10.0 — USER’'S MANUAL 107

This routine checks for avalid ILOG CPLEX license and then returns a C pointer to the
ILOG CPLEX environment that is creates. Your application then passes this C pointer to
other ILOG CPLEX routines (except cpxmsg). As adeveloper, you decide for yourself
whether the variable containing this pointer should be global or local in your application.
Because the operation of checking the license can be relatively time consuming, it is
strongly recommended that you call the cPxopencPLEX routine only once, or as
infrequently as possible, in a program that solves a sequence of problems.

A multithreaded application needs multiple ILOG CPLEX environments. Consequently,
ILOG CPLEX allows more than one environment to exist at atime.

Instantiate the Problem Object

Onceyou haveinitialized alLOG CPLEX environment, your next step isto instantiate (that
is, create and initialize) a problemobject by calling cpxcreateprob. Thisroutinereturnsa
C pointer to the problem object. Your application then passes this pointer to other routines of
the Callable Library.

Most applications will use only one problem object, though ILOG CPLEX allows you to
create multiple problem objects within a given ILOG CPLEX environment.

Put Data in the Problem Object

When you instantiate a problem object, it is originally empty. In other words, it has no
constraints, no variables, and no coefficient matrix. ILOG CPLEX offersyou several
alternative ways to put datainto an empty problem object (that is, to populate your problem
object).

[_You can make a sequence of calls, in any convenient order, to these routines:

- CPXaddcols

« CPXaddgconstr

- CPXaddrows

« CPXchgcoeflist

e CPXcopyctype

e CPXcopygsep

« CPXcopyquad

- CPXnewcols

e CPXnewrows

108 ILOG CPLEX 10.0 — USER’'S MANUAL

[_If data already exist in MPS, SAV, or LP format in afile, you can call
Ccpxreadcopyprob to read that file and copy the data into the problem object.
Mathematical Programming System (MPS) isan industry-standard format for organizing
datain mathematical programming problems. LP and SAV file formats are
ILOG CPLEX-specific formats for expressing linear programming problems as
equations or inequalities. Understanding File Formats on page 138 explains these
formats briefly. They are documented in the reference manual ILOG CPLEX File
Formats.

[You can assemble arrays of data and then call cpxcopy1lp to copy the datainto the
problem object.

Whenever possible, compute your problem datain double precision (64 bit). Computers are
finite-precision machines, and truncating your data to single precision (32 bit) can result in
unnecessarily ill-conditioned problems For more information, refer to Numeric Difficulties
on page 170.

Optimize the Problem

Call one of the ILOG CPLEX optimizers to solve the problem object that you have
instantiated and populated. Choosing an Optimizer for Your LP Problem on page 158
explainsin greater detail how to choose an appropriate optimizer for your problem.

Change the Problem Object

In analyzing a given mathematical program, you may make changesin a model and study
their effect. Asyou make such changes, you must keep ILOG CPLEX informed about the
modifications so that ILOG CPLEX can efficiently re-optimize your changed problem.
Always use the problem modification routines from the Callable Library to make such
changes and thus keep ILOG CPLEX informed. In other words, do not change a problem by
altering the original data arrays and calling cpxcopylp again. That tempting strategy
usually will not make the best use of ILOG CPLEX. Instead, modify your problem by means
of the problem modification routines. Use the routines whose names begin with cpXchg to
modify existing objects in the model, or use the routines cpxaddcols, CPXxaddgconstr,
CcPXaddrows, CPXnewcols, and CPXnewrows to add new constraints and new variables to
the model.

For example, let's say auser has already solved a given LP problem and then changes the
upper bound on a variable by means of an appropriate call to the Callable Library routine
Cpxchgbds. ILOG CPLEX will then begin any further optimization from the previous
optimal basis. If that basisis still optimal with respect to the new bound, then ILOG CPLEX
will return that information without even needing to refactor the basis.

ILOG CPLEX 10.0 — USER’'S MANUAL 109

Destroy the Problem Object

Usetheroutine cpxfreeprob to destroy a problem object when your application no longer
needsit. Doing so will free all memory required to solve that problem instance.

Release the ILOG CPLEX Environment

After al the calls from your application to the ILOG CPLEX Callable Library are complete,
you must release the ILOG CPLEX environment by calling the routine CPxcloseCPLEX.
Thisroutinetells ILOG CPLEX that:

—all application callsto the Callable Library are complete;

1L OG CPLEX should release any memory alocated by ILOG CPLEX for this
environment;

[the application has relinquished the ILOG CPLEX license for this run, thus making the
license available to the next user.

ILOG CPLEX Programming Practices

110

This section lists some of the programming practices ILOG observesin developing and
maintaining the ILOG CPLEX Callable Library.

The ILOG CPLEX Callable Library supports modern programming practices. It uses no
external variables. Indeed, no global nor static variables are used in the library so that the
Callable Library isfully reentrant and thread-safe. The names of all library routines begin
with the three-character prefix cpx to prevent namespace conflicts with your own routines
or with other libraries. Also to avoid clutter in the namespace, there isaminimal number of
routines for setting and querying parameters.

Variable Names and Calling Conventions

Routinesin the ILOG CPLEX Callable Library obey the C programming convention of call
by value (as opposed to call by reference, for example, in FORTRAN and BASIC). If a
routinein the Callable Library needs the address of avariable in order to change the value of
the variable, then that fact is documented in the ILOG CPLEX Reference Manual by the
suffix _p in the parameter name in the synopsis of the routine. In C, you create such values
by means of the & operator to take the address of a variable and to pass this address to the
Callable Library routine.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

For example, let's look at the synopses for two routines, cPxgetobjval and CPxgetx, as
they are documented in the ILOG CPLEX Reference Manual to clarify this calling
convention. Here is the synopsis of the routine cpxgetobjval:

int CPXgetobjval (CPXCENVptr env, CPXCLPptr lp, double *objval p);

In that routine, the third parameter is a pointer to avariable of type double. To cal this
routine from C, declare:

double objval;

Then call cpxgetobijval inthisway:

status = CPXgetobjval (env, lp, &objval);

In contrast, here is the synopsis of the routine cpxgetx:

int CPXgetx (CPXENV env, CPXLPptr lp, double *x, int begin, int end);

You call it by creating a double-precision array by means of either one of two methods. The
first method dynamically allocates the array, like this:

double *x = NULL;
x = (double *) malloc (100*sizeof (double)) ;

The second method declares the array as alocal variable, like this:

double x[100];

Then to see the optimal values for columns 5 through 104, for example, you could write this:

status = CPXgetx (env, lp, x, 5, 104);

The parameter objval p inthe synopsis of cPxgetobjval and the parameter x in the
synopsis of cpxgetx are both of type (double *).However, the suffix p inthe
parameter objval p indicates that you should use an address of asingle variable in one
cal, whilethelack of p inx indicates that you should pass an array in the other.

For guidance about how to pass valuesto ILOG CPLEX routines from application
languages such as FORTRAN or BASIC that conventionally call by reference, see Call by
Reference on page 119 in this manual, and consult the documentation for those languages.

ILOG CPLEX 10.0 — USER’'S MANUAL 111

112

Data Types

Inthe Callable Library, ILOG CPLEX defines afew special datatypes for specific
ILOG CPLEX objects, asyou seein Table 4.1. The types starting with cpxc represent the
corresponding pointers to constant (const) objects.

Table4.1 Special Data Typesin the ILOG CPLEX Callable Library

Data type Is a pointer to Declaration Set by calling

CPXENVptr ILOG CPLEX CPXENVptr env; CPXopenCPLEX

CPXCENVptr environment

CPXLPptr problem object CPXLPptr lp; CPXcreateprob

CPXCLPptr

CPXNETptr problem object CPXNETptr net; CPXNETcreateprob

CPXCNETptr

CPXCHANNELptr | message channel CPXCHANNELptr channel; |CPXgetchannels
CPXaddchannel

When any of these special variables are set to avalue returned by an appropriate routine, that
value can be passed directly to other ILOG CPLEX routines that require such parameters.
The actua internal type of these variablesis amemory address (that is, a pointer); this
address uniquely identifies the corresponding object. If you are programming in alanguage
other than C, you should choose an appropriate integer type or pointer type to hold the
values of these variables.

Ownership of Problem Data

ThelLOG CPLEX Cadllable Library does not take ownership of user memory. All arguments
are copied from your user-defined arraysinto ILOG CPLEX-allocated memory.

ILOG CPLEX manages all problem-related memory. After you call alLOG CPLEX routine
that copies datainto alLOG CPLEX problem object, you can free or reuse the memory you
allocated as arguments to the copying routine.

Problem Size and Memory Allocation Issues

Asindicated in Change the Problem Object on page 109, after you have created a problem
object by calling cPxcreateprob, you can modify the problem in various ways through
calstoroutines from the Callable Library. Thereisno need for you to allocate extra spacein
anticipation of future problem modifications. Any limit on problem sizeis determined by
system resources and the underlying implementation of the system function mal1oc—not
by artificial limitsin ILOG CPLEX.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Asyou modify a problem object through calls to modification routines from the Callable
Library, ILOG CPLEX automatically handles memory allocations to accommodate the
increasing size of the problem. In other words, you do not have to keep track of the problem
size nor make corresponding memory allocations yourself as long as you are using library
modification routines such as cPxaddrows Or CPXaddcols.

Status and Return Values

Most routines in the Callable Library return an integer value, o (zero) indicating success of
the call. A nonzero return value indicates a failure. Each failure valueis unique and
documented in the ILOG CPLEX Reference Manual. However, some routines are exceptions
to this general rule.

The Callable Library routine cPXopenCPLEX returns a pointer to alLOG CPLEX
environment. In case of failure, it returnsaNuLL pointer. The parameter *status_p (thatis,
one of itsarguments) is set to o if the routine is successful; in case of failure, that parameter
is set to anonzero value that indicates the reason for the failure.

The Callable Library routine cPxcreateprob returnsapointer to alLOG CPLEX problem
object and setsitsparameter *status pt0o0 (zero) toindicate success. In case of failure,
it returns aNULL pointer and sets *status_p to a nonzero value indicating the reason for
thefailure.

Some query routinesin the Callable Library return a nonzero value when they are
successful. For example, cpxgetnumcols returnsthe number of columnsin the constraint
matrix (that is, the number of variablesin the problem object). However, most query
routines return o (zero) indicating success of the query and entail one or more parameters
(such as abuffer or character string) to contain the results of the query. For example,
CPXgetrowname returnsthe name of arow initsname parameter.

It is extremely important that your application check the status—whether the statusis
indicated by the return value or by a parameter—of the routine that it calls before it
proceeds.

Symbolic Constants

Most ILOG CPLEX routines return or require values that are defined as symbolic constants
in the header file (that is, theincludefile) cplex.h. This practice of using symbolic
constants, rather than hard-coded numeric values, is highly recommend. Symbolic names
improve the readability of calling applications. Moreover, if numeric values happen to
change in subsequent releases of the product, the symbolic nameswill remain the same, thus
making applications easier to maintain.

ILOG CPLEX 10.0 — USER’'S MANUAL 113

114

Parameter Routines

You can set many parametersin the ILOG CPLEX environment to control its operation. The
values of these parameters may be integer, double, or character strings, so there are sets of
routines for accessing and setting them. Table 4.2 shows you the names and purpose of these

Table4.2 Callable Library Routines for Parametersin the ILOG CPLEX Environment

Type Change value Access current value |[Access default, max, min
integer |CPXsetintparam CPXgetintparam ChXinfointparam
double |CPXsetdblparam CPXgetdblparam CPXinfodblparam
string |CPXsetstrparam CPXgetstrparam CPXinfostrparam

routines. Each of these routines accepts the same first argument: a pointer to the

ILOG CPLEX environment (that is, the pointer returned by cpPxopencpPLEX). The second
argument of each of those parameter routines is the parameter number, a symbolic constant
defined in the header file, cplex. h. Managing Parameters from the Callable Library on
page 119 offers more details about parameter settings.

Null Arguments

Certain ILOG CPLEX routines that accept optional arguments allow you to pass aNULL
pointer in place of the optional argument. The documentation of those routines in the
ILOG CPLEX Reference Manual indicates explicitly whether NULL pointer arguments are
acceptable. (Passing NULL argumentsis an effective way to avoid allocating unnecessary

arrays.)

Row and Column References

Consistent with standard C programming practices, in ILOG CPLEX an array containing k
itemswill contain theseitemsin locations o (zero) through k- 1. Thusalinear program with
m rows and n columns will have its rows indexed from o to m-1, and its columns from o
ton-1.

Within the linear programming data structure, the rows and columns that represent
constraints and variables are referenced by an index number. Each row and column may
optionally have an associated name. If you add or delete rows, the index numbers usually
change:

fior deletions, ILOG CPLEX decrements each reference index above the deletion point;
and

[fbr additions, ILOG CPLEX makes all additions at the end of the existing range.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

However, ILOG CPLEX updates the names so that each row or column index will
correspond to the correct row or column name. Double checking names against index
numbers isthe only sure way to determine which changes may have been made to matrix
indicesin such acontext. The routines cPxget rowindex and CPxgetcolindex translate
names to indices.

Character Strings

You can pass character strings as parametersto various ILOG CPLEX routines, for example,
asrow or column names. The Interactive Optimizer truncates output strings 255 characters.
Routines from the Callable Library truncate strings at 255 characters in output text files
(such as MPS or LP text files) but not in binary SAV files. Routines from the Callable
Library also truncate strings at 255 characters in names that occur in messages. Routines of
the Callable Library that produce log files, such as the simplex iteration log file or the MIP
node log file, truncate at 16 characters. Input, such as names read from LP and MPSfiles or
typed interactively by the enter command, are truncated to 255 characters. However, it is
not recommended that you rely on this truncation because unexpected behavior may result.

Checking Problem Data

If you inadvertently make an error entering problem data, the problem object will not
correspond to your intentions. One possible result may be a segmentation fault or other
disruption of your application. In other cases, ILOG CPLEX may solve a different model
from the one you intended, and that situation may or may not result in error messages from
ILOG CPLEX.

Using the Data Checking Parameter

To help you detect thiskind of error, you can set the parameter cPx_PARAM DATACHECK tO
the value cpx_ON to activate additional checking of array arguments for cPXcopyData,

CPXreadData, and CPXchgData routines (where pata varies). The additiona checks
include:

[ihvalid sense/ctypelsostype values

[—indices out of range, for example, rowind > numrows
duplicate entries

[matbeg Or sosbeg array with decreasing values

[NaNSin double arrays

[NULLSin name arrays

Thisadditional checking may entail overhead (time and memory). When the parameter is set
to cpx_OFF, only simple checks, for example checking for the existence of the environment,
are performed.

ILOG CPLEX 10.0 — USER’'S MANUAL 115

116

Using Diagnostic Routines for Debugging

ILOG CPLEX also provides diagnostic routines to look for common errors in the definition
of problem data. In the standard distribution of ILOG CPLEX, thefile check . c containsthe
source code for these routines:

[dpPXcheckcopylp

[dPXcheckcopylpwnames

[dPXcheckcopygpsep

[dPXcheckcopyquad

[dpXcheckaddrows

[dPXcheckaddcols

[dPXcheckchgcoeflist

[dPXcheckvals

[dPXcheckcopyctype

[dpXcheckcopysos

[dPXNETcheckcopynet

Each of those routines performs a series of diagnostic tests of the problem data and issues
warnings or error messages whenever it detects a potential error. To use them, you must
compile and link thefile check . c. After compiling and linking that file, you will be able to
step through the source code of these routines with a debugger to help isolate problems.

If you have observed anomaliesin your application, you can exploit this diagnostic
capability by calling the appropriate routines just before a change or copy routine. The
diagnostic routine may then detect errors in the problem data that could subsequently cause
inexplicable behavior.

Those checking routines send all messages to one of the standard ILOG CPLEX message
channels. You capture that output by setting the parameter cpx_pPArRAM SCRIND (if you
want messages directed to your screen) or by calling the routine cpxsetlogfile.

Callbacks

The Callable Library supports callbacks so that you can define functions that will be called
at crucia pointsin your application:

[during the presolve process;

[—once per iteration in alinear programming or quadratic programming routine; and

[at various points, such as before each node is processed, in a mixed integer optimization.
In addition, callback functions can call cpPxgetcallbackinfo to retrieveinformation
about the progress of an optimization algorithm. They can also return avalue to indicate

ILOG CPLEX 10.0 — UsSER’'S MANUAL

whether an optimization should be aborted. cpxgetcallbackinfo and certain other
callback-specific routines are the only ones of the Callable Library that a user-defined
callback may call. (Of course, callsto routines not in the Callable Library are permitted.)

Using Callbacks on page 403 explores callback facilitiesin greater detail.

Portability

ILOG CPLEX contains a number of features to help you create Callable Library
applications that can be easily ported between UNIX and Windows platforms.

CPXPUBLIC

All ILOG CPLEX Callable Library routines except cpxmsg have the word CPXPUBLIC as
part of their prototype. On UNIX platforms, this has no effect. On Win32 platforms, the
CPXPUBLIC designation tells the compiler that all of the ILOG CPLEX functions are
compiled with the Microsoft stdcall calling convention. The exception cPxmsg cannot
becalledby stdcall becauseit takesavariable number of arguments. Consequently,
Cpxmsg is declared as CPXPUBVARARGS; that calling convention isdefinedas cdecl for
Win32 systems.

Function Pointers

All ILOG CPLEX Callable Library routines that require pointers to functions expect the
passed-in pointers to be declared as cpxpuBLIC. Consequently, when your application uses
such routines as cpPXaddfuncdest, CPXsetlpcallbackfunc, and
CPXsetmipcallbackfunc, it must declare the user-written callback functions with the
cpxPUBLIC designation. For UNIX systems, this has no effect. For Win32 systems, this will
cause the callback functions to be declared withthe stdcall calling convention. For
examples of function pointers and callbacks, see Example: Using Callbacks Ipex4.c on
page 412 and Example: Callable Library Message Channels on page 146.

CPXCHARptr, CPXCCHARptr, and CPXVOIDptr

The types CPXCHARptr, CPXCCHARptr, and CPXVOIDptr are used in the header file
cplex.h to avoid the complicated syntax of using the cpxpUBLIC designation on functions
that return char*, const char*, Or void*.

File Pointers

File pointer arguments for Callable Library routines should be declared with the type
CcPxFILEptr. On UNIX platforms, this practice is equivalent to using the file pointer type.
On Win32 platforms, the file pointers declared this way will correspond to the environment
of theILOG CPLEX DLL. Any file pointer passed to a Callable Library routine should be
obtained with a call to cpxfopen and closed with cpxfclose. Callable Library routines
with file pointer argumentsinclude cpxsetlogfile, CPXaddfpdest, CPXdelfpdest,
and cpxfputs. Callable Library Routines for Message Channels on page 145 discusses
most of those routines.

ILOG CPLEX 10.0 — USER’'S MANUAL 117

118

String Functions

Severa routinesin the ILOG CPLEX Callable Library makeit easier to work with strings.
These functions are hel pful when you are writing applicationsin alanguage, such as Visual
Basic, that does not alow you to dereference a pointer. The string routinesin the

ILOG CPLEX Callable Library are cPXmemcpy, CPXstrlen, CPXstrcpy, and
CPXmsgstr

FORTRAN Interface

The Callable Library can be interfaced with FORTRAN applications. Although they are no
longer distributed with the product, you can download examples of a FORTRAN application
from the ILOG web site. Direct your browser to this FTP site:

ftp://ftp.cplex.com/pub/examples

Those examples were compiled with CPLEX versions 7.0 and earlier on a particular
platform. Since C-to-FORTRAN interfaces vary across platforms (operating system,
hardware, compilers, etc.), you may need to modify the examples for your own system.

Whether you need intermediate routines for the interface depends on your operating system.
Asafirst step in building such an interface, it is agood ideato study your system
documentation about C-to-FORTRAN interfaces. In that context, this section lists afew
considerations particular to ILOG CPLEX in building a FORTRAN interface.

Case-Sensitivity

Asyou know, FORTRAN is a case-insensitive language, whereas routinesin the

ILOG CPLEX Callable Library have names with mixed case. Most FORTRAN compilers
have an option, such as the option -u on UNIX systems, that treats symbolsin a
case-sensitive way. It isagood ideato use this option in any file that calls ILOG CPLEX
Callable Library routines.

On some operating systems, certain intrinsic FORTRAN functions must bein all upper case
(that is, capital |etters) for the compiler to accept those functions.

Underscore

On some systems, all FORTRAN external symbols are created with an underscore character
(that is,) added to the end of the symbol name. Some systems have an option to turn off
thisfeature. If you are able to turn off those postpended underscores, you may not need other
“glue” routines.

Six-Character Identifiers

FORTRAN 77 alows identifiers that are unique only up to six characters. However, in
practice, most FORTRAN compilers allow you to exceed this limit. Since routinesin the
Callable Library have names greater than six characters, you need to verify whether your
FORTRAN compiler enforcesthislimit or allows longer identifiers.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Call by Reference

By default, FORTRAN passes arguments by reference; that is, the address of avariableis
passed to aroutine, not its value. In contrast, many routines of the Callable Library require
arguments passed by value. To accommodate those routines, most FORTRAN compilers
have the VMS FORTRAN extension $vaL () . This operator used in calls to external
functions or subroutines causes its argument to be passed by value (rather than by the default
FORTRAN convention of passed by reference). For example, with that extension, you can
call theroutine cpxprimopt with this FORTRAN statement:

status = CPXprimopt (%val(env), %val(lp))

Pointers

Certain ILOG CPLEX routinesreturn a pointer to memory. In FORTRAN 77, such a pointer
cannot be dereferenced; however, you can store its value in an appropriate integer type, and
you can then passit to other ILOG CPLEX routines. On most operating systems, the default
integer type of four bytesis sufficient to hold pointer variables. On some systems, avariable
of type INTEGER*8 may be needed. Consult your system documentation to determine the
appropriate integer type to hold variables that are C pointers.

Strings

When you pass strings to routines of the Callable Library, they expect C strings; that is,
strings terminated by an ASCII NULL character, denoted \ 0 in C. Consequently, when you
pass a FORTRAN string, you must add a terminating NULL character; you do so by means of
the FORTRAN intrinsic function CHAR (0) .

C++ Interface

The ILOG CPLEX header file, cplex.h, includes the extern C statements necessary for
use with C++. If you wish to call the ILOG CPLEX C interface from a C++ application,
rather than using Concert Technology, you can include cplex.h inyour C++ source.

Managing Parameters from the Callable Library

Some ILOG CPLEX parameters assume values of type double; others assume values of
type int; others are strings (that is, C-type char*). Consequently, in the Callable Library,
there are sets of routines (one for int, one for double, onefor char+*) to access and to
change parameters that control the ILOG CPLEX environment and guide optimization.

For example, the routine cPxinfointparam shows you the default, the maximum, and the
minimum values of a given parameter of type int, whereas the routine cPxinfodblparam
shows you the default, the maximum, and the minimum values of a given parameter of type
double, and the routine cPxinfostrparam shows you the default value of a given string

ILOG CPLEX 10.0 — USER’'S MANUAL 119

120

parameter. Those three Callable Library routines observe the same conventions: they
return o (zero) from asuccessful call and anonzero valuein case of error.

Theroutines cPXinfointparam and CPXinfodblparam expect five arguments:

[a pointer to the environment; that is, a pointer of type cPxENvptr returned by
CPXopenCPLEX;

[—an indication of the parameter to check; this argument may be a symbolic constant, such
as CPX_PARAM CLOCKTYPE, or areference number, such as 1006; the symbolic
constants and reference numbers of al ILOG CPLEX parameters are documented in the

reference manual ILOG CPLEX Parameters and they are defined in the include file
cplex.h.

[a pointer to avariable to hold the default value of the parameter;
[a pointer to avariable to hold the minimum value of the parameter;
[apointer to avariable to hold the maximum value of the parameter.

Theroutine cPXinfostrparam differs slightly in that it does not expect pointersto
variables to hold the minimum and maximum values as those concepts do not apply to a
string parameter.

To access the current value of a parameter that interests you from the Callable Library, use
the routine cPxgetintparam for parameters of type int, CPXgetdblparam for
parameters of type double, and CPXgetstrparam for string parameters. These routines
also expect arguments to indicate the environment, the parameter you want to check, and a
pointer to avariable to hold that current value.

No doubt you have noticed in other chapters of this manual that you can set parameters from
the Callable Library. There are, of course, routines in the Callable Library to set such
parameters. one sets parameters of type int; another sets parameters of type double;
another sets string parameters.

[dprxsetintparam accepts arguments to indicate:
. the environment; that is, a pointer of type cPxENvVptr returned by cPXopenCPLEX;
. the parameter to set; this routine sets parameters of type int;
. the value you want the parameter to assume.

[adprxsetdblparam accepts arguments to indicate:
. theenvironment; that is, a pointer of type cPxENvptr returned by cPXopenCPLEX;
. the parameter to set; this routine sets parameters of type double;
. the value you want the parameter to assume.

[dPxsetstrparam accepts arguments to indicate:

ILOG CPLEX 10.0 — UsSER’'S MANUAL

. the environment; that is, a pointer of type cPxENvptr returned by cPXopenCPLEX;
. the parameter to set; this routine sets parameters of type const char*;

. the value you want the parameter to assume.

The reference manual ILOG CPLEX Parameters documents the type of each parameter
(int, double, char*) along with the symbolic constant and reference number representing
the parameter.

Theroutine cPxsetdefaults resets all parameters (except thelog file) to their default
values, including the ILOG CPLEX callback functions. This routine resets the callback
functionsto NULL. Like other Callable Library routines to manage parameters, this one
accepts an argument indicating the environment, and it returns o for success or a nonzero
valuein case of error.

Example: Optimizing the Diet Problem in the Callable Library

The optimization problem solved in this example isto compose adiet from a set of foods, so
that the nutritional requirements are satisfied and the total cost is minimized. The example
diet.c illustrates these points:

[Creating a Model Row by Row on page 122;
[Creating a Model Column by Column on page 122;
[—Jolving the Model with CPXIpopt on page 123.

Problem Representation

The problem contains a set of foods, which are the modeling variables; a set of nutritional
reguirements to be satisfied, which are the constraints; and an objective of minimizing the
total cost of the food. There are two waysto look at this problem:

[_The problem can be modeled in a row-wise fashion, by entering the variables first and
then adding the constraints on the variables and the objective function.

[_The problem can be modeled in a column-wise fashion, by constructing a series of empty
constraints and then inserting the variables into the constraints and the objective
function.

The diet problemis equally suited for both kinds of modeling. In fact you can even mix both
approaches in the same program: If anew food product isintroduced, you can create a new
variable for it, regardless of how the model was originally built. Similarly, is anew nutrient
is discovered, you can add a new constraint for it.

ILOG CPLEX 10.0 — USER’'S MANUAL 121

122

Creating a Model Row by Row

You walk into the store and compile alist of foods that are offered. For each food, you store
the price per unit and the amount they have in stock. For some foods that you particularly

like, you a so set a minimum amount you would like to usein your diet. Then for each of the
foods you create a modeling variable to represent the quantity to be purchased for your diet.

Now you get a medical book and ook up which nutrients are known and relevant for you.
For each nutrient, you note the minimum and maximum amount that should be found in your
diet. Also, you go through the list of foods and determine how much afood item will
contribute for each nutrient. This gives you one constraint per nutrient, which can naturally
be represented as a range constraint

nutrmin[i] Szj (nutrper[i] [J] * buy[j]) S<nutrmax[i]

where 1 represents the index of the nutrient under consideration, nutrmin[i] and
nutrmax[i] the minimum and maximum amount of nutrient 1 and nutrper[il [] the
amount of nutrient 1 infood 5. Finally, you specify your objective function to minimize, like
this:

cost = Zj (cost[j] * buyl[jl)
This way to create the model is shown in function populatebyrow in example diet . c.

Creating a Model Column by Column

You start with the medical book where you compile the list of nutrients that you want to
make sure are properly represented in your diet. For each of the nutrients, you create an
empty constraint:

nutrmin([i] < ... < nutrmax[i]

where . . . isleft to befilled once you walk into your store. You also set up the objective
function to minimize the cost. Constraint i isreferred to as rng [1] and the objectiveis
referred to as cost.

Now you walk into the store and, for each food, you check its price and nutritional content.
With this data you create a variable representing the amount you want to buy of the food
type and install it in the objective function and constraints. That is you create the following
column:

cost (foodCost [j]) "+" "sum_i" (rng[i] (nutrper([i] [j]1))

where the notation "+" and "sum" indicates that you “add” the new variable § to the
objective cost and constraints rng [1]. The value in parenthesesis the linear coefficient

that is used for the new variable.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Here's another way to visualize a column, such as column j in this example:
foodCost [j]

nutrper [0] [J]

nutrper [1] []]

1:1L'n:.rper [m-1] [j]

Program Description

All definitions needed for alLOG CPLEX Callable Library program are imported by
including file <ilcplex/cplex.hs at the beginning of the program. After anumber of
lines that establish the calling sequences for the routines that are to be used, the program’s
main function begins by checking for correct command line arguments, printing a usage
reminder and exiting in case of errors.

Next, the data defining the problem are read from afile specified in the command line at run
time. The details of thisare handled in the routine readdata. In thisfile, cost, lower bound,
and upper bound are specified for each type of food; then minimum and maximum levels of
several nutrients needed in the diet are specified; finally, atable giving levels of each
nutrient found in each unit of food is given. The result of asuccessful call to thisroutineis
two variablesnfoods and nnutr containing the number of foods and nutrients in the data
file, arrays cost, 1b, ub containing the information on the foods, arrays nut rmin,
nutrmax containing nutritional requirements for the proposed diet, and array nut rper
containing the nutritional value of the foods.

Preparations to build and solve the model with ILOG CPLEX begin with the call to
CPXopenCPLEX. Thisestablishesan ILOG CPLEX environment to contain the LP problem,
and succeeds only if avalid ILOG CPLEX licenseisfound.

After callsto set parameters, one to control the output that comes to the user's terminal, and
another to turn on data checking for debugging purposes, a problem object isinitialized
through the call to cPXcreateprob. Thiscall returns a pointer to an empty problem object,
which now can be populated with data.

Two aternative approachesto filling this problem object are implemented in this program,
populatebyrow and populatebycolumn, and which oneis executed is determined at run
time by a calling parameter on the command line. The routine populatebyrow operates by
first defining all the columns through a call to cpxnewcols and then repeatedly cals
CcPXaddrows to enter the data of the constraints. The routine populatebycolumn takesthe
complementary approach of establishing all the rows first with acall to cPxnewrows and
then sequentially adds the column data by callsto cPxaddcols.

Solving the Model with CPXIpopt

The model is at this point ready to be solved, and thisis accomplished through the call to
CPX1lpopt, wWhich by default uses the dual simplex optimizer.

ILOG CPLEX 10.0 — USER’'S MANUAL 123

124

After this, the program finishes by making a call to cPxsolution to obtain the values for
each variable in this optimal solution, printing these values, and writing the problem to a
disk file (for possible evaluation by the user) viathe call to cpxwriteprob. It then
terminates after freeing all the arrays that have been allocated along the way.

Complete Program

The complete program, diet . c, appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Part Il

Programming Considerations

This part of the manual documents concepts that are valid as you develop an application,
regardless of the programming language that you choose. It highlights software engineering
concepts implemented in ILOG CPLEX, concepts that will enable you to develop effective
applications to exploit it efficiently. This part contains:

[Developing CPLEX Applications on page 127
[Managing Input and Output on page 137
[Licensing an Application on page 149

Developing CPLEX Applications

This chapter offers suggestions for improving application development and debugging
completed applications. It includes information about:

[Tips for Successful Application Development on page 127
[Wsing the Interactive Optimizer for Debugging on page 132

[_Eliminating Common Programming Errors on page 134

Tips for Successful Application Development

In the previous chapters, you saw briefly the minimal steps to use the Component Libraries
in an application. This section offers guidelines for successfully developing an application
that exploitsthe ILOG CPLEX Component Libraries according to those steps. These

guidelines aim to help you minimize development time and maximize application
performance.

[Prototype the Model on page 128

[Identify Routines to Use on page 128
[Test Interactively on page 128
[Assemble Data Efficiently on page 128

ILOG CPLEX 10.0 — USER’'S MANUAL 127

128

[Test Data on page 129
[Choose an Optimizer on page 129

[_Program with a View toward Maintenance and Modifications on page 130

Prototype the Model

Begin by creating a small-scale version of the model for your problem. (There are modeling
languages, such as ILOG OPL, that may be helpful to you for this task.) This prototype
model can serve as atest-bed for your application and a point of reference during
development.

Identify Routines to Use

If you decompose your application into manageable components, you can more easily
identify the tools you will need to complete the application. Part of this decomposition
consists of determining which methods or routines from the ILOG CPLEX Component
Libraries your application will call. Such a decomposition will assist you in testing for
completeness; it may also help you isolate troublesome areas of the application during
development; and it will aid you in measuring how much work is already done and how
much remains.

Test Interactively

The Interactive Optimizer in ILOG CPLEX (introduced in the manual ILOG CPLEX
Getting Sarted) offers areliable meansto test the ILOG CPLEX component of your
application interactively, particularly if you have prototyped your model. Interactive testing
through the Interactive Optimizer can also help you identify precisely which methods or
routines from the Component Libraries your application needs. Additionally, interactive
testing early in development may also uncover any flaws in procedural logic before they
entail costly coding efforts.

Most importantly, optimization commands in the Interactive Optimizer perform exactly like
optimization routinesin the Component Libraries. For an LP, the opt imize command in the
Interactive Optimizer works the same way asthe cplex.solve and CPX1popt routinesin
the ILOG CPLEX Component Libraries. Consequently, any discrepancy between the
Interactive Optimizer and the Component Libraries routines with respect to the solutions
found, memory used, or time taken indicates a problem in the logic of the application calling
theroutines.

Assemble Data Efficiently

Asindicated in previous chapters, ILOG CPLEX offers several ways of putting datainto
your problem or (more formally) populating the problem object. You must decide which

ILOG CPLEX 10.0 — UsSER’'S MANUAL

approach is best adapted to your application, based on your knowledge of the problem data
and application specifications. These considerations may enter into your decision:

_If your Callable Library application builds the arrays of the problem in memory and then
calls cpxcopylp, it avoids time-consuming reads from disk files.

[1In the Callable Library, using the routines cPxnewcols, CPXnewrows, CPXaddcols,
Cpxaddrows, and cPXchgcoeflist may help you build modular code that will be
more easily modified and maintained than code that assembles al problem datain one
step.

[An application that reads an MPS or LP file may reduce the coding effort but, on the
other hand, may increase runtime and disk space requirements.

Keep in mind that if an application using the ILOG CPLEX Component Libraries reads
an MPS or LPfile, then some other program must generate that formatted file. The data
structures used to generate the file can amost certainly be used directly to build the
problem-populating arrays for cPxcopylp Or cPXaddrows—a choice resulting in less
coding and afaster, more efficient application.

In short, formatted files are useful for prototyping your application. For production
purposes, assembly of data arraysin memory may be a better enhancement.

Test Data

ILOG CPLEX providesthe DatacCheck parameter to check the correctness of data used in
problem creation and problem modification methods. When this parameter is set,

ILOG CPLEX will perform extra checks to determine that array arguments contain valid
values, such asindices within range, no duplicate entries, valid row sense indicators and
valid numeric values. These checks can be very useful during development, but are probably
too costly for deployed applications. The checks are similar to but not as extensive as those
performed by the cpxcheckData functions provided for the C-API. When the parameter is
not set (the default), only simple error checks are performed, for example, checking for the
existence of the environment.

Choose an Optimizer

After you have instantiated and populated a problem object, you solveit by calling one of
the optimizers available in the ILOG CPLEX Component Libraries. Your choice of
optimizer depends on the type of problem:

[Wsethe primal simplex, dual simplex, or primal-dual barrier optimizers to solve linear
and quadratic programs.

[Wse the barrier optimizer to solve quadratically constrained programming problems.

[_The network optimizer is appropriate for solving linear and quadratic programs with
large embedded networks.

ILOG CPLEX 10.0 — USER’'S MANUAL 129

130

[Wse the MIP optimizer if the problem contains discrete components (binary, integer, or
semi-continuous variables, piecewise linear objective, or SOS sets).

In ILOG CPLEX, there are many possible parameter settings for each optimizer. Generally,
the default parameter settings are best for linear programming and quadratic programming
problems, but Chapter 8, Solving LPs: Smplex Optimizers and Chapter 11, Solving
Problems with a Quadratic Objective (QP) offer more detail about improving performance
with respect to these problems. I nteger programming problems are more sensitive to specific
parameter settings, so you may heed to experiment with them, as suggested in Chapter 13,
Solving Mixed Integer Programming Problems (MIP).

In either case, the Interactive Optimizer in ILOG CPLEX letsyou try different parameter
settings and different optimizers to determine the best optimization procedure for your
particular application. From what you learn by experimenting with commandsin the
Interactive Optimizer, you can more readily choose which method or routine from the
Component Librariesto call in your application.

Program with a View toward Maintenance and Modifications

Good programming practices save development time and make an application easier to
understand and modify. Tips for Successful Application Development on page 127 outlines
ILOG programming conventions in developing ILOG CPLEX. In addition, the following
programming practices are recommended.

Comment Your Code

Comments, written in mixed upper- and lower-case, will prove useful to you at alater date
when you stare at code written months ago and try to figure out what it does. They will also
prove useful to ILOG staff, should you need to send ILOG your application for customer
support.

Write Readable Code

Follow conventional formatting practices so that your code will be easier to read, both for
you and for others. Use fewer than 80 characters per line. Put each statement on a separate
line. Use white space (for example, space, blank lines, tabs) to distinguish logical blocks of
code. Display compound loops with clearly indented bodies. Display if statements like
combs; that is, align i £ and else in the same column and then indent the corresponding
block. Likewise, it is agood ideato indent the body of compound statements, loops, and
other structures distinctly from their corresponding headers and closing brackets. Use
uniform indentation (for example, three to five spaces). Put at least one space before and
after each relational operator, as well as before and after each binary plus (+) and minus (-).
Use space as you do in normal a natural language, such as English.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Avoid Side-Effects

Itisgood ideato minimize side-effects by avoiding expressionsthat produce internal effects.
In C, for example, try to avoid expressions of this form:

a=c¢c+ (d= exf); /* A BAD IDEA */
where the expression assigns the values of d and a.

Don’t Change Argument Values

A user-defined function should not change the values of its arguments. Do not use an
argument to a function on the left-hand side of an assignment statement in that function.
Since C and C++ pass arguments by value, treat the arguments strictly as values; do not
change them inside a function.

Declare the Type of Return Values

Always declare the return type of functions explicitly. Though C has a*“historical tradition”
of making the default return type of al functions int, it isagood ideato declare explicitly
the return type of functions that return avalue, and to use void for procedures that do not
return avalue.

Manage the Flow of Your Code

Use only one return statement in any function. Limit your use of break statementsto the
inside of switch statements. In C, do not use cont inue Statements and limit your use of
goto statementsto exit conditions that branch to the end of afunction. Handle error
conditions in C++ with atry/catch block and in C with agoto statement that transfers
control to the end of the function so that your functions have only one exit point.

In other words, control the flow of your functions so that each block has one entry point and
one exit point. This*“oneway in, one way out” rule makes code easier to read and debug.

Localize Variables

Avoid global variables at all costs. Code that exploits global variablesinvariably produces
side-effects which in turn make the code harder to debug. Global variables also set up
peculiar reactions that make it difficult to include your code successfully within other
applications. Also global variables preclude multithreading unless you invoke locking
techniques. As an alternative to global variables, pass arguments down from one function to
another.

Name Your Constants

Scalars—both numbers and characters—that remain constant throughout your application
should be named. For example, if your application includes a value such as 1000, create a
constant with the #define statement to name it. If the value ever changes in the future, its
occurrences will be easy to find and modify as a named constant.

ILOG CPLEX 10.0 — USER’'S MANUAL 131

Choose Clarity First, Efficiency Later

Codefirst for clarity. Get your code working accurately first so that you maintain a good
understanding of what it is doing. Then, once it works correctly, look for opportunities to
improve performance.

Debug Effectively

Using Diagnostic Routines for Debugging on page 116, contains tips and guidelines for
debugging an application that uses the ILOG CPLEX Callable Library. In that context, a
symbolic debugger as well as other widely available development tools are quite helpful to
produce error-free code.

Test Correctness, Test Performance

Even a program that has been carefully debugged so that it runs correctly may still contain
errorsor “features” that inhibit its performance with respect to execution speed, memory
use, and so forth. Just as the ILOG CPLEX Interactive Optimizer can aid in your tests for
correctness, it can also help you improve performance. It uses the same routines as the
Component Libraries; consequently, it requires the same amount of time to solve a problem
created by a Concert or Callable Library application.

Use one of these methods, specifying afile type of SAV, to create a binary representation of
the problem object from your application in a SAV file.

[1loCplex: :exportModel
[1loCplex.exportModel
[dplex.ExportModel
[dprXwriteprob
Then read that representation into the Interactive Optimizer, and solve it there.
If your application sets parameters, use the same settings in the | nteractive Optimizer.

If you find that your application takes significantly longer to solve the problem than does the
I nteractive Optimizer, then you can probably improve the performance of your application.
In such acase, look closely at issues like memory fragmentation, unnecessary compiler
options, inappropriate linker options, and programming practices that slow the application
without causing incorrect results (such as operations within aloop that should be outside the

loop).

Using the Interactive Optimizer for Debugging
The ILOG CPLEX Interactive Optimizer distributed with the Component Libraries offersa

way to see what is going on within the ILOG CPLEX part of your application when you
observe peculiar behavior in your optimization application. The commands of the

132 ILOG CPLEX 10.0 — USER’'S MANUAL

Interactive Optimizer correspond exactly to routines of the Component Libraries, so
anomalies dueto the ILOG CPLEX-part of your application will manifest themselvesin the
Interactive Optimizer as well, and contrariwise, if the Interactive Optimizer behaves
appropriately on your problem, you can be reasonably sure that routines you call in your
application from the Component Libraries work in the same appropriate way.

With respect to parameter settings, you can write a parameter file with the file extension
.prm from your application by means of one of these methods:

[dloCplex: :writeParam inthe C++ AP
[dloCplex.writeParam inthe JavaAPI
[dplex.WriteParaminthe .NET AP

[adprxwriteparam in the Calable Library
[drite file.prmin the Interactive Optimizer

The Interactive Optimizer can read a .prm file and then set parameters exactly asthey arein
your application.

In the other direction, you can use the di splay command in the Interactive Optimizer to
show the nondefault parameter settings; you can then save those settingsin a . prm file for
re-use later. See the topic Saving a Parameter Specification File on page 16 in the reference
manual of the Interactive Optimizer for more detail about using a parameter file in thisway.

To use the Interactive Optimizer for debugging, you first need to write a version of the
problem from the application into aformatted file that can then be loaded into the Interactive
Optimizer. To do so, insert acall to themethod T11oCplex: : exportModel Of to theroutine
CPxXwriteprob into your application. Usethat call to create afile, whether an LP, SAV, or
MPS formatted problem file. (Understanding File Formats on page 138 briefly describes
these file formats.) Then read that file into the Interactive Optimizer and optimize the
problem there.

Notethat MPS, LP and SAV files have differences that influence how to interpret the results
of the Interactive Optimizer for debugging. SAV files contain the exact binary representation
of the problem as it appears in your program, while MPS and LP files are text files
containing possibly less precision for numeric data. And, unless every variable appears on
the objective function, ILOG CPLEX will probably order the variables differently when it
reads the problem from an LP file than from an MPS or SAV file. With thisin mind, SAV
files are the most useful for debugging using the Interactive Optimizer, followed by MPS
files, then finally LPfiles, in terms of the change in behavior you might see by use of
explicit files. On the other hand, LP files are often quite helpful when you want to examine
the problem, more so than as input for the Interactive Optimizer. Furthermore, try solving
both the SAV and MPS files of the same problem using the Interactive Optimizer. Different
results may provide additional insight into the source of the difficulty. In particular, use the
following guidelines with respect to reproducing your program’s behavior in the Interactive
Optimizer.

ILOG CPLEX 10.0 — USER’'S MANUAL 133

1. If you can reproduce the behavior with a SAV file, but not with an MPSfile, this
suggests corruption or errorsin the problem data arrays. Use the DataCheck parameter
or diagnostic routines in the source file check . ¢ to track down the problem.

2. If you can reproduce the behavior in neither the SAV file nor the MPS file, the most
likely cause of the problem is that your program has some sort of memory error. Memory
debugging tools such as Purify will usually find such problems quickly.

3. When solving a problem in MPS or LP format, if the Interactive Optimizer issues a
message about a segmentation fault or similar ungraceful interruption and exits, contact
ILOG CPLEX customer support to arrange for transferring the problem file. The
Interactive Optimizer should never exit with a system interrupt when solving a problem
from atext file, even if the program that created the file has errors. Such cases are
extremely rare.

If the peculiar behavior that you observed in your application persistsin the Interactive
Optimizer, then you must examine the LP or MPS or SAV problem file to determine whether
the problem file actually defines the problem you intended. If it does not define the problem
you intended to optimize, then the problem is being passed incorrectly from your application
to ILOG CPLEX, so you need to look at that part of your application.

Make sure the problem statistics and matrix coefficients indicated by the Interactive
Optimizer match the ones for the intended model in your application. Use the Interactive
Optimizer command display problem stats to verify that the size of the problem, the
sense of the constraints, and the types of variables match your expectations. For example, if
your model is supposed to contain only general integer variables, but the Interactive
Optimizer indicates the presence of binary variables, check the type variable passed to the
constructor of the variable (Concert Technology) or check the specification of the ctype
array and the routine cpxcopyctype (Calable Library). You can also examine the matrix,
objective, and right-hand side coefficientsin an LP or MPSfile to seeif they are consistent
with the values you expect in the model.

Eliminating Common Programming Errors

134

This section serves as a checklist to help you eliminate common pitfalls from your
application. It includes the following topics:

[Check Your Include Files on page 135
[Clean House and Try Again on page 135
[Read Your Messages on page 135

[Check Return Values on page 135

[Beware of Numbering Conventions on page 135

ILOG CPLEX 10.0 — UsSER’'S MANUAL

[Make Local Variables Temporarily Global on page 136
3ol ve the Problem You Intended on page 136

[Fpecial Considerations for Fortran on page 136
Tell Us on page 136

Check Your Include Files

Make sure that the header file i1ocplex.h (Concert Technology) or cplex.h (Calable
Library) isincluded at the top of your application sourcefile. If that file is not included, then
compile-time, linking, or runtime errors may occur.

Clean House and Try Again

Remove all object files, recompile, and relink your application.

Read Your Messages

ILOG CPLEX detects many different kinds of errors and generates exception, warnings, or
error messages about them.

To query exceptions in Concert Technology, use the methods:

IloInt IloCplex::Exception::getStatus() const;
const char* IloException::getMessage() const;

To view warnings and error messages in the Callable Library, you must direct them either to
your screen or to alog file.

_To direct all messages to your screen, use the routine CPxsetintparam to Set the
parameter CPX_PARAM SCRIND.

[Todirect all messagesto alog file, use theroutine cpxsetlogfile.

Check Return Values

Most methods and routines of the Component Libraries return avalue that indicates whether
the routine failed, where it failed, and why it failed. This return value can help you isolate
the point in your application where an error occurs.

If areturn value indicates failure, always check whether sufficient memory is available.

Beware of Numbering Conventions

If you delete aportion of a problem, ILOG CPLEX changes not only the dimensions but
also theindices of the problem. If your application continues to use the former dimensions

ILOG CPLEX 10.0 — USER’'S MANUAL 135

136

and indices, errors will occur. Therefore, in parts of your application that del ete portions of
the problem, look carefully at how dimensions and indices are represented.

Make Local Variables Temporarily Global

If you are having difficulty tracking down the source of an anomaly in the heap, try making
certain local variablestemporarily global. This debugging trick may prove useful after your
application reads in a problem file or modifies a problem object. If application behavior
changeswhen you change alocal variable to global, then you may get from it a better idea of
the source of the anomaly.

Solve the Problem You Intended

Your application may inadvertently alter the problem and thus produce unexpected resullts.
To check whether your application is solving the problem you intended, use the Interactive
Optimizer, asin Using the Interactive Optimizer for Debugging on page 132, and the
diagnostic routines, asin Using Diagnostic Routines for Debugging on page 116.

You should not ignore any ILOG CPLEX warning message in this situation either, so read
your messages, asin Read Your Messages on page 135.

If you are working in the Interactive Optimizer, you can use the command
display problem stats tocheck the problem dimensions.

Special Considerations for Fortran

Check row and column indices. Fortran conventionally numbers from one (1), whereas C
and C++ number from zero (0). This difference in numbering conventions can lead to
unexpected results with regard to row and column indices when your application modifies a
problem or exercises query routines.

It isimportant that you use the Fortran declaration IMPLICIT NONE to help you detect any
unintended type conversions, because such inadvertent conversions frequently lead to
strange application behavior.

Tell Us

Finaly, if your problem remains unsolved by ILOG CPLEX, or if you believe you have
discovered abug in ILOG CPLEX, ILOG would appreciate hearing from you about it.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Managing Input and Output

This chapter tells you about input to and output from ILOG CPLEX. It coversthe following
topics:

[Wnderstanding File Formats on page 138;
[Wsing Concert XML Extensions on page 141
[Wsing Concert csvReader on page 142;

[Managing Log Files on page 143;
[_Controlling Message Channels on page 144.

Note: There are platforms that limit the size of files that they can read. If you have created
a problem file on one platform, and you find that you are unable to read the problem on
another platform, consider whether the platform where you are trying to read the file
suffers from such a limit on file size. ILOG CPLEX may be unable to open your problem
file dueto the size of thefile being greater than the platform limit.

ILOG CPLEX 10.0 — USER’'S MANUAL 137

Understanding File Formats

The reference manual ILOG CPLEX File Formats documents the file formats that
ILOG CPLEX supports. The following sections cover programming considerations about
widely used file formats.

[Working with LP Files on page 138;
[Working with MPSFiles on page 139;
[Converting File Formats on page 140.

Working with LP Files

LP files are row-oriented so you can look at a problem as you enter it in anaturally and
intuitively algebraic way. However, ILOG CPLEX represents a problem internally in a
column-ordered format. This difference between the way ILOG CPLEX accepts a problem
in LP format and the way it stores the problem internally may have an impact on memory
use and on the order in which variables are displayed on screen or in files.

Variable Order and LP Files

AsILOG CPLEX reads an LP format file by rows, it adds columns as it encountersthemin
arow. This convention will have an impact on the order in which variables are named and
displayed. For example, consider this problem:

Maximize 2%, + 3X3

subject to
Xy ot X + X3 < 20
X1 - 33Xy + X3 < 30

with these bounds

0 < X1 < 40
0 < X < Hoo
0 < X3 < +oo

Since ILOG CPLEX reads the objective function asthe first row, the two columns appearing
there will become the first two variables. When the problem is displayed or rewritten into

138 ILOG CPLEX 10.0 — USER’'S MANUAL

another LP file, the variables there will appear in a different order within each row. In this
example, if you execute the command display problem all, you will seethis:

Maximize

obj: 2 x2 + 3 x3

Subject To

cl: x2 + x3 - x1 <= 20

c2: - 3 x2 + x3 + x1 <= 30
Bounds

0 <= x1 <= 40

All other variables are >= 0.

That is, x1 appears at the end of each constraint in which it has a nonzero coefficient. Also,
while re-ordering like this does not affect the optimal objective function value of the
problem, if there exist alternate optimal solutions at this value, then the different order of the
variables could result in a change in the solution path of the algorithm, and there may be
noticeable variation in the solution values of the individual variables.

Working with MPS Files

The ILOG CPLEX MPSfile reader is highly compatible with files created by other
modeling systems that respect the MPS format. There is generally no need to modify
existing problem files to use them with ILOG CPLEX. However, there are

ILOG CPLEX-specific conventions that may be useful for you to know. This section
explains those conventions, and the reference manual ILOG CPLEX File Formats
documents the MPS format more fully.

Free Rows in MPS Files

Inan MPSfile, ILOG CPLEX selectsthefirst free row or N-type row asthe objective
function, and it discards all subsequent free rows unlessit is instructed otherwise by an
OBJNAME section in thefile. To retain free rowsin an MPSfile, reformulate them as equality
rows with an additional free variable. For example, replace the freerow x + y by the
equalityrowx + y - s = 0wheresisfree. Generally, the ILOG CPLEX presolver will
remove rows like that before optimization so they will have no impact on performance.

Ranged Rows in MPS Files

To handle ranged rows, ILOG CPLEX introduces a temporary range variable, creates
appropriate bounds for this variable, and changes the sense of the row to an equality (that is,
MPS type EQ). The added range variables will have the same name as the ranged row with
the characters rg prefixed. When ILOG CPLEX generates solution reports, it removes these
temporary range variables from the constraint matrix.

Extra Rim Vectors in MPS Files

The MPS format allows multiple righthand sides (RHSs), multiple bounds, and multiple
range vectors. It also allows extrafree rows. Together, these features are known as extra rim
vectors. By default, the ILOG CPLEX MPS reader selects the first RHS, bound, and range

ILOG CPLEX 10.0 — USER’'S MANUAL 139

140

definitionsthat it finds. Thefirst free row (that is, N-type row) becomes the objective
function, and the remaining free rows are discarded. The extrarim data are al so discarded.

Naming Conventions in MPS Files

ILOG CPLEX accepts any noncontrol-character within a name. However, ILOG CPLEX
recoghizes blanks (that is, spaces) as delimiters, so you must avoid them in names. You
should also avoid s (dollar sign) and * (asterisk) as charactersin names because they
normally indicate a comment within a data record.

Error Checking in MPS Files

Fairly common problemsin MPS files include split vectors, unnamed columns, and
duplicated names. ILOG CPLEX checks for these conditions and reports them. If repeated
rows or columns occur in an MPSfile, ILOG CPLEX reports an error and stops reading the
file. You can then edit the MPS file to correct the source of the problem.

Saving Modified MPS Files

You may often want to save a modified MPSfile for later use. To that end, ILOG CPLEX
will write out a problem exactly as it appears in memory. All your revisions of that problem
will appear in the new file. One potential areafor confusion occurs when a maximization
problem is saved. Since MPS conventionally represents all problems as minimizations,
ILOG CPLEX reversesthe sign of the objective-function coefficients when it writesa
maximization problem to an MPS file. When you read and optimize this new problem, the
values of the variables will be valid for the original model. However, since the problem has
been converted from amaximization to the equivalent minimization, the objective, dual, and
reduced-cost values will have reversed signs.

Converting File Formats

MPS, Mathematical Programming System, an industry-standard format based on ASCI | -text
has historically been restricted to a fixed format in which data fields were limited to eight
characters and specific fields had to appear in specific columns on specific lines.

ILOG CPLEX supports extensions to MPS that allow more descriptive names (that is, more
than eight characters), greater accuracy for numeric data, and greater flexibility in data
positions.

Most MPSfilesin fixed format conform to the ILOG CPLEX extensions and thus can be
read by the ILOG CPLEX MPS reader without error. However, the ILOG CPLEX MPS
reader will not accept the following conventions:

[Blank space within a name;
[DBlank lines;
[missing fields (such as bound names and right-hand side names);

[@axtraneous, uncommented characters;

ILOG CPLEX 10.0 — UsSER’'S MANUAL

[blanksin lieu of repeated name fields, such as bound vector names and right-hand side
names.

You can convert fixed-format MPS files that contain those conventions into acceptable
ILOG CPLEX-extended MPSfiles. To do so, use the convert utility supplied in the
standard distribution of ILOG CPLEX. The convert utility removes unreadable features
from fixed-format MPS, BAS, and ORD files. It runs from the operating system prompt of
your platform. Here is the syntax of the convert utility:

convert -option inputfilename outputfilename

Your command must include an input-file name and an output-file name; they must be
different from each other. The options, summarized in Table 6.1, indicate the file type. You
may specify only one option. If you do not specify an option, ILOG CPLEX attempts to
deduce the file type from the extension in the file name.

Table 6.1 Options for the convert Utility and Corresponding File Extensions

Option |File type File extension
-m MPS (Mathematical Programming System) .mps
-b BAS (basis file according to MPS conventions) | .bas
-0 ORD (priority orders) .ord

Using Concert XML Extensions

Concert Technology for C++ users offers a suite of classes for serializing ILOG CPLEX
models (that is, instances of 11oModel) and solutions (that is, instances of 110Solution)
through XML. The Concert Technology C++ API Reference Manual documents the XML
serialization API inthe group optim. concert .xml. That group includes these classes:

[dloxmlContext allowsyou to serialize an instance of I1oModel OF T1oSolution.
This class offers methods for reading and writing amodel, a solution, or both a model
and a solution together. There are examples of how to use this classin the reference
manual.

[d1oxmlInfo offers methods that enable you to validate the XML serialization of
elements, such as numeric arrays, integer arrays, variables, and other extractables from
your model or solution.

ILOG CPLEX 10.0 — USER’'S MANUAL 141

[JloxmlReader createsareader in an environment (that is, in an instance of 110Env).
This class offers methods to check runtime type information (RTTI), to recognize

hierarchic relations between objects, and to access attributes of objectsin your model or
solution.

[dloxmlWriter createsawriter in an environment (that is, in an instance of I1oEnv).
This class offers methods to access el ements and to convert their types as needed in order
to serialize elements of your model or solution.

Note: Thereisa fundamental difference between writing an XML file of a model and
writing an LP/MPS/SAV file of the same extracted model. If the model contains piecewise
linear elements (PWL), or other nonlinear features, the XML file will represent the model
as such. In contrast, the LP/MPSSAV file will represent only the tranformed model. That
transformed model obscures these nonlinear features because of the automatic
transformation that took place.

Using Concert csvReader

CSV isafileformat consisting of lines of comma-separated valuesin ordinary ASCII text.
Concert Technology for C++ users provides classes adapted to reading data into your
application from a CSV file. The constructors and methods of these classes are documented
more fully in the Concert Technology C++ Reference Manual.

[l1loCsvReader

An object of thisclassis capable of reading datafrom a CSV file and passing the data to
your application. There are methods in this class for recognizing the first line of thefile
as a header, for indicating whether or not to cache the data, for counting columns, for
counting lines, for accessing lines by number or by name, for designating specia
characters, for indicating separators, and so forth.

[AloCsvLine
An object of this class represents aline of aCSV file. The constructors and methods of

this class enable you to designate special characters, such as adecimal point, separator,
line ending, and so forth.

[l1loCsvReader: :Iterator

An object of this embedded classis an iterator capable of accessing datain a CSV file
line by line. Thisiterator is useful, for example, in programming loops of your
application, such as while-statements.

142 ILOG CPLEX 10.0 — USER’'S MANUAL

Managing Log Files

AsILOG CPLEX isworking, it can record messagesto alog file. By default, the Interactive
Optimizer creates the log file in the directory where it is running, and it names the file
cplex.log. If such afile already exists, ILOG CPLEX adds aline indicating the current
time and date and then appends new information to the end of the existing file. That is, it
does not overwrite the file, and it distinguishes different sessions within the log file. By
default, thereis no log file for Component Library applications.

You can locate the log file where you like, and you can rename it. Some users, for example,
like to create a specifically named log file for each session. Also you can closethelog filein
case you do not want ILOG CPLEX to record messages to its default log file.

The following sections show you the commands for creating, renaming, relocating, and
closing alog file.

Creating, Renaming, Relocating Log Files

[In the Interactive Optimizer, use the command set logfile filename, Substituting
the name you prefer for the log file. In other words, use this command to rename or
rel ocate the default log file.

[_From the Callable Library, first use the routine cpxfopen to open the target file; then
usetheroutine cpxsetlogfile. The ILOG CPLEX Reference Manual documents both
routines.

[_From Concert, use the setout method to send logging output to the specified output
stream.

Closing Log Files

1 you do not want ILOG CPLEX to record messagesin alog file, then you can close the
log file from the Interactive Optimizer with the command set logfile .

By default, routines from the Callable Library do not write to alog file. However, if you
want to close alog file that you created by acall to cpxsetlogfile, cal
Cpxsetlogfile again, and thistime, pass aNULL pointer asits second argument.

[_#rom Concert, use the setout method with env . getNullstream asargument, where
env iSan I1loEnv object, to stop sending logging output to an output stream.

ILOG CPLEX 10.0 — USER’'S MANUAL 143

Controlling Message Channels

In both the Interactive Optimizer and the Callable Library, there are message channels that
enable you to direct output from your application asyou prefer. In the | nteractive Optimizer,
these channels are defined by the command set output channel with itsoptionsas
listed in Table 6.2. In the Callable Library, there are routines for managing message
channels, in addition to parameters that you can set. In the C++ and Java APIs, the class
I1loCplex inherits methods from the Concert Technology class 11o0a1gorithm, methods
that enable you to control input and output channels.

The following sections offer more details about these idess:

[Parameter for Output Channels on page 144;

[Callable Library Routines for Message Channels on page 145;
[Example: Callable Library Message Channels on page 146;
[Concert Technology Message Channels on page 148.

Parameter for Output Channels

Besides the log-file parameter, Interactive Optimizer and the Callable Library offer you
output-channel parametersto give you finer control over when and where messages appear
in the Interactive Optimizer. Output-channel parametersindicate whether output should or
should not appear on screen. They also allow you to designate log files for message
channels. The output-channel parameters do not affect the log-file parameter, soitis
customary to use the command set logfile before the command

set output channel valuel wvalue2.

In the output-channel command, you can specify achannel tobeone of dialog, errors,
logonly, results, Of warnings. Table 6.2 summarizes the information carried over each
channel.

Table 6.2 Options for the Output-Channel Command

Channel Information

dialog messages related to interactive use; e.g., prompts, help messages,
greetings

errors messages to inform user that operation could not be performed and why

logonly message to record only in file (not on screen) e.g., multiline messages

results information explicitly requested by user; state, change, progress information

warnings messages to inform user request was performed but unexpected condition
may result

144 ILOG CPLEX 10.0 — USER’'S MANUAL

The option value2 lets you specify afile name to redirect output from a channel.

Also in that command, value1 allowsyou to turn on or off output to the screen. When
valuel iSy, output isdirected to the screen; when itsvalueisn, output is not directed to the
screen. Table 6.3 summarizes which channels direct output to the screen by default. If a
channel directs output to the screen by default, you can leave value1 blank to get the same
effect asset output channel vy.

Table 6.3 Channels Directing Output to Screen or to a File

Channel Default valuel |Meaning

dialog vy blank directs output to screen but not to a file
errors % blank directs output to screen and to a file
logonly n blank directs output only to a file, not to screen
results v blank directs output to screen and to a file
warnings vy blank directs output to screen and to a file

Callable Library Routines for Message Channels

Interactive Optimizer and the Callable Library define several message channels for flexible
control over message output:

[dpxresults for messages containing status and progress information;
[dpxerror for messages issued when atask cannot be completed;

[dpxwarning for messages issued when anonfatal difficulty is encountered; or when an
action taken may have side-effects; or when an assumption made may have side-effects;

[dpx1log for messages containing information that would not conventionally be displayed
on screen but could be useful inalog file.

Output messages flow through message channels to destinations. Message channels are
associated with destinations through their destination list. Messages from routines of the
ILOG CPLEX Callable Library are assigned internally to one of those predefined channels.
Those default channels are C pointers to ILOG CPLEX objects; they are initialized by
CPxXopenCPLEX; they are not global variables. Your application accesses these objects by
calling the routine cpxgetchannels. You can use these predefined message channels for
your own application messages. You can a so define new channels.

An application using routines from the ILOG CPLEX Callable Library produces no output
messages unless the application specifies message handling instructions through one or

ILOG CPLEX 10.0 — USER’'S MANUAL 145

146

more calls to the message handling routines of the Callable Library. In other words, the
destination list of each channel isinitially empty.

Messages from multiple channels may be sent to one destination. All predefined

ILOG CPLEX channels can be directed to asinglefile by acall to cPxsetlogfile.
Similarly, al predefined ILOG CPLEX channels except cpxlog can be directed to the
screen by the cpx_PARAM SCRIND parameter. For afiner level of control, or to define
destinations for application-specific messages, use the following message handling routines,
all documented in the ILOG CPLEX Reference Manual:

[aprxmsg Writes a message to a predefined channel;
[apxflushchannel flushes achannel to its associated destination;
[dPxdisconnectchannel flushes achannel and clears its destination list;

[apxdelchannel flushes achannel, clearsits destination list, frees memory for that
channel;

[dpXaddchannel adds achannel;

[dprxaddfpdest addsadestination file to the list of destinations associated with a
channel;

[arxdelfpdest deletes adestination from the destination list of a channel;
[dpxaddfuncdest adds a destination function to a channel;
[apxdelfuncdest deletes adestination function to a channel;

Once channel destinations are established, messages can be sent to multiple destinations by
asingle call to amessage-handling routine.

User-written
application

CPXaddfpdest

| Destination File(s) |

CPXaddchannel

Channel(s)

(CPXdelchannel)

(CPXdelfpdest)

CPXmsg L

CPXaddfuncdest
(CPXdelfuncdest)

| Destination Function(

Figure6.1 ILOG CPLEX Message Handling Routines

Example: Callable Library Message Channels

This example shows you how to use the ILOG CPLEX message handler from the Callable
Library. It captures all messages generated by ILOG CPLEX and displays them on screen

ILOG CPLEX 10.0 — UsSER’'S MANUAL

along with alabel indicating which channel sent the message. It also creates a user channel
to receive output generated by the program itself. The user channel accepts user-generated
messages, displays them on screen with alabel, and records them in afile without the label.

This example derives from 1pex1 . c, aprogramin the ILOG CPLEX Getting Sarted
manual. There are afew differences between the two examples:

[N this example, the function ourmsgfunc (rather than the C functionsprint £ or
fprintf (stderr, . . .)) managesall output. The programitself or cpxmsg from
the ILOG CPLEX Callable Library calls ourmsgfunc. Infact, cPxmsg isareplacement
for print £, alowing a message to appear in more than one place, for example, both on
screen and in afile.

Only after you initialize the ILOG CPLEX environment by calling cPxopenCPLEX Can
you call cpxmsg. And only after you call cPxgetchannels can you use the default
ILOG CPLEX channels. Therefore, callsto ourmsgfunc print directly any messages
that occur before the program gets the address of cpxerror (achannel). After acall to
Cpxgetchannels getsthe address of cpxerror, and after acall to cPXaddfuncdest
associates the message function ourmsgfunc with cpxerror, then error messages are
generated by callsto cpxmsg.

After the TERMINATE : label, any error must be generated with care in case the error
message function has not been set up properly. Thus, curmsgfunc isalso called directly
to generate any error messages there.

A cal tothe ILOG CPLEX Callable Library routine cPxaddchannel initiaizesthe
channel ourchannel. The Callable Library routine fopen opensthefile 1pexs . out to
accept solution information. A call to the ILOG CPLEX Callable Library routine
cpxaddfpdest associates that file with that channel. Solution information is also
displayed on screen since ourmsgfunc is associated with that new channel, too. Thusin
the loops near the end of main, when the solution is printed, only one call to cpxmsg
suffices to put the output both on screen and into the file. A call to cPxdelchannel
deletes ourchannel.

[Although cpxclosecpLEX Will automatically delete file- and function-destinations for
channels, it isagood practiceto call cpxdelfpdest and cPxdelfuncdest at theend
of your programs.

The complete program 1pex5 . c appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

ILOG CPLEX 10.0 — USER’'S MANUAL 147

148

Concert Technology Message Channels

In the C++ API of Concert Technology, the class 11oEnv initializes output streams for
genera information, for error messages, and for warnings. The class I1oalgorithm
supports these communi cation streams, and the class 11oCplex inherits its methods. For
general output, thereisthe method 110a1gorithm::out. For warnings and nonfatal
conditions, there isthe method 11oalgorithm: :warning. For errors, there is the method
IloAlgorithm: :error.

By default, an instance of 110Env defines the output stream referenced by the method out
asthe system cout inthe C++ API, but you can use the method setout to redefineit asyou
prefer. For example, to suppress output to the screen in a C++ application, use this method
with this argument:

setOut (IloEnv: :getNullStream)

Likewise, you can use the methods T1oAlgorithm: : setWarning and setError to
redefine those channels as you prefer.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Licensing an Application

This chapter tells you about CPLEX runtime development and licensing procedures.

ILOG CPLEX usesthe standard ILOG License Manager (ILM). The ILOG License
Manager online documentation documents ILM access keys (or keys, for short) in more
detail. This chapter shows you how to write applications that use ILM runtime access keys.

A runtime license is restricted to applications created by a particular developer or company.
In order to distinguish runtime access keys from development keys (as well as runtime keys
for applications created by other companies), you need to call an additional routine in your
source code before initializing the CPLEX environment.

This chapter includes the following topics:
[Types of ILM Runtime Licenses on page 150
[Routines and Methods Used for Licensing on page 150
[_HExamples on page 151
[—Summary on page 154

ILOG CPLEX 10.0 — USER’'S MANUAL 149

Types of ILM Runtime Licenses

ILM runtime licenses come in two forms: file-based and memory-based.

File-Based RTNODE, RTSTOKEN or TOKEN Keys

These are afile-based access key that istied to a particular computer or server. Refer to the
ILOG License Manager online documentation for information about how to establish thefile
containing the key. You must communicate the location of thisfile to your application. In
order to avoid potential conflicts with other runtime applications, it is agood ideato put the
key in adirectory specific to your application by using one of the following:

[the C routine cpxputenv from the Callable Library

[the C routine cpxputenv from the Callable Library in the C++ API of Concert
Technology

[the method I1oCplex.putEnv inthe Java APl of Concert Technology
[the method cplex.PutEnv inthe NET API of Concert Technology

These file-based keys are the most commonly used runtime licenses.

Memory-Based RUNTIME Keys

These involve passing some information in the memory of your program to ILM. No files
containing access keys are involved. Rather, you set the key in your program and pass it to
ILM by calling one of the following:

[the C routine CPXRegisterLicense from the Callable Library

[the C routine CPXRegisterLicense from the Callable Library in the C++ API of
Concert Technology

[the method T1oCplex.registerLicense inthe Java APl of Concert Technology

[the method cplex.RegisterLicense inthe .NET APl of Concert Technology

Routines and Methods Used for Licensing

150

All ILOG CPLEX applications either call the routine cPxopencPLEX to establish the
CPLEX environment, or use the appropriate constructor (11oCplex in the C++ and Java
APl or cplex inthe NET API) toinitialize ILOG CPLEX for use with Concert Technology.
Until either cpxopencpPLEX iscaled or the 11oCplex oObject exists, few ILOG CPLEX
routines or methods operate. In addition to allocating the environment, CPXopenCPLEX
performs license checks, as do the constructors for Concert Technology. For development

ILOG CPLEX 10.0 — UsSER’'S MANUAL

licenses, no additional licensing steps are required. For runtime licenses, your application
first needs to provide some additional licensing information before the call to
CPXopenCPLEX Or the use of a constructor.

[_Hor RTNODE, RTSTOKEN and TOKEN Keys, this requires calling the cpxputenv routine
from the Callable Library and C++ API of Concert Technology, or the
IloCplex.putenv Static method from the Java API, or cplex. PutEnv fromthe NET
API, to specify the location of the key through the ILOG_LICENSE FILE environment
variable.

[_HFor memory-based RUNTIME keys, thisrequires calling the cPxRegisterLicense
routine for Callable Library and C++ users, or the static method
IloCplex.registerLicense for Javausers, or the static method
Cplex.RegisterLicense for .NET users, to passthe RuNTIME key to ILM.

Documentation of the routines cpxputenv and CPXRegisterLicense isinthelLOG
CPLEX Callable Library Reference Manual; documentation of 11oCplex.putenv and
IloCplex.registerLicense iSinthe ILOG CPLEX Java APl Reference Manual;
documentation of cplex.PutEnv and Cplex.RegisterLicense isinthe|LOG CPLEX
.NET API Reference Manual.

Examples

Here are some code samples that illustrate the use of those runtime license routines and
methods. The first example illustrates the routine cpxputenv when opening the CPLEX
environment.

Notes: This example assumes a Microsoft Windows file directory structure that requires an
additional backslash when specifying the path of the file containing the key. It al so assumes
that the application uses an environment variable called myapp_HOME to identify the
directory in which it was installed.

The string argument to cpxputenv must remain active throughout the time ILOG CPLEX
isactive; the best way to do thisisto malloc the string.

CPXputenv Routine for C and C++ Users

char *inststr
char *envstr

NULL;
NULL;

/* Initialize the CPLEX environment */

envstr = (char *) malloc (256);

if (envstr == NULL) {
fprintf (stderr, "Memory allocation for CPXputenv failed.\n");
status = FAIL;
goto TERMINATE;

ILOG CPLEX 10.0 — USER’'S MANUAL 151

else {
inststr = (char *) getenv("MYAPP _HOME") ;
if (inststr == NULL) ({
fprintf (stderr, "Unable to find installation directory.\n");
status = FAIL;
goto TERMINATE;
}
strcpy (envstr, "ILOG LICENSE FILE=");
strcat (envstr, inststr);
strcat (envstr, "\\license\\access.ilm") ;
CPXputenv (envstr) ;

}

env = CPXopenCPLEX (&status) ;

The putenv Method for Java Users
Hereis an example using Concert Technology for Java users:
IloCplex.putenv ("ILOG LICENSE FILE=\\license\\access.ilm");
try {

cplex = new IloCplex() ;

catch (IloException e) ({
System.err.println("Exception caught for runtime license:" + e);

The Putenv Method for .NET Users
Hereis an example using Concert Technology for .NET users:
Cplex.Putenv("ILOG_LICENSE_FILE:../../../certify/access.e.ilm");
:rycélex = new Cplex();

catch (ILOG.Concert.Exception e) {
System.Console.WriteLine ("Concert exception caught: " + e);
}

CPXRegisterLicense Routine for C and C++ Users

The following is an example showing how to use the routine CPxRegisterLicense.
static char *ilm license=\

"LICENSE ILOG Incline\n\

RUNTIME CPLEX 9.200 21-Jul-2005 R81GM34ECZTS N , options: m ";
static int ilm license signature=2756133;

CPXENVptr env = NULL;
int status;

/* Initialize the CPLEX environment */

152 ILOG CPLEX 10.0 — USER’'S MANUAL

status = CPXRegisterLicense (ilm license, ilm_license_signature) ;

if (status != 0) {
fprintf (stderr, "Could not register CPLEX license, status %d.\n",
status) ;

goto TERMINATE;
}
env = CPXopenCPLEX (&status);
if (env == NULL) {
char errmsg[1024];
fprintf (stderr, "Could not open CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);
goto TERMINATE;

The registerLicense Method for Java Users

Hereisan example for Java users applying I1oCplex.registerLicense:

static String ilm CPLEX license=

"LICENSE ILOG Test\n RUNTIME CPLEX 9.200 021-Jul-2005 R81GM34ECZTS N
options: m ";

static int ilm CPLEX license_signature=2756133;

'

public static void main(Stringl[] args) ({

try {
IloCplex.registerLicense(ilm CPLEX license, ilm CPLEX license signature);
IloCplex cplex = new IloCplex();

}

catch (IloException e) ({
System.err.println("Exception caught for runtime license:" + e);

The RegisterLicense Method for .NET Users
Hereisan example for .NET users applying Cplex.RegisterLicense:

internal static string ilm CPLEX license="LICENSE ILOG User\n RUNTIME CPLEX
9.200 05-Aug-2005 62RAR21A8NC5 N any , options: m ";
internal static int ilm CPLEX license_signature=863909;
public static void Main(string[] args) {
try {
Cplex.RegisterLicense (ilm CPLEX license, ilm CPLEX license signature) ;
Cplex cplex = new Cplex();
}
catch (ILOG.Concert.Exception e) {
System.Console.WriteLine ("Expected Concert exception caught: " + e);
}

ILOG CPLEX 10.0 — USER’'S MANUAL 153

Summary

154

ILM runtime license keys come in two forms. Users of file-based RTNODE, RTSTOKEN and
TOKEN keys should use the routine cpxputenv or the method T11oCplex.putenv or the
method cplex . PutEnv to identify the location of the license file. Users of memory-based
RUNTIME keys should usethe routine CPxRegisterLicense or the method
IloCplex.registerLicense Of the method Cplex.RegisterLicense to passthe key
to the ILOG License Manager embedded inside the CPLEX Component Libraries. Refer to
the ILOG License Manager online documentation for additional information about
activating and maintaining ILM license keys.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Part Il

Continuous Optimization

v objective

Np optimum._

feasible solutions

X

This part focuses on algorithmic considerations about the ILOG CPLEX optimizers that
solve problems formulated in terms of continuous variables. While ILOG CPLEX is
delivered with default settings that enable you to solve many problems without changing
parameters, this part also documents features that you can customize for your application.
This part contains:

[Jolving LPs: Smplex Optimizers on page 157

[Jolving LPs: Barrier Optimizer on page 183

[—Jolving Networ k-Flow Problems on page 203

[—Jolving Problems with a Quadratic Objective (QP) on page 213
[—Jolving Problems with Quadratic Constraints (QCP) on page 225

Solving LPs: Simplex Optimizers

The preceding chapters have focused on the details of writing applications that model
optimization problems and access the solutions to those problems, with minimal attention to
the optimizer that solves them, because most models are solved well by the default
optimizers provided by ILOG CPLEX. For instances where a user wishes to exert more

direct influence over the solution process, ILOG CPLEX provides a number of features that
may be of interest.

This chapter and the next one tell you more about solving linear programs with the LP

optimizers of ILOG CPLEX. This chapter emphasizes primal and dual simplex optimizers.
It contains sections aboult:

[Choosing an Optimizer for Your LP Problem on page 158
[Tuning LP Performance on page 161

[_Diagnosing Performance Problems on page 169

[Diagnosing LP Infeasibility on page 175

[Example: Using a Sarting Basisin an LP Problem on page 180

ILOG CPLEX 10.0 — USER’'S MANUAL 157

Choosing an Optimizer for Your LP Problem

158

ILOG CPLEX offers several different optimizersfor linear programming problems. Each of
these optimizersis available whether you call ILOG CPLEX from within your own
application using Concert or the Callable Library, or you use the Interactive Optimizer.

The choice of LP optimizer in ILOG CPLEX can be specified through a parameter, named
CPX_PARAM LPMETHOD inthe Callable Library, and named 1pmethed in the Interactive
Optimizer. In Concert Technology, the LP method is controlled by the Rootalg parameter
(which also controls related aspects of QP and MIP solutions, as explained in the
corresponding chapters of this manual). In this chapter, this parameter will be referred to
uniformly as LpMethod.

The LpMethod parameter determines which optimizer will be used when you solve amodel
in one of the following ways:

[dplex.solve (Concert Technology)
[apxlpopt (CalableLibrary)
[dptimize (Interactive Optimizer)
The choicesfor LpMethod are summarized in Table 8.1.
Table 8.1 Settings of the LPMethod Parameter for Choosing an Optimizer

LSISSIient%g(; Meaning See Section
0 Default Setting Automatic Selection of Optimizer on page 159
1 Primal Simplex Primal Simplex Optimizer on page 160
2 Dual Simplex Dual Simplex Optimizer on page 159
3 Network Simplex | Network Optimizer on page 160
4 Barrier Barrier Optimizer on page 160
5 Sifting Sifting Optimizer on page 160
6 Concurrent Dual, | Concurrent Optimizer on page 161
Barrier, and Primal

ILOG CPLEX 10.0 — UsSER’'S MANUAL

The symbolic names for these settings in an application program are summarized in

Table 8.2.

Table 8.2 Symbolic Names for LP Solution Methods
Concert C++ Concert Java Concert.NET Callable Library
IloCplex: :AutoAlg IloCplex.Algorithm.Auto Cplex.Auto CPX ALG AUTOMATIC
IloCplex: :Primal IloCplex.Algorithm.Primal Cplex.Primal CPX ALG PRIMAL
IloCplex: :Dual IloCplex.Algorithm.Dual Cplex.Dual CPX ALG DUAL
IloCplex: :Network IloCplex.Algorithm.Network Cplex.Network CPX ALG NET
IloCplex: :Barrier IloCplex.Algorithm.Barrier Cplex.Barrier CPX_ALG BARRIER
IloCplex::Sifting IloCplex.Algorithm.Sifting Cplex.Sifting CPX_ ALG SIFTING
IloCplex::Concurrent |IloCplex.Algorithm.Concurrent |Cplex.Concurrent | CPX ALG CONCURRENT

Automatic Selection of Optimizer

The default Automatic setting of LPMethod letsILOG CPLEX determine the algorithm to
use to optimize your problem. Most models are solved well with this setting, and thisisthe
recommended option except when you have a compelling reason to tune performance for a
particular class of model.

On aserial computer, or on aparallel computer where only one thread will be invoked, the
automatic setting will in most cases choose the dual simplex optimizer. An exception to this
ruleis when an advanced basis is present that is ascertained to be primal feasible; in that
case, primal simplex will be called.

On acomputer where parallel threads are available to ILOG CPLEX, the automatic setting
resultsin the concurrent optimizer being called. An exception iswhen an advanced basisis
present; in that case, it will behave as the serial agorithm would.

Dual Simplex Optimizer

If you are familiar with linear programming theory, then you recall that alinear
programming problem can be stated in primal or dual form, and an optimal solution (if one
exists) of the dual has a direct relationship to an optimal solution of the primal model.
ILOG CPLEX Dual Simplex Optimizer makes use of this relationship, but still reports the
solution in terms of the primal model. The dua simplex method isthe first choice for
optimizing alinear programming problem, especially for primal-degenerate problems with
little variability in the righthand side coefficients but significant variability in the cost
coefficients.

ILOG CPLEX 10.0 — USER’'S MANUAL 159

160

Primal Simplex Optimizer

ILOG CPLEX's Primal Simplex Optimizer also can effectively solve awide variety of linear
programming problems with its default parameter settings. The primal simplex method is
not the obvious choice for afirst try at optimizing alinear programming problem. However,
this method will sometimeswork better on problems where the number of variables exceeds
the number of constraints significantly, or on problems that exhibit little variability in the
cost coefficients. Few problems exhibit poor numeric performance in both primal and dual
form. Consequently, if you have a problem where numeric difficulties occur when you use
the dual simplex optimizer, then consider using the primal simplex optimizer instead.

Network Optimizer

If amajor part of your problem is structured as a network, then the ILOG CPLEX Network
Optimizer may have a positive impact on performance. The ILOG CPLEX Network
Optimizer recognizes a special class of linear programming problems with network
structure. It uses highly efficient network algorithms on that part of the problem to find a
solution from which it then constructs an advanced basis for the rest of your problem. From
this advanced basis, ILOG CPLEX then iterates to find a solution to the full problem.
Chapter 10, Solving Networ k-Flow Problems explores this optimizer in greater detail.

Barrier Optimizer

The barrier optimizer offers an approach particularly efficient on large, sparse problems (for
example, more than 100 000 rows or columns, and no more than perhaps a dozen nonzeros
per column) and sometimes on other models as well. The barrier optimizer is sufficiently
different in nature from the other optimizersthat it is discussed in detail in the next chapter,
Chapter 9, Solving LPs: Barrier Optimizer.

Sifting Optimizer

Sifting was devel oped to exploit the characteristics of models with large aspect ratios (that
is, alargeratio of the number of columnsto the number of rows). In particular, the method is
well suited to large aspect ratio models where an optimal solution can be expected to place
most variables at their lower bounds. The sifting algorithm can be thought of as an extension
to the familiar simplex method. It starts by solving a subproblem (known as the working
problem) consisting of all rows but only a small subset of the full set of columns, by
assuming an arbitrary value (such asits lower bound) for the solution value of each of the
remaining columns. This solution is then used to re-evaluate the reduced costs of the
remaining columns. Any columns whose reduced costs violate the optimality criterion
become candidates to be added to the working problem for the next major sifting iteration.
When no candidates are present, the solution of the working problem is optimal for the full
problem, and sifting terminates.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

The choice of optimizer to solve the working problem is governed by the siftalg
parameter. You can set this parameter to any of the values accepted by the L.pMethod
parameter, except for concurrent and of course sifting itself. At thedefault siftalg
setting, ILOG CPLEX chooses the optimizer automatically, typically switching between
barrier and primal simplex as the optimization proceeds. It is recommended that you not turn
off the barrier crossover step (that is, do not set the parameter BarCrossalg to -1) when
you use the sifting optimizer, so that this switching can be carried out as needed.

Concurrent Optimizer

The concurrent optimizer launches distinct optimizers in multiple threads. When the
concurrent optimizer is launched on a single-threaded platform, it calls the dual simplex
optimizer. In other words, choosing the concurrent optimizer makes sense only on a
multiprocessor computer where threads are enabled. For more information about the
concurrent optimizer, see Chapter 33, Parallel Optimizers, especially Concurrent Optimizer
on page 446.

Parameter Settings and Optimizer Choice

When you are using parameter settings other than the default, consider the algorithms that
these settings will affect. Some parameters, such as the time limit, will affect all the
algorithms invoked by the concurrent optimizer. Others, such as the refactoring frequency,
will affect both the primal and dual simplex algorithms. And some parameters, such asthe
primal gradient, dual gradient, or barrier convergence tolerance, affect only asingle
algorithm.

Tuning LP Performance

Each of the optimizers available in ILOG CPLEX is designed to solve most linear
programming problems under its default parameter settings. However, characteristics of
your particular problem may make performance tuning advantageous.

Asafirst step in tuning performance, try the different ILOG CPLEX optimizers, as
recommended in Choosing an Optimizer for Your LP Problem on page 158. The following
sections suggest other features of ILOG CPLEX to consider in tuning the performance of
your application:

[Preprocessing on page 162
[Jarting from an Advanced Basis on page 164
[Jimplex Parameters on page 165

ILOG CPLEX 10.0 — USER’'S MANUAL 161

162

Preprocessing

At default settings, ILOG CPLEX preprocesses problems by simplifying constraints,
reducing problem size, and eliminating redundancy. Its presolver tries to reduce the size of a
problem by making inferences about the nature of any optimal solution to the problem. Its
aggregator triesto eliminate variables and rows through substitution. For most models,
preprocessing is beneficial to the total solution speed, and ILOG CPLEX reportsthe model's
solution in terms of the user's origina formulation, making the exact nature of any
reductions immaterial.

Dual Formulation in Presolve

A useful preprocessing feature for performance tuning, one that is not always activated by
default, can be to convert the problem to its dual formulation. The nature of the dual
formulation isrooted in linear programming theory, beyond the scope of this manual, but for
the purposes of this preprocessing feature it is sufficient to think of the roles of the rows and
columns of the model's constraint matrix as being switched. Thus the feature is especially
applicable to models that have many more rows than columns.

You can direct the preprocessor to form the dual by setting the prebpual parameter to 1
(one).

Conversely, to entirely inhibit the dual formulation for the barrier optimizer, you can set the
PreDual parameter to -1. The default, automatic, setting is o.

It isworth emphasizing, to those familiar with linear programming theory, that the decision
to solve the dual formulation of your model, via this preprocessing parameter, is not the
same as the choice between using the dual simplex method or the primal simplex method to
perform the optimization. Although these two concepts (dual formulation and dual simplex
optimizer) have theoretical foundationsin common, it isvalid to consider, for example,
solving the dual formulation of your model with the dual simplex method; this would not
simply result in the same computational path as solving the primal formulation with the
primal simplex method. However, with that distinction as background, it may be worth
knowing that when CPLEX generates the dual formulation, and asimplex optimizer isto be
used, CPLEX will in most cases automatically select the opposite simplex optimizer to the
oneit would have selected for the primal formulation. Thus, if you set the PreDual
parameter to 1 (one), and aso select LPMethod 1 (which normally invokes the primal
simplex optimizer), the dual simplex optimizer will be used in solving the dual formulation.
Because solution status and the other results of an optimization are the same regardl ess of
these settings, no additional steps need to be taken by the user to use and interpret the
solution; but examination of solution logs might prove confusing if this behavior is not taken
into account.

Dependency Checking in Presolve

The ILOG CPLEX preprocessor offers a dependency checker which strengthens problem
reduction by detecting redundant constraints. Such reductions are usually most effective

ILOG CPLEX 10.0 — UsSER’'S MANUAL

with the barrier optimizer, but these reductions can be applied to all types of problems: LP,
QP, QCP, MIP, MIQP, MIQCEP. Table 8.3 shows you the possible settings of bepInd, the
parameter that controls dependency checking, and indicates their effects.

Table 8.3 Dependency Checking Parameter Deplnd or CPX_PARAM DEPIND

Setting | Effect

-1 automatic: let CPLEX choose when to use dependency checking
0 turn off dependency checking (default)

1 turn on only at the beginning of preprocessing

2 turn on only at the end of preprocessing

3 turn on at beginning and at end of preprocessing

Final Factor after Presolve

When presolve makes changes to the model prior to optimization, areverse operation
(uncrush) occurs at termination to restore the full model with its solution. With default
settings, the simplex optimizers will perform afinal basis factorization on the full model
before terminating. If you turn on the MemoryEmphasis (CPX_ PARAM MEMORYEMPHASIS
in the Callable Library) parameter to conserve memory, the final factorization after
uncrushing will be skipped; on large models this can save some time, but computations that
require a factorized basis after optimization (for example the computation of the condition
number Kappa) may be unavailable depending on the operations presolve performed.

Factorization can easily be performed later by a call to asimplex optimizer with the
parameter AdvInd Set to avalue greater than or equal to one.

Memory Use and Presolve

To reduce memory use, presolve may compress the arrays used for storage of the original
model. This compression can make more memory available for the optimizer that the user
has called. To conserve memory, you can also turn on the MemoryEmphasis
(cpx_PARAM MEMORYEMPHASIS inthe Callable Library) parameter.

Controlling Passes in Preprocessing

In rare instances, a user may wish to specify the number of analysis passes that the presol ver
or the aggregator makes through the problem. The parameters prepass and AggInd,
respectively, control these two preprocessing features; the default, automatic, setting of -1
lets ILOG CPLEX determine the number of passes to make, while a setting of o directs
ILOG CPLEX not to use that preprocessing feature, and a positive integer limits the number
of passes to that value. At the automatic setting, ILOG CPLEX applies the aggregator just
once when it is solving an LP model; for some problems, it may be worthwhile to increase
the AggInd setting. The behavior under the prepass default isless easy to predict, but if

ILOG CPLEX 10.0 — USER’'S MANUAL 163

164

the output log indicates it is performing excessive analysis you may wish to try alimit of
five passes or some other modest value.

Aggregator Fill in Preprocessing

Another parameter, which affects only the aggregator, isaggri11. Occasionally the
substitutions made by the aggregator will increase matrix density and thus make each
iteration too expensive to be advantageous. In such cases, try lowering aggrill fromits
default value of 10. ILOG CPLEX may make fewer substitutions as a conseguence, and the
resulting problem will be less dense.

Turning Off Preprocessing

Finally, if for some reason you wish to turn ILOG CPLEX preprocessing entirely off, set the
parameter preInd to 0.

Starting from an Advanced Basis

Another performance improvement to consider, unless you are using the barrier optimizer, is
starting from an advanced basis. If you can start a simplex optimizer from an advanced
basis, then there is the potential for the optimizer to perform significantly fewer iterations,
particularly when your current problem is similar to a problem that you have solved
previously. Even when problems are different, starting from an advanced basis may possibly
help performance. For example, if your current problem is composed of several smaller
problems, an optimal basis from one of the component problems may significantly speed up
solution of the other components or even of the full problem.

Notethat if you are solving asequence of LP modelsall within onerun, by entering amodel,
solving it, modifying the model, and solving it again, then with default settings the advanced
basis will be used for the last of these steps automatically.

In cases where models are solved in separate application calls, and thus the basis will not be
available in memory, you can communicate the final basis from one run to the start of the
next by first saving the basisto afile before the end of the first run.

To save the basisto afile:

[When you are using the Component Libraries, use the method cplex.writeBasis oOr
the Callable Library routine cpxmbasewrite, after the call to the optimizer.

[In the Interactive Optimizer, use the write command with the file type bas, after
optimization.

Then to later read an advanced basis from thisfile:

[When you are using the Component Libraries, use the method cplex.readBasis or the
routine cPxreadcopybase.

[In the Interactive Optimizer, use the read command with the file type bas.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Make sure that the advanced start parameter, advind, is set to either 1 (its default value) or
2, and not O (zero), before calling the optimization routine that isto make use of an advanced
basis.

The two nonzero settings for advind differ in thisway:
[AdvInd=1 causes preprocessing to be skipped;
[AdvInd=2 invokes preprocessing on both the problem and the advanced basis.

If you anticipate the advanced basis to be a close match for your problem, so that relatively
few iterations will be needed, or if you are unsure, then the default setting of 1 is a good
choice because it avoids some overhead processing. If you anticipate that the simplex
optimizer will require many iterations even with the advanced basis, or if the model islarge
and preprocessing typically removes much from the model, then the setting of 2 may give
you afaster solution by giving you the advantages of preprocessing. However, in such cases,
you might also consider not using the advanced basis, by setting this parameter to O instead,
on the grounds that the basis may not be giving you a helpful starting point after all.

Simplex Parameters

After you have chosen the right optimizer and, if appropriate, you have started from an
advanced basis, you may want to experiment with different parameter settingsto improve
performance. This section documents parameters that are most likely to affect performance
of thesimplex linear optimizers. (The barrier optimizer is different enough from the simplex
optimizersthat it is discussed el sewhere, in Chapter 9, Solving LPs: Barrier Optimizer). The
simplex tuning suggestions appear in the following topics:

[Pricing Algorithm and Gradient Parameters on page 165
[Jcaling on page 167

[Crash on page 168

[Memory Management and Problem Growth on page 168

Pricing Algorithm and Gradient Parameters

The parameters in Table 8.4 determine the pricing algorithmsthat ILOG CPLEX uses.
Consequently, these are the algorithmic parameters most likely to affect simplex linear
programming performance. The default setting of these gradient parameters chooses the
pricing algorithms that are best for most problems. When you are selecting alternate pricing
agorithms, look at these values as guides:

[—oaverall solution time;

[—number of Phase | iterations (that is, iterations before ILOG CPLEX arrives at an initial
feasible solution);

[ibtal number of iterations.

ILOG CPLEX 10.0 — USER’'S MANUAL 165

ILOG CPLEX recordsthose valuesin thelog file asit works. (By default, ILOG CPLEX
createsthelog filein the directory whereit is executing, and it namesthe log file
cplex.log. Managing Log Files on page 143 tells you how to rename and rel ocate this log
file))

If the number of iterations required to solve your problem is approximately the same as the
number of rows, then you are doing well. If the number of iterations is three times greater
than the number of rows (or more), then it may very well be possible to improve
performance by changing the parameter that determines the pricing algorithm, ppri1nd for
the dual simplex optimizer or ppri1nd for the primal simplex optimizer.

The symbolic names for the acceptable values for these parameters appear in Table 8.4 and
Table 8.5. The default value in both casesis o (zero).

Table 8.4 DPrilnd Parameter Settings for Dual Smplex Pricing Algorithm

Description Concert Callable Library
0 |determined automatically DPriIndAuto CPX_DPRIIND AUTO
1 |standard dual pricing DPriIndFull CPX_DPRIIND FULL
2 | steepest-edge pricing DPriIndSteep CPX_DPRIIND STEEP

3 | steepest-edge in slack space DPriIndFullSteep CPX DPRIIND FULLSTEEP

4 |steepest-edge, unit initial norms | DPriIndSteepQStart | CPX_DPRIIND STEEPQSTART

5 | devex pricing

DPriIndDevex CPX_DPRIIND DEVEX

Table 8.5 PPrilnd Parameter Settings for Primal Smplex Pricing Algorithm

Description Concert Callable Library
-1 | reduced-cost pricing PPriIndPartial CPX_PPRIIND PARTIAL
0 | hybrid reduced-cost and devex | PPriIndAuto CPX_PPRIIND AUTO
1 |devex pricing PPrilIndDevex CPX_PPRIIND DEVEX
2 |steepest-edge pricing PPriIndSteep CPX_ PPRIIND STEEP
3 |steepest-edge, slack initial norms | PPriIndSteepQStart |CPX PPRIIND STEEPQSTART
4 | full pricing PriIndFull CPX_PPRIIND FULL

166

For the dual simplex pricing parameter, the default val ue selects steepest-edge pricing. That
is, the default (O or cPX_DPRIIND AUTO) automatically selects 2 or CPX DPRIIND STEEP.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

For the primal simplex pricing parameter, reduced-cost pricing (-1) isless computationally
expensive, so you may prefer it for small or relatively easy problems. Try reduced-cost
pricing, and watch for faster solution times. Also if your problem is dense (say, 20-30
nonzeros per column), reduced-cost pricing may be advantageous.

In contrast, if you have a more difficult problem taking many iterations to complete Phase |
and arrive at an initial solution, then you should consider devex pricing (1) . Devex pricing
benefits more from ILOG CPLEX linear algebra enhancements than does partial pricing, so
it may be an attractive alternative to partial pricing in some problems. However, if your
problem has many columns and relatively few rows, devex pricing is not likely to help
much. In such a case, the number of calculations required per iteration will usually be
disadvantageous.

If you observe that devex pricing helps, then you might also consider steepest-edge
pricing (2). Steepest-edge pricing is computationally more expensive than reduced-cost
pricing, but it may produce the best results on difficult problems. One way of reducing the
computational intensity of steepest-edge pricing isto choose steepest-edge pricing with
initial slack norms (3).

Scaling

Poorly conditioned problems (that is, problemsin which even minor changes in data result
in major changes in solutions) may benefit from an alternative scaling method. Scaling
attempts to rectify poorly conditioned problems by multiplying rows or columns by
constants without changing the fundamental sense of the problem. If you observe that your
problem has difficulty staying feasible during its solution, then you should consider an
alternative scaling method.

Scaling is determined by the parameter scaind, and may be set asin Table 8.6.
Table 8.6 ScalndParameter Settings for Scaling Methods

Scaind Meaning
Value
-1 no scaling
0 equilibration scaling (default)
1 aggressive scaling

Refactoring Frequency

ILOG CPLEX dynamically determines the frequency at which the basis of aproblemis
refactored in order to maximize the speed of iterations. On very large problems,

ILOG CPLEX refactors the basis matrix infrequently. Very rarely should you consider
increasing the number of iterations between refactoring. The refactoring interval is
controlled by the ReInv parameter. The default value of o (zero) means ILOG CPLEX will
decide dynamically; any positive integer specifies the user's chosen factoring frequency.

ILOG CPLEX 10.0 — USER’'S MANUAL 167

Crash

Itis possible to control the way ILOG CPLEX builds aninitial (crash) basis through the
CralInd parameter.

In the dual simplex optimizer, the craind setting determines whether ILOG CPLEX
aggressively uses primal variablesinstead of slack variables whileit still triesto preserve as
much dual feasibility as possible. If itsvalueis 1 (one), it indicates the default starting basis;
if itsvalueis o (zero) or -1, it indicates an aggressive starting basis. These settings are
summarized in Table 8.7.

Table 8.7 Cralnd Parameter Settings for the Dual Simplex Optimizer

gé?tlirrllg Meaning for Dual Simplex Optimizer
1 Use default starting basis
0 Use an aggressive starting basis
-1 Use an aggressive starting basis

In the primal simplex optimizer, the cra1nd setting determines how ILOG CPLEX usesthe
coefficients of the objective function to select the starting basis. If its valueis 1 (one),
ILOG CPLEX usesthe coefficients to guide its selection; if itsvalueis o (zero),

ILOG CPLEX ignoresthe coefficients; if itsvalueis -1, ILOG CPLEX does the opposite of
what the coefficients normally suggest. These settings are summarized in Table 8.8.

Table 8.8 Cralnd Parameter Settings for the Primal Simplex Optimizer

Cralnd

Setting Meaning for Primal Simplex Optimizer

1 Use coefficients of objective function to select basis

0 Ignore coefficients of objective function

-1 Select basis contrary to one indicated by coefficients of objective function

Memory Management and Problem Growth

ILOG CPLEX automatically handles memory allocations to accommodate the changing size
of a problem object as you modify it. And it manages (using a cache) most changes to
prevent inefficiency when the changes will require memory re-allocations.

168 ILOG CPLEX 10.0 — USER’'S MANUAL

Diagnosing Performance Problems

While some linear programming models offer opportunities for performance tuning, others,
unfortunately, entail outright performance problems that require diagnosis and correction.
This section indicates how to diagnose and correct such performance problems as lack of
memory or numeric difficulties.

Lack of Memory

To sustain computational speed, ILOG CPLEX should use only available physical memory,
rather than virtual memory or paged memory. Even if your problem data fit in memory,
ILOG CPLEX will need still more memory to optimize the problem. When ILOG CPLEX
recognizes that only limited memory is available, it automatically makes algorithmic
adjustments to compensate. These adjustments almost always reduce optimization speed. If
you detect when these automatic adjustments occur, then you can determine when you need
to add additional memory to your computer to sustain computational speed for your
particular problem.

An aternative to obtaining more memory isto conserve memory that is available. The
memory emphasis parameter can help you in this respect.

[MemoryEmphasis in Concert Technology
[dpx PARAM MEMORYEMPHASIS inthe Callable Library
[dmphasis memory in the Interactive Optimizer

If you set the memory emphasis parameter to its optional value of 1 (one), then

ILOG CPLEX will adopt memory conservation tactics at the beginning of optimization
rather than only after the shortage becomes apparent. These tactics may still have a
noticeable impact on solution speed because these tacti cs change the emphasis from speed to
memory utilization, but they could give an improvement over the default in the case where
memory is insufficient.

The following sections offer further guidance about memory conservation if memory
emphasis alone does not do enough for your problem.

Warning Messages

In certain cases, ILOG CPLEX issues awarning message when it cannot perform an
operation, but it continues to work on the problem. Other ILOG CPLEX messages indicate
that ILOG CPLEX is compressing the problem to conserve memory. These warnings mean
that ILOG CPLEX findsinsufficient memory available, so it isfollowing an aternate—less
desirable—path to asolution. If you provide more memory, ILOG CPLEX will return to the
best path toward a solution.

ILOG CPLEX 10.0 — USER’'S MANUAL 169

170

Paging Virtual Memory

If you observe paging of memory to disk, then your application isincurring a performance
penalty. If you increase available memory in such a case, performance will speed up
dramatically.

Refactoring Frequency and Memory Requirements

The ILOG CPLEX primal and dual simplex optimizers refactor the problem basis at arate
determined by the ReInv parameter.

Thelonger ILOG CPLEX works between refactoring, the greater the amount of memory it
needs for each iteration. Conseguently, one way of conserving memory isto decrease the
interval between refactoring. In fact, if little memory isavailable toit, ILOG CPLEX will
automatically decrease the refactoring interval in order to use less memory at each iteration.

Since refactoring is an expensive operation, decreasing the refactoring interval (that is,
factoring more often) will generally slow performance. You can tell whether performanceis
being degraded in this way by checking the iteration log file.

In an extreme case, lack of memory may force ILOG CPLEX to refactor at every iteration,
and the impact on performance will be dramatic. If you provide more memory in such a
situation, the benefit will be tremendous.

Preprocessing and Memory Requirements

By default, ILOG CPLEX automatically preprocesses your problem before optimizing, and
this preprocessing requires memory. If memory is extremely tight, consider turning off
preprocessing, by setting the preInd parameter to 0. But doing this foregoes the potential
performance benefit of preprocessing, and should be considered only as alast resort.

Numeric Difficulties

ILOG CPLEX isdesigned to handle the numeric difficulties of linear programming
automatically. In this context, numeric difficulties mean such phenomena as:

[nepeated occurrence of singularities;

[ittle or no progress toward reaching the optimal objective function value;
[ittle or no progressin scaled infeasibility;

[nepeated problem perturbations; and

[repeated occurrences of the solution becoming infeasible.

While ILOG CPLEX will usually achieve an optimal solution in spite of these difficulties,
you can help it do so more efficiently. This section characterizes situationsin which you can
help.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Some problems will not be solvable even after you take the measures suggested here. For
example, problems can be so poorly conditioned that their optimal solutions are beyond the
numeric precision of your computer.

Numerical Emphasis Settings

The numerical emphasis parameter controls the degree of numerical caution used during
optimization of amodel.

[NumericalEmphasis in Concert Technology
[dpx PARAM NUMERICALEMPHASIS inthe Callable Library
[dmphasis numerical inthe Interactive Optimizer

At itsdefault setting, ILOG CPLEX employs ordinary caution in dealing with the numerical
properties of the computations it must perform. Under the optional setting, ILOG CPLEX
uses extreme caution.

This emphasis parameter is different in style from the various tolerance parametersin
ILOG CPLEX. The purpose of the emphasis parameter is to relieve the user of the need to
analyze which tolerances or other algorithmic controls to try. Instead, the user tells

ILOG CPLEX that the model about to be solved is known to be susceptible to unstable
numerical behavior and lets ILOG CPLEX make the decisions about how best to proceed.

There may be atradeoff between solution speed and numerical caution. You should not be
surprised if your model solves less rapidly at the optional setting of this parameter, because
each iteration may potentially be noticeably slower than at the default. On the other hand, if
the numerical difficulty has been causing the optimizer to proceed less directly to the
optimal solution, it is possible that the optional setting will reduce the number of iterations,
thus leading to faster solution. When the user chooses an emphasis on extreme numerical
caution, solution speed isin effect treated as no longer the primary emphasis.

Numerically Sensitive Data

There isno absolute link between the form of datain amodel and the numeric difficulty the
problem poses. Nevertheless, certain choicesin how you present the datato ILOG CPLEX
can have an adverse effect.

Placing large upper bounds (say, in the neighborhood of 1€9 to 1€12) onindividual variables
can cause difficulty during Presolve. If you intend for such large bounds to mean “no bound
isredly in effect” it is better to simply not include such bounds in the first place.

Large coefficients anywhere in the model can likewise cause trouble at various pointsin the
solution process. Even if the coefficients are of more modest size, awide variation (say, Six
or more orders of magnitude) in coefficients found in the objective function or right hand
side, or in any given row or column of the matrix, can cause difficulty either in Presolve
when it makes substitutions, or in the optimizer routines, particularly the barrier optimizer,
as convergence is approached.

ILOG CPLEX 10.0 — USER’'S MANUAL 171

172

A related source of difficulty isthe form of rounding when fractions are represented as
decimals; expressing /5 as .33333333 on a computer that in principle computes val ues to
about 16 digits can introduce an apparent “exact” value that will be treated as given but may
not represent what you intend. This difficulty is compounded if similar or related values are
represented a little differently elsewhere in the model.

For example, consider the constraint 1/3 x1 + 2/3 x2 = 1.In perfect arithmetic, itis
equivalenttox1 + 2 x2 = 3. However, if you express the fractional form with decimal
data values, some truncation is unavoidable. If you happen to include the truncated decimal
form of the constraint in the same model with some differently-truncated form or even the
exact-integer data form, an unexpected result could easily occur. Consider the following
problem formulation:

Maximize
obj: x1 + x2

Subject To
cl: 0.333333 x1 + 0.666667 x2 =1
c2: x1 + 2 x2 =3

End

With default numeric tolerances, this will deliver an optimal solution of x1=1.0 and
x2=1.0, giving an objective function value of 2. 0. Now, see what happens when using
slightly more accurate data (in terms of the fractional values that are clearly intended to be
expressed):

Maximize

obj: x1 + x2
Subject To

cl: 0.333333333 x1 + 0.666666667 x2 = 1
c2: x1 + 2 x2 =3
End

The solution to this problem has x1=3 .0 and x2=0. 0, giving an optimal objective function
valueof 3.0, aresult qualitatively different from that of the first model. Since this latter
result is the same as would be obtained by removing constraint c1 from the model entirely,
thisis amore satisfactory result. Moreover, the numeric stability of the optimal basis (as
indicated by the condition number, discussed in the next section), is vastly improved.

Theresult of the extra precision of the input datais amodel that islesslikely to be sensitive
to rounding error or other effects of solving problems on finite-precision computers, or in
extreme cases will be more likely to produce an answer in keeping with the intended model.
Thefirst example, above, is an instance where the data truncation has fundamentally
distorted the problem being solved. Even if the exact-integer data form of the constraint is
not present with the decimal form, the truncated decimal form no longer exactly represents
the intended meaning and, in conjunction with other constraints in your model, could give
unintended answers that are "accurate” in the context of the specific data being fed to the
optimizer.

Be particularly wary of datain your model that has been computed (within your program, or
transmitted to your program from another via an input file) using single-precision (32-bit)

ILOG CPLEX 10.0 — UsSER’'S MANUAL

arithmetic. For example, in C, this situation would arise from using type f1oat instead of
double. Such datawill be accurate only to about 8 decimal digits, so that (for example) if
you print the data, you might see values like 0.3333333432674408 instead of
0.3333333333333333.1LOG CPLEX uses double-precision (64-hit) arithmetic in its
computations, and truncated single-precision data carries the risk that it will convey a
different meaning than the user intends.

The underlying principle behind al the cautions in this section is that information contained
in the data needs to reflect actual meaning or the optimizer may reach unstable solutions or
encounter algorithmic difficulties.

Measuring Problem Sensitivity with Basis Condition Number

I11-conditioned matrices are sensitive to minute changesin problem data. That is, in such
problems, small changesin data can lead to very large changesin the reported problem
solution. ILOG CPLEX provides a basis condition number to measure the sensitivity of a
linear system to the problem data. You might also think of the basis condition number asthe
number of placesin precision that can be lost.

For example, if the basis condition number at optimality is 1e+13, thenachangeinasingle
matrix coefficient in the thirteenth place (counting from the right) may dramatically alter the
solution. Furthermore, since many computers provide about 16 places of accuracy in double
precision, only three accurate places are |eft in such a solution. Even if an answer is
obtained, perhaps only the first three significant digits are reliable.

Because of this effective loss of precision for matrices with high basis condition numbers,
ILOG CPLEX may be unable to select an optimal basis. In other words, a high basis
condition number can make it impossible to find a solution.

[1In the Interactive Optimizer, use the command display solution kappa inorderto
see the basis condition number of aresident basis matrix.

[1n Concert Technology, use the method:
IloCplex: :getQuality (IloCplex: :Kappa) (C++)
IloCplex.getQuality (IloCplex.QualityType.Kappa) (Java)
Cplex.GetQuality (Cplex.QualityType.Kappa) (.NET)

[In the Callable Library, use the routine cpxgetdblquality to access the condition
number in the double-precision variable dvalue, like this:

status = CPXgetdblquality(env, lp, &dvalue, CPX KAPPA) ;

Repeated Singularities

Whenever ILOG CPLEX encounters a singularity, it removes a column from the current
basis and proceeds with its work. ILOG CPLEX reports such actions to the log file (by
default) and to the screen (if you are working in the Interactive Optimizer or if the
message-to-screen indicator cPX PARAM SCRIND iSset to 1 (one)). Onceit finds an optimal

ILOG CPLEX 10.0 — USER’'S MANUAL 173

174

solution under these conditions, ILOG CPLEX will then re-include the discarded column to
be sure that no better solution is available. If no better objective value can be obtained, then
the problem has been solved. Otherwise, ILOG CPLEX continuesits work until it reaches
optimality.

Occasionally, new singularities occur, or the same singularities recur. ILOG CPLEX
observesalimit on the number of singularitiesit tolerates. The parameter singLim specifies
thislimit. By default, the limit is ten. After encountering this many singularities,

ILOG CPLEX will savein memory the best factorable basis found so far and stop its
solution process. You may want to save this basisto afile for later use.

To save the best factorable basis found so far in the Interactive Optimizer, usethewrite
command with the file type bas. When using the Component Libraries, use the method
cplex.writeBasis Of theroutine cPxwriteprob.

If ILOG CPLEX encounters repeated singularities in your problem, you may want to try
aternative scaling on the problem (rather than simply increasing ILOG CPLEX tolerance
for singularities). Scaling on page 167 explains how to try aternative scaling.

If alternate scaling does not help, another tactic to try isto increase the Markowitz tolerance.
The Markowitz tolerance controls the kinds of pivots permitted. If you set it near its
maximum value of 0.99999, it may make iterations slower but more numericaly stable.
Inability to Say Feasible on page 175 shows how to change the Markowitz tolerance.

If none of these ideas help, you may need to alter the model of your problem. Consider
removing the offending variables manually from your model, and review the model to find
other ways to represent the functions of those variables.

Stalling Due to Degeneracy

Highly degenerate linear programs tend to stall optimization progressin the primal and dual
simplex optimizers. When stalling occurs with the primal simplex optimizer, ILOG CPLEX
automatically perturbs the variable bounds; when stalling occurs with the dual simplex
optimizer, ILOG CPLEX perturbs the objective function.

In either case, perturbation creates a different but closely related problem. Once
ILOG CPLEX has solved the perturbed problem, it removes the perturbation by resetting
problem data to their original values.

If ILOG CPLEX automatically perturbs your problem early in the solution process, you
should consider starting the solution process yourself with a perturbation. (Starting in this
way will save the time that would be wasted if you first allowed optimization to stall and
then let ILOG CPLEX perturb the problem automatically.)

To start perturbation yourself, set the parameter per1nd to 1 instead of its default value of o.
The perturbation constant, EpPer, is usually appropriate at its default value of 1€, but can
be set to any value 1€ or larger.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

If you observe that your problem has been perturbed more than once, then the perturbed
problem may differ too greatly from your original problem. In such a case, consider
reducing the value of the perturbation constant (Eprer in Concert Technology,
CPX_PARAM EPPER inthe Callable Library).

Inability to Stay Feasible

If a problem repeatedly becomesinfeasible in Phase Il (that is, after ILOG CPLEX has

achieved afeasible solution), then numeric difficulties may be occurring. It may help to
increase the Markowitz tolerance in such a case. By default, the value of the parameter

EpMrk iS0.01, and suitable values range from 0.0001 t0 0.99999.

Sometimes slow progressin Phase | (the period when ILOG CPLEX calculates the first
feasible solution) is due to similar numeric difficulties, less obvious because feasibility is
not gained and lost. In the progress reported in the log file, an increase in the printed sum of
infeasibilities may be a symptom of this case. If so, it may be worthwhile to set a higher
Markowitz tolerance, just as in the more obvious case of numeric difficultiesin Phaselll.

Diagnosing LP Infeasibility

ILOG CPLEX reports statistics about any problem that it optimizes. For infeasible solutions,
it reports values that you can analyze to determine where your problem formulation proved
infeasible. In certain situations, you can then alter your problem formulation or change
ILOG CPLEX parameters to achieve a satisfactory solution.

[When the ILOG CPLEX primal simplex optimizer terminates with an infeasible basic
solution, it calculates dual variables and reduced costs relative to the Phase | objective
function; that is, relative to the infeasibility function. The Phase | objective function
depends on the current basis. Consequently, if you use the primal simplex optimizer with
various parameter settings, an infeasible problem will produce different objective values
and different solutions.

[1In the case of the dual simplex optimizer, termination with a status of infeasibility occurs
only during Phase Il. Therefore, all solution values are relative to the problem's natural
(primal) formulation, including the values related to the objective function, such as the
dual variables and reduced costs. Aswith the primal simplex optimizer, the basis at
which the determination of infeasibility is made may not be unique.

ILOG CPLEX provides tools to help you analyze the source of the infeasibility in your
model. Those tools include the conflict refiner and FeasOpt:

[_The conflict refiner isinvoked by the routine cpxrefineconflict inthe Callable
Library or by the method refineconflict in Concert Technology. It finds a set of
conflicting constraints and boundsin a model and refinesthe set to be minimal in a sense

ILOG CPLEX 10.0 — USER’'S MANUAL 175

176

that you declare. It then reportsitsfindings for you to take action to repair that conflict in
your infeasible model. For more about this feature, see Diagnosing I nfeasibility by
Refining Conflicts on page 347.

[HeasOpt isimplemented in the Callable Library by the routine cpxfeasopt andin
Concert Technology by the method feasopt. For more about this feature, see Repairing
Infeasibility: FeasOpt on page 179.

With the help of those tools, you may be able to modify your problem to avoid infeasibility.

Coping with an lll-Conditioned Problem or Handling Unscaled Infeasibilities

By default, ILOG CPLEX scales a problem before attempting to solve it. After it finds an
optimal solution, it then checksfor any violations of optimality or feasibility in the original,
unscaled problem. If there isaviolation of reduced cost (indicating nonoptimality) or of a
bound (indicating infeasibility), ILOG CPLEX reports both the maximum scaled and
unscaled feasibility violations.

Unscaled infeasibilities are rare, but they may occur when a problem is ill-conditioned. For
example, a problem containing a row in which the coefficients have vastly different
magnitude isill-conditioned in this sense and may result in unscaled infeasibilities.

It may be possible to produce a better solution anyway in spite of unscaled infeasibilities, or
it may be necessary for you to revise the coefficients. To determine which way to go,
consider these steps in such a case:

1. Usethecommand display solution quality inthe Interactive Optimizer to locate
the infeasibilities.

2. Examine the coefficient matrix for poorly scaled rows and columns.

3. Evaluate whether you can change unnecessarily large or small coefficients.

4. Consider alternate scalings.

You may also be able to re-optimize the problem successfully after you reduce optimality
tolerance, as explained in Maximum Reduced-Cost Infeasibility on page 178, or after you
reduce feasibility tolerance, as explained in Maximum Bound Infeasibility: Identifying
Largest Bound Miolation on page 178. When you change these tolerances, ILOG CPLEX
may produce a better solution to your problem, but lowering these tolerances sometimes
produces erratic behavior or an unstable optimal basis.

Check the basi s condition number, as explained in Measuring Problem Sensitivity with Basis
Condition Number on page 173. If the condition number isfairly low (for example, aslittle
as1es or less), then you can be confident about the solution. If the condition number ishigh,
or if reducing tolerance does not help, then you must revise the model because the current
model may be too ill-conditioned to produce a numerically reliable result.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Interpreting Solution Quality

Infeasibility and unboundedness in linear programs are closely related. When the linear
program ILOG CPLEX solvesisinfeasible, the associated dual linear program has an
unbounded ray. Similarly, when the dual linear program is infeasible, the primal linear
program has an unbounded ray. This relationship isimportant for proper interpretation of
infeasible solution output.

The treatment of models that are unbounded involves afew subtleties. Specifically, a
declaration of unboundedness means that ILOG CPLEX has determined that the model has
an unbounded ray. Given any feasible solution x with objective z, amultiple of the
unbounded ray can be added to x to give afeasible solution with objective z-1 (or z+1 for
maximization models). Thus, if afeasible solution exists, then the optimal objectiveis
unbounded. Note that ILOG CPLEX has not necessarily concluded that afeasible solution
exists. To determine whether ILOG CPLEX has also concluded that the model has afeasible
solution, use one of these routines or methods:

[dpxsolninfo inthe Calable Library

[dsPrimalFeasible Of isDualFeasible of theclassIlocCplex in Concert
Technology

By default, individual infeasibilities are written to alog file but not displayed on the screen.
To display the infeasibilities on your screen, in Concert Technol ogy, use methods of the
environment to direct the output stream to alog file; in the Interactive Optimizer, use the
command set output logonly y cplex.log.

For C++ applications, see Accessing Solution Information on page 53, and for Java
applications, see Accessing Solution Information on page 78. Those sections highlight the
application programming details of how to retrieve statistics about the quality of a solution.

Regardless of whether a solution isinfeasible or optimal, the command

display solution quality inthe Interactive Optimizer displays the bound and
reduced-cost infeasibilities for both the scaled and unscaled problem. In fact, it displays the
following summary statistics for both the scaled and unscaled problem:

[maximum bound infeasibility, that is, the largest bound violation;
[maximum reduced-cost infeasibility;

[_haximum row residual;

[aximum dual residual;

[haximum absolute value of avariable, aslack variable, adual variable, and a reduced
cost.

When the simplex optimizer detects infeasibility in the primal or dua linear program (LP),
parts of the solution it provides are relative to the Phase | linear program it solved to
conclude infeasibility. In other words, the result you seein such a case is not the solution

ILOG CPLEX 10.0 — USER’'S MANUAL 177

178

values computed relative to the original objective or original righthand side vector. Keep this
distinction in mind when you interpret solution quality; otherwise, you may be surprised by
theresults. In particular, when ILOG CPLEX determinesalinear program isinfeasible using
the primal simplex method, the reduced costs and dual variables provided in the solution are
relative to the objective of the Phase | linear program it solved. Similarly, when ILOG
CPLEX determines alinear program is unbounded because the dual simplex method
detected dual infeasibility, the primal and slack variables provided in the solution are
relative to the Phase | linear program created for the dual simplex optimizer.

The following sections discuss these summary statistics in greater detail.

Maximum Bound Infeasibility: Identifying Largest Bound Violation

The maximum bound infeasibility identifies the largest bound violation. This information
may help you determine the cause of infeasibility in your problem. If the largest bound
violation exceeds the feasibility tolerance of your problem by only asmall amount, then you
may be able to get a feasible solution to the problem by increasing the feasibility tolerance
parameter, EpRHS. Itsrangeisbetween 1e-9 and 0. 1. Itsdefault valueis 1e-s6.

Maximum Reduced-Cost Infeasibility

The maximum reduced-cost infeasibility identifies a value for the optimality tolerance that
would cause ILOG CPLEX to perform additional iterations. It refersto the infeasibility in
the dual slack associated with reduced costs. Whether ILOG CPLEX terminated with an
optima or infeasible solution, if the maximum reduced-cost infeasibility is only slightly
smaller in absolute value than the optimality tolerance, then solving the problem with a
smaller optimality tolerance may result in an improvement in the objective function.

To change the optimality tolerance, set the parameter Epopt.

Maximum Row Residual

The maximum row residual identifies the maximum constraint violation. ILOG CPLEX
Simplex Optimizers control these residuals only indirectly by applying numerically sound
methods to solve the given linear system. When ILOG CPLEX terminateswith an infeasible
solution, all infeasibilities will appear as bound violations on structural or slack variables,
not constraint violations. The maximum row residual may help you determine whether a
model of your problem is poorly scaled, or whether the final basis (whether it is optimal or
infeasible) isill-conditioned.

Maximum Dual Residual

The maximum dual residual indicates the numeric accuracy of the reduced costsin the
current solution. By construction, in exact arithmetic, the dual residua of abasic solutionis
always 0 (zero). A nonzero value is thus the effect of roundoff error due to finite-precision
arithmetic in the computation of the dual solution vector. Thus, a significant nonzero value
indicatesill conditioning.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Maximum Absolute Values: Detecting lll-Conditioned Problems

When you are trying to determine whether your problem isill-conditioned, you also need to
consider the following maximum absolute values, al available in the infeasibility analysis
that ILOG CPLEX provides you:

[variables;

[dack variables;

[dua variables;

[educed costs (that is, dual slack variables).

When using the Component Libraries, use the method cplex.getQuality or the routine
Cpxgetdblquality to accessthe information provided by the command
display solution quality inthe Interactive Optimizer.

If you determine from this analysis that your model isindeed ill-conditioned, then you need
to reformulate it. Coping with an I11-Conditioned Problem or Handling Unscaled
Infeasibilities on page 176 outlines steps to follow in this situation.

Finding a Conflict

If ILOG CPLEX reports that your problem isinfeasible, then you can invoke tool s of
ILOG CPLEX to help you analyze the source of the infeasibility. These diagnostic tools
compute a set of conflicting constraints and column bounds that would be feasible if one of
them (a constraint or variable) were removed. Such a set is known as a conflict. For more
about detecting conflicts, see Diagnosing Infeasibility by Refining Conflicts on page 347.

Repairing Infeasibility: FeasOpt

Previous sections focused on how to diagnose the causes of infeasibility. However, you may
want to go beyond diagnosis to perform automatic correction of your model and then
proceed with delivering a solution. One approach for doing so is to build your model with
explicit slack variables and other modeling constructs, so that an infeasible outcome is never
apossihility. Such techniques for formulating a model are beyond the scope of this
discussion, but you should consider them if you want the greatest possible flexibility in your
application.

In contrast, an automated approach offered in ILOG CPLEX is known as FeasOpt (for
feasible optimization). FeasOpt attempts to repair an infeasibility by modifying the model
according to preferences set by the user. For more about this approach, see Repairing
Infeasibilities with FeasOpt on page 365

ILOG CPLEX 10.0 — USER’'S MANUAL 179

Example: Using a Starting Basis in an LP Problem

180

Here is an approach mentioned in the section Tuning LP Performance, which isto start with
an advanced basis. The following small examplein C++ and in C demonstrates an approach
to setting a starting basis by hand. Example ilolpex6.cpp on page 180 is from Concert

Technology in the C++ API. Example Ipex6.c on page 180 is from the Callable Library in C.

Example ilolpex6.cpp

The example, ilolpexé6 . cpp, resembles one you may have studied in the ILOG CPLEX
Getting Sarted manual, i lolpex1.cpp. Thisexample differs from that one in these ways:

[—Arrays are constructed using the populatebycolumn method, and thus no command
line arguments are needed to select a construction method.

[Ihthemain routing, the arrays cstat and rstat set the status of the initial basis.

[After the problem data has been copied into the problem object, the basisis copied by a
call to cplex.setBasisStatuses.

[—After the problem has been optimized, the iteration count is printed. For the given data
and basis, the basis is optimal, so no iterations are required to optimize the problem.

The main program starts by declaring the environment and terminates by calling method
end for the environment. The code in between is encapsulated in atry block that catches all
Concert Technology exceptions and prints them to the C++ error stream cerr. All other
exceptions are caught as well, and a simple error message isissued. Next the model object
and the cplex object are constructed. The function populatebycolumn buildsthe
problem object and, as noted earlier, cplex.setBasisStatuses copiesthe advanced
starting basis.

Thecall to cplex.solve optimizesthe problem, and the subsequent print of the iteration
count demonstrates that the advanced basis took effect. In fact, this basisisimmediately
determined to be the optimal one, resulting in zero iterations being performed, in contrast to
the behavior seen in the example program ilolpex1 . cpp Where the same model is solved
without the use of an advanced basis.

The complete program ilolpex6 . cpp appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

Example Ipex6.c

The example, 1pexs . ¢, resembles one you may have studied in the ILOG CPLEX Getting
Sarted manual, 1pex1.c. Thisexample differs from that one in these ways:

[Inthemain routing, the arrays cstat and rstat set the status of the initial basis.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

[After the problem data has been copied into the problem object, the basisis copied by a
call to cpxcopybase

[After the problem has been optimized, the iteration count is printed. For the given data
and basis, the basisis optimal, so no iterations are required to optimize the problem.

The application begins with declarations of arraysto store the solution of the problem. Then,
before it calls any other ILOG CPLEX routine, the application invokes the Callable Library
routine cPxopenCPLEX to initialize the ILOG CPLEX environment. After the environment
has been initialized, the application calls other ILOG CPLEX Callable Library routines,
such as cpxsetintparam With the argument cpx_ PARAM SCRIND to direct output to the
screen and most importantly, cPxcreateprob to create the problem object. The routine
populatebycolumn buildsthe problem object, and as noted earlier, cPXcopybase copies
the advanced starting basis.

Before the application ends, it calls cpxfreeprob to free space alocated to the problem
object and cpPxcloseCPLEX to free the environment.

The complete program 1pexs . c appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

ILOG CPLEX 10.0 — USER’'S MANUAL 181

182 ILOG CPLEX 10.0 — USER’'S MANUAL

Solving LPs: Barrier Optimizer

This chapter tells you more about solving linear programming problems by means of the
ILOG CPLEX Barrier Optimizer. It includes sections about:

[Introducing the Barrier Optimization on page 184

[Wsing the Barrier Optimizer on page 186

[—Fpecial Options on page 187

[_Controlling Crossover on page 187

[Wsing SOL File Format on page 188

[Interpreting the Barrier Log File on page 188

[Wnderstanding Solution Quality fromthe Barrier LP Optimizer on page 191
[Tuning Barrier Optimizer Performance on page 193

[®vercoming Numeric Difficulties on page 197

[Diagnosing Infeasibility Reported by Barrier Optimizer on page 202

ILOG CPLEX 10.0 — USER’'S MANUAL 183

Introducing the Barrier Optimization

184

ThelLOG CPLEX Barrier Optimizer iswell suited to large, sparse problems. An alternative
to the simplex optimizers, which are a so suitable to problemsin which the matrix
representation is dense, the barrier optimizer exploits a primal-dua logarithmic barrier
algorithm to generate a sequence of strictly positive primal and dual solutions to a problem.
Aswith the simplex optimizers, it isnot really necessary to understand the internal workings
of barrier in order to obtain its performance benefits. However, for the interested reader, here
isan outline of how it works.

ILOG CPLEX finds the primal solutions, conventionally denoted (X, s), from the primal
formulation:

Minimize c'x
subject to Ax=b
with these bounds x + s= uand x> |

where A isthe constraint matrix, including slack and surplus variables; uis the upper and |
the lower bounds on the variables.

Simultaneously, ILOG CPLEX automatically finds the dual solutions, conventionally
denoted (y, z, w) from the corresponding dual formulation:

Maximizeb'y - u'w + Iz
subject to Aly-w+ z=¢
with these boundsw>0and z> 0

All possible solutions maintain strictly positive primal solutions (x - I, s) and strictly positive
reduced costs (z, w) so that the value 0 (zero) forms abarrier for primal and dual variables
within the algorithm.

ILOG CPLEX measures progress by considering the primal feasibility, dual feasibility, and
duality gap at each iteration. To measure feasibility, ILOG CPLEX considers the accuracy
with which the primal constraints (Ax = b, x + s= u) and dual constraints (A'y + z- w = c)
are satisfied. The optimizer stops when it finds feasible primal and dual solutions that are
complementary. A complementary solution is one where the sums of the products (¥ 1)z
and (y; - X;)z are within some tolerance of O(zero). Since each (X -Ij), (U; - %), and z is
strictly positive, the sum can be near zero only if each of theindividual productsis near zero.
The sum of these products is known as the complementarity of the problem.

On each iteration of the barrier optimizer, ILOG CPLEX computes a matrix based on AAT
and then computes a Cholesky factor of it. This factored matrix has the same number of
nonzeros on each iteration. The number of nonzerosin this matrix is influenced by the
barrier ordering parameter.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

The ILOG CPLEX Barrier Optimizer is appropriate and often advantageous for large
problems, for example, those with more than 100 000 rows or columns. It is not always the
best choice, though, for sparse models with more than 100 000 rows. It is effective on
problems with staircase structures or banded structures in the constraint matrix. It isalso
effective on problems with a small number of nonzeros per column (perhaps no more than a
dozen nonzero values per column).

In short, denseness or sparsity are not the deciding issues when you are deciding whether to
use the barrier optimizer. In fact, its performance is most dependent on these characteristics:

[the number of floating-point operations required to compute the Cholesky factor;

[the presence of dense columns, that is, columnswith arelatively high number of nonzero
entries.

To decide whether to use the barrier optimizer on a given problem, you should look at both
these characteristics, not simply at denseness, sparseness, or problem size. (How to check
those characteristics is explained later in this chapter in Cholesky Factor in the Log File on
page 190, and Nonzeros in Lower Triangle of AAT in the Log File on page 189).

Barrier Simplex Crossover

Since many users prefer basic solutions because they can be used to restart simplex
optimization, the ILOG CPLEX Barrier Optimizer includes basis crossover algorithms. By
default, the barrier optimizer automatically invokes a primal crossover when the barrier
algorithm terminates (unless termination occurs abnormally because of insufficient memory
or numeric difficulties). Optionally, you can also execute barrier optimization with a dual
crossover or with no crossover at al. The section Controlling Crossover on page 187
explains how to control crossover in the | nteractive Optimizer.

Differences between Barrier and Simplex Optimizers

The barrier optimizer and the simplex optimizers (primal and dual) are fundamentally
different approachesto solving linear programming problems. The key differences between
them have these implications:

—Simplex and barrier optimizers differ with respect to the nature of solutions. Barrier
solutions tend to be midface solutions. In cases where multiple optima exist, barrier
solutions tend to place the variables at values between their bounds, whereas in basic
solutions from a simplex technique, the values of the variables are more likely to be at
either their upper or their lower bound. While objective values will be the same, the
nature of the solutions can be very different.

By default, the barrier optimizer crossover to produce abasis. However, you may choose
to run the barrier optimizer without crossover. In such a case, the fact that barrier without
crossover does not produce a basic solution has consequences. Without a basis, you will
not be able to optimize the same or similar problems repeatedly using advanced start
information. You will also not be able to obtain range information for performing
sengitivity analysis.

ILOG CPLEX 10.0 — USER’'S MANUAL 185

—Simplex and barrier optimizers have different numeric properties, sensitivity, and
behavior. For example, the barrier optimizer is sensitive to the presence of unbounded
optimal faces, whereas the simplex optimizers are not. As aresult, problems that are
numerically difficult for one method may be easier to solve by the other. In these cases,
concurrent optimization, as documented in Concurrent Optimizer on page 446, may be

helpful.

—Jimplex and barrier optimizers have different memory regquirements. Depending on the
size of the Cholesky factor, the barrier optimizer can require significantly more memory

than the simplex optimizers.

[—Simplex and barrier optimizers work well on different types of problems. The barrier
optimizer works well on problems where the AAT remains sparse. Also, highly
degenerate problems that pose difficulties for the primal or dual simplex optimizers may
be solved quickly by the barrier optimizer. In contrast, the simplex optimizers will
probably perform better on problems where the AAT and the resulting Cholesky factor
arerelatively dense, though it is sometimes difficult to predict from the dimensions of
the model when this will be the case. Again, concurrent optimization, as documented in
Concurrent Optimizer on page 446, may be helpful.

Using the Barrier Optimizer

Asyou have read in Introducing the Barrier Optimization on page 184, the ILOG CPLEX
Barrier Optimizer finds primal and dual solutions from the primal and dual formulations of a
model, but you do not have to reformulate the problem yourself. The ILOG CPLEX Barrier
Optimizer automatically creates the primal and dual formulations of the problem for you

after you enter or read in the problem.

Specify that you want to use the barrier optimizer by setting the parameter L.PMethod to one

of thevaluesin Table 9.1.

Table9.1 Settings of LPMethod Invoke the Barrier Optimizer

Setting

Context

IloCplex: :Barrier

Concert Technology for C++ users

IloCplex.Algorithm.Barrier

Concert Technology for Java users

Cplex.Algorithm.Barrier

Concert Technology for .NET users

CPX ALG_BARRIER

Callable Library

4

Interactive Optimizer

186 ILOG CPLEX 10.0 — USER’'S MANUAL

And then you call the solution routine just as for any other ILOG CPLEX optimizer, asyou
seein Table 9.2.

Table9.2 Calling the Barrier Optimizer

Call

Context

cplex.solve

Concert Technology for C++ users

cplex.solve

Concert Technology for Java users

Cplex.Solve

Concert Technology for .NET users

CPXlpopt

Callable Library

optimize

Interactive Optimizer

Special Options

In addition to the parameters available for other ILOG CPLEX LP optimizers, there are also
parameters to control the ILOG CPLEX Barrier Optimizer. In the Interactive Optimizer, to
see alist of the parameters specific to the ILOG CPLEX Barrier Optimizer, use the
command set barrier.

Controlling Crossover

The nature of the crossover step that follows barrier is controlled by the parameter
BarCrossAlg. Under the default automatic setting, an appropriate crossover step will be
invoked. Possible settings for the parameter appear in Table 9.3.

Table 9.3 BarCrossAlg Parameter Settings

BarCrossAlg
Values

Meaning

-1

Nno crossover

0

automatic (default)

primal crossover

dual crossover

ILOG CPLEX 10.0 —

USER'S MANUAL 187

Using SOL File Format

When you use the ILOG CPLEX Barrier Optimizer with no crossover, you can save the
primal and dual variable values and their associated reduced cost and dua valuesin a
SOL-format file (that is, a solution file with the extension . so1). You can then read that
solution fileinto ILOG CPLEX before you initiate a crossover at alater time. After you read
asolution fileinto ILOG CPLEX, all three optimizers (primal simplex, dual simplex, and
barrier simplex) automatically invoke crossover. See the ILOG CPLEX File Format
Reference Manual, especially SOL File Format: Solution Files on page 38, for more about
solution files.

Interpreting the Barrier Log File

188

Likethe ILOG CPLEX simplex optimizers, the barrier optimizer records information about
itsprogressinalog file asit works. Some usersfind it helpful to keep anew log file for each
session. By default, ILOG CPLEX records information in afile named cplex.log. Inthe:

[Interactive Optimizer, use the command set logfile filename to change the name
of thelog file.

[Callable Library, use the routine cpxsetlogfile with argumentsto indicate the log
file

You can control the level of information that ILOG CPLEX records about barrier
optimization by setting the BarDisplay parameter. Those settings appear in Table 9.4.

Table 9.4 BarDisplay Parameter Settings

B?;Z'jgslay Meaning
0 no display
1 display normal information (default)
2 display detailed (diagnostic) output

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Hereisan example of alog file for abarrier optimization (without crossover):

Tried aggregator 1 time.

LP Presolve eliminated 9 rows and 11 columns.
Aggregator did 6 substitutions.

Reduced LP has 12 rows, 15 columns, and 38 nonzeros.
Presolve time = 0.00 sec.

Number of nonzeros in lower triangle of A*A' = 26
Using Approximate Minimum Degree ordering

Total time for automatic ordering = 0.00 sec.
Summary statistics for Cholesky factor:

Rows in Factor = 12
Integer space required = 12
Total non-zeros in factor = 78
Total FP ops to factor = 650
Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf
0 -1.3177911e+01 -1.2600000e+03 6.55e+02 0.00e+00 3.92e+01
1 -4.8683118e+01 -5.4058675e+02 3.91e+01 0.00e+00 1.18e+01
2 -1.6008142e+02 -3.5969226e+02 1.35e-13 7.1lle-15 5.81e+00
3 -3.518668le+02 -6.1738305e+02 1.59e-10 1.78e-15 5.1l6e-01
4 -4.5808732e+02 -4.7450513e+02 5.08e-12 1.95e-14 4.62e-02
5 -4.6435693e+02 -4.6531819%e+02 1.66e-12 1.27e-14 1.59%e-03
6 -4.6473085e+02 -4.6476678e+02 5.53e-11 2.17e-14 2.43e-15
7 -4.6475237e+02 -4.6475361le+02 5.59%9e-13 2.99e-14 2.19e-15
8 -4.6475312e+02 -4.6475316e+02 1.73e-13 1.55e-14 1.17e-15
9 -4.6475314e+02 -4.6475314e+02 1.45e-13 2.8le-14 2.17e-15
Barrier - Optimal: Objective = -4.6475314194e+02
Solution time = 0.01 sec. Iterations = 9

Preprocessing in the Log File

The opening lines of that log file record information about preprocessing by the

ILOG CPLEX presolver and aggregator. After those preprocessing statistics, the next line
records the number of nonzerosin the lower triangle of a particular matrix, AAT, denoted

a*a'inthelogfile.

Nonzeros in Lower Triangle of AATin the Log File

The number of nonzerosin the lower triangle of AAT gives an early indication of how long
each barrier iteration will take in terms of arelative measure of time. Thelarger this number,
the more time each barrier iteration requires. If this number is close to 50% of the square of
the number of rows of the reduced L P, then the problem may contain dense columnsthat are
not being detected. In that case, examine the histogram of column counts; then consider
setting the barrier column-nonzeros parameter to a value that enables ILOG CPLEX to treat

more columns as being dense.

In the Interactive Optimizer, you can examine the histogram of column counts with the

command display problem histogram.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

189

Ordering-Algorithm Time in the Log File

After the number of nonzeros in the lower triangle of AAT, ILOG CPLEX records the time
required by the ordering algorithm. (The ILOG CPLEX Barrier Optimizer offers you a
choice of several ordering algorithms, explained in Choosing an Ordering Algorithmon
page 196.) This section in the log file indicates which ordering algorithm the default
Automatic setting chose.

Cholesky Factor in the Log File

After the time required by the ordering algorithm, ILOG CPLEX records information about
the Cholesky factor. ILOG CPLEX computes this matrix on each iteration. The number of
rows in the Cholesky factor represents the number after preprocessing. The next line of
information about the Cholesky factor—integer space required—indicates the amount of
memory needed to store the sparsity pattern of the factored matrix. If this number is low,
then the factor can be computed more quickly than when the number is high.

Information about the Cholesky factor continues with the number of nhonzerosin the factored
matrix. The difference between this number and the number of nonzerosin AAT indicates
thefill-level of the Cholesky factor.

Thefinal line of information indicates how many floating-point operations are required to
compute the Cholesky factor. This number is the best predictor of the relative time that will
be required to perform each iteration of the barrier optimizer.

Iteration Progress in the Log File

After the information about the Cholesky factor, the log file records progress at each
iteration. It records both primal and dual objectives (as Primal Obj and bual 0Obj) per
iteration.

It also records absolute infeasibilities per iteration. Internally, the ILOG CPLEX Barrier
Optimizer treats inequality constraints as equality constraints with added slack and surplus
variables. Conseguently, primal constraintsin aproblem arewrittenasAx = bandx+ s=u,
and the dual constraints are written as Ay + z- w = c. Asaresult, in the log file, the
infeasibilities represent norms, as summarized in Table 9.5.

Table 9.5 Infeasibilities and Normsin the Log File of a Barrier Optimization

Infeasibility |In log file Norm

primal Prim Inf |b - Ax|

upper Upper Inf |u-(x+s)|
dual Dual Inf [c-yA -z +w|

190 ILOG CPLEX 10.0 — USER’'S MANUAL

If solution values are large in absolute value, then the infeasibilities may appear inordinately
large because they are recorded in the log file in absolute terms. The optimizer uses relative
infeasibilities as termination criteria.

Infeasibility Ratio in the Log File

If you are using one of the barrier infeasibility algorithms available in the ILOG CPLEX
Barrier Optimizer (that is, if you have set Baralg to either 1 or 2, as discussed later in this
chapter), then ILOG CPLEX records an additional column of output titled 1nf Ratio, the
infeasibility ratio. Thisratio, always positive, is a measure of progress for that particular
algorithm. In a problem with an optimal solution, you will see thisratio increaseto alarge
number. In contrast, in a problem that isinfeasible or unbounded, thisratio will decreaseto a
very small number.

Understanding Solution Quality from the Barrier LP Optimizer

When ILOG CPLEX successfully solves a problem with the ILOG CPLEX Barrier
Optimizer, it reports the optimal objective value and solution time in alog file, asit does for
other LP optimizers.

Because barrier solutions (prior to crossover) are not basic solutions, certain solution
statistics associated with basic solutions are not available for a strictly barrier solution. For
example, reduced costs and dual values are available for strictly barrier LP solutions, but
range information about them is not.

To help you evauate the quality of a barrier solution more readily, ILOG CPLEX offersa
special display of information about barrier solution quality. To display thisinformation in
the Interactive Optimizer, use the command display solution quality after
optimization. When using the Component Libraries, use the method cplex.getQuality
or use the routines cpxgetintquality for integer information and cpxgetdblquality
for double-valued information.

Table 9.6 Barrier Solution Quality Display

Item Meaning

primal objective T

primal objective value ¢’ x

dual objective dual objective value by - u'w + 1z

duality gap difference between primal and dual objectives

complementarity sum of column and row complementarity

ILOG CPLEX 10.0 — USER’'S MANUAL 191

Table 9.6 Barrier Solution Quality Display (Continued)

Item Meaning

column complementarity (total) sum of |(x; - 1)+ Zj| + |(u; - X)= |

column complementarity (max) maximum of |(x; - ;)+ zj| and |(u; - X;)* w;| over
all variables

row complementarity (total) sum of [slack; « yi|

row complementarity (max) maximum of |slack; ¢ yj|

primal norm |x| (total) sum of absolute values of all primal variables

primal norm [x| (max) maximum of absolute values of all primal
variables

dual norm |rc| (total) sum of absolute values of all reduced costs

dual norm |rc| (max) maximum of absolute values of all reduced
costs

primal error (Ax = b) (total, max) total and maximum error in satisfying primal

equality constraints

dual error (A'pi + rc = c) (total, max) total and maximum error in satisfying dual
equality constraints

primal x bound error (total, max) total and maximum error in satisfying primal
lower and upper bound constraints

primal slack bound error (total, max) total and maximum violation in slack variables

dual pi bound error (total, max) total and maximum violation with respect to zero
of dual variables on inequality rows

dual rc bound error (total, max) total and maximum violation with respect to zero
of reduced costs

primal normalized error (Ax = b) (max) | accuracy of primal constraints

dual normalized error (A'pi + rc = ¢) accuracy of dual constraints
(max)

Table 9.6 liststhe items ILOG CPLEX displays and explains their meaning. In the solution
quality display, the term pi refersto dual solution values, that is, they valuesin the
conventional barrier problem-formulation. The term rc refers to reduced cost, that is, the
difference z- win the conventional barrier problem-formulation. Other terms are best
understood in the context of primal and dual LP formulations.

192 ILOG CPLEX 10.0 — USER’'S MANUAL

Normalized errors, for example, represent the accuracy of satisfying the constraints while
considering the quantities used to compute Ax on each row and y'A on each column. In the
primal case, for each row, consider the nonzero coefficients and the x; values used to
compute Ax. If these numbers are large in absolute value, then it is acceptable to have a
larger absolute error in the primal constraint.

Similar reasoning applies to the dual constraint.

If ILOG CPLEX returned an optimal solution, but the primal error seems high to you, the
primal normalized error should be low, since it takesinto account the scaling of the problem
and solution.

After asimplex optimization—whether primal, dual, or network—or after a crossover, the
display command will display information related to the quality of the simplex solution.

Tuning Barrier

Optimizer Performance

Naturally, the default parameter settings for the ILOG CPLEX Barrier Optimizer work best
on most problems. However, you can tune several algorithmic parameters to improve
performance or to overcome numeric difficulties. The following sections document these
parameters:

[Memory Emphasis: Letting the Optimizer Use Disk for Sorage on page 194
[Preprocessing on page 195;

[Detecting and Eliminating Dense Columns on page 196;

[Choosing an Ordering Algorithm on page 196;

[Wsing a Sarting-Point Heuristic on page 197.

In addition, several parameters set termination criteria. With them, you control when
ILOG CPLEX stops optimization.

You can also control convergence tolerance—another factor that influences performance.
Convergence tolerance determines how nearly optimal a solution ILOG CPLEX must find:
tight convergence tolerance means ILOG CPLEX must keep working until it finds asolution
very close to the optimal one; loose tolerance means ILOG CPLEX can return a solution
within a greater range of the optimal one and thus stop cal culating sooner.

Performance of the ILOG CPLEX Barrier Optimizer is most highly dependent on the
number of floating-point operations required to compute the Cholesky factor at each
iteration. When you adjust barrier parameters, always check their impact on this number. At
default output settings, this number is reported at the beginning of each barrier optimization
inthelog file, as explained in Cholesky Factor in the Log File on page 190.

ILOG CPLEX 10.0 — USER’'S MANUAL 193

194

Another important performance issue is the presence of dense columns. A dense column
means that a given variable appearsin arelatively large number of rows. You can check
column density as suggested in Nonzerosin Lower Triangle of AAT in the Log File on
page 189. Detecting and Eliminating Dense Columns on page 196 also says more about
column density.

In adjusting parameters, you may need to experiment to find beneficia settings because the
precise effect of parametric changes will depend on the nature of your LP problem aswell as
your platform (hardware, operating system, compiler, etc.). Once you have found
satisfactory parametric settings, keep them in a parameter specification file for re-use, as
explained in Saving a Parameter Specification File on page 16 in the reference manual
ILOG CPLEX Interactive Optimizer Commands.

Memory Emphasis: Letting the Optimizer Use Disk for Storage

At default settings, the ILOG CPLEX barrier optimizer will do al of itswork in central
memory (also varioudly referred to as RAM, core, or physical memory). For models too
large to solvein the central memory on your computer, or in cases where you simply do not
want to use this much memory, it is possible to instruct the barrier optimizer to use disk for
part of the working storage it needs, specifically the Cholesky factorization. Since access to
disk is slower than access to central memory, there may be some lost performance by this
choice on modelsthat could be solved entirely in central memory, but the out-of-core feature
in the barrier optimizer is designed to make thistrade-off as efficient as possible. It generally
will be far more effective than relying on the virtual memory (that is, the swap space) of
your operating system.

To activate the out-of -core feature, set the memory emphasis parameter to 1 (one) instead of
its default value of O (zero).

[MemoryEmphasis in Concert Technology
[dpx_ PARAM MEMORYEMPHASIS inthe Callable Library
[dmphasis memory in the Interactive Optimizer

This memory emphasis feature will also invoke other memory conservation tactics, such as
compression of the data within presolve.

Memory emphasis uses some working memory in RAM to store the portion of the factor on
which it is currently performing computation. You can improve performance by allocating
more working memory by means of the working memory parameter.

[dorkMem in Concert Technology
[dpx_ PARAM WORKMEM in the Callable Library

[Workmem in the Interactive Optimizer

ILOG CPLEX 10.0 — UsSER’'S MANUAL

More working memory alows the optimizer to transfer less data to and from disk. In fact,
the Cholesky factor matrix will not be written to disk at all if its size does not exceed the
value of the working memory parameter. The default for this parameter is 128 megabytes.

When the barrier optimizer operates with memory emphasis, the location of disk storageis
controlled by the working directory parameter.

[WorkDir in Concert Technology
[dpx_ PARAM WORKDIR inthe Callable Library
[workdir in the Interactive Optimizer

For example, to use the directory /tmp/mywork, set the working directory parameter to the
string /tmp/mywork. The value of the working directory parameter should be specified as
the name of a directory that already exists, and ILOG CPLEX will create its working
directory as a subdirectory there. At the end of barrier optimization, ILOG CPLEX will
automatically delete any working directoriesit created, leaving the directory specified by the
working directory parameter intact.

Preprocessing

For best performance of the ILOG CPLEX Barrier Optimizer, preprocessing should almost
always be on. That is, use the default setting where the presolver and aggregator are active.
While they may use more memory, they also reduce the problem, and problem reduction is
crucial to barrier optimizer performance. In fact, reduction is so important that even when
you turn off preprocessing, ILOG CPLEX still applies minimal presolving before barrier
optimization.

For problems that contain linearly dependent rows, it isagood ideato turn on the
preprocessing dependency parameter. (By default, it is off.) This dependency checker may
add some preprocessing time, but it can detect and remove linearly dependent rowsto
improve overall performance. Table 9.7 shows you the possible settings of Dep1nd, the
parameter that controls dependency checking, and indicates their effects.

Table 9.7 Dependency Checking Parameter Depind or CPX_PARAM DEPIND

Setting | Effect

-1 automatic: let CPLEX choose when to use dependency checking
0 turn off dependency checking

1 turn on only at the beginning of preprocessing

2 turn on only at the end of preprocessing

3 turn on at beginning and at end of preprocessing

ILOG CPLEX 10.0 — USER’'S MANUAL 195

196

These reductions can be applied to all types of problems: LB, QP, QCP, MIP, including
MIQP and MIQCP.

Detecting and Eliminating Dense Columns

Dense columns can significantly degrade the performance of the barrier optimizer. A dense

column is one in which a given variable appears in many rows. So that you can detect dense
columns, the Interactive Optimizer contains a display feature that shows a histogram of the

number of nhonzerosin the columns of your model, display problem histogram c.

Nonzerosin Lower Triangle of AAT in the Log File on page 189 explains how to examine a
log file from the barrier optimizer in order to tell which columns CPLEX detects as dense at
its current settings.

In fact, when afew dense columns are present in a problem, it is often effective to
reformulate the problem to remove those dense columns from the model.

Otherwise, you can control whether ILOG CPLEX perceives columns as dense by setting
the column nonzeros parameter. At its default setting, ILOG CPLEX calculates an
appropriate value for this parameter automatically. However, if your problem contains one
(or afew) dense columns that remain undetected at the default setting (according to the log
file), you can adjust this parameter yourself to help ILOG CPLEX detect it (or them). For
example, in alarge problem in which one column contains forty entries while the other
columns contain less than five entries, you may benefit by setting the column nonzeros
parameter to 30. This setting allows ILOG CPLEX to recognize that column as dense and
thus invoke techniquesto handleit.

To set the dense column threshold, set the parameter BarColNz to a positive integer. The
default value of 0 meansthat ILOG CPLEX will determine the threshold.

Choosing an Ordering Algorithm

ILOG CPLEX offers several different algorithmsinthe ILOG CPLEX Barrier Optimizer for
ordering the rows of a matrix:

[—automatic, the default, indicated by the value o;

[approximate minimum degree (AMD), indicated by the value 1;
[—approximate minimum fill (AMF) indicated by the value 2;
[nested dissection (ND) indicated by the value 3.

The log file, as explained in Ordering-Algorithm Time in the Log File on page 190, records
the time spent by the ordering algorithm in a barrier optimization, so you can experiment
with different ordering algorithms and compare their performance on your problem.

Automatic ordering, the default option, will usually be the best choice. This option attempts
to choose the most effective of the available ordering methods, and it usually resultsin the

ILOG CPLEX 10.0 — UsSER’'S MANUAL

best order. It may require more time than the other settings. The ordering timeis usually
small relative to the total solution time, and a better order can lead to asmaller total solution
time. In other words, a change in this parameter is unlikely to improve performance very
much.

The AMD algorithm provides good quality order within moderate ordering time. AMF
usually provides better order than AMD (usually 5-10% smaller factors) but it requires
somewhat more time (10-20% more). ND often produces significantly better order than
AMD or AMF. Ten-fold reductionsin runtimes of the ILOG CPLEX Barrier Optimizer have
been observed with it on some problems. However, ND sometimes produces worse order,
and it requires much more time.

To select an ordering algorithm, set the parameter Barorder toavalueO, 1, 2, or 3.

Using a Starting-Point Heuristic

ILOG CPLEX supports several different heuristics to compute the starting point for the
ILOG CPLEX Barrier Optimizer. The starting-point heuristic is determined by the
BarStartAlg parameter, and Table 9.8 summarizes the possible settings and their
meanings.

Table 9.8 BarSartAlg Parameter Settings for Sarting-Point Heuristics

Setting Heuristic

1 dual is O (default)

2 estimate dual

3 average primal estimate, dual 0

4 average primal estimate, estimate dual

For most problems the default works well. However, if you are using the dual preprocessing
option (setting the parameter predual to 1) then one of the other heuristics for computing a
starting point may perform better than the default.

[In the Interactive Optimizer, use the command set barrier startalg i,
substituting avalue for i.

[When using the Component Libraries, set the parameter 11oCplex: :BarStartAlg Of
CPX_PARAM BARSTARTALG.

Overcoming Numeric Difficulties

As noted in Differences between Barrier and Smplex Optimizers on page 185, the
algorithms in the barrier optimizer have very different numeric properties from those in the

ILOG CPLEX 10.0 — USER’'S MANUAL 197

198

simplex optimizer. While the barrier optimizer is often extremely fast, particularly on very
large problems, numeric difficulties occasionally arise with it in certain classes of problems.
For that reason, it is agood ideato run simplex optimizersin conjunction with the barrier
optimizer to verify solutions. At its default settings, the ILOG CPLEX Barrier Optimizer
always crosses over after abarrier solution to asimplex optimizer, so this verification occurs
automatically.

Numerical Emphasis Settings

Before you try tactics that apply to specific symptoms, as described in the following
sections, a useful ILOG CPLEX parameter to try isthe numerical emphasis parameter.

[MumericalEmphasis in Concert Technology
[dpx PARAM NUMERICALEMPHASIS inthe Callable Library
[dmphasis numerical inthe Interactive Optimizer

Unlike the following suggestions, which deal with knowledge of the way the barrier
optimizer works or with details of your specific model, this parameter is intended as away
totell ILOG CPLEX to exercise more than the usual caution in its computations. When you
set it to its nondefault val ue specifying extreme numerical caution, various tactics are
invoked internally to try to avoid loss of numerical accuracy in the steps of the barrier
agorithm.

Be aware that the nondefault setting may result in slower solution times than usual. The
effect of this setting is to shift the emphasis away from fastest solution time and toward
numerical caution. On the other hand, if numerical difficulty is causing the barrier algorithm
to perform excessive numbers of iterations due to loss of significant digits, it is possible that
the setting of extreme numerical caution could actually result in somewhat faster solution
times. Overadll, it isdifficult to project the impact on speed when using this setting.

The purpose of this parameter setting is not to generate "more accurate solutions’
particularly where the input data is in some sense unsatisfactory or inaccurate. The
numerical caution is applied during the steps taken by the barrier algorithm during its
convergence toward the optimum, to help it do its job better. On some models, it may turn
out that solution quality measures are improved (Ax-b residuals, variable-bound violations,
dual values, and so forth) when ILOG CPLEX exercises numerical caution, but this would
be a secondary outcome from better convergence.

Difficulties in the Quality of Solution

Under standing Solution Quality fromthe Barrier LP Optimizer on page 191 lists the items
that ILOG CPLEX displays about the quality of abarrier solution. If the ILOG CPLEX
Barrier Optimizer terminates its work with a solution that does not meet your quality
reguirements, you can adjust parameters that influence the quality of a solution. Those
adjustments affect the choice of barrier agorithm, the limit on barrier corrections, and the

ILOG CPLEX 10.0 — UsSER’'S MANUAL

choice of starting-point heuristic—topics introduced in Tuning Barrier Optimizer
Performance on page 193 and recapitulated here in the following subsections.

Change the Barrier Algorithm

The ILOG CPLEX Barrier Optimizer implements the algorithms listed in Table 9.9. The
selection of barrier algorithm is controlled by the Baralg parameter. The default option
invokes option 3 for LPs and QPs, option 1 for QCPs, and option 1 for MIPs where the
ILOG CPLEX Barrier Optimizer is used on the subproblems. Naturally, the default is the
fastest for most problems, but it may not work well on LP or QP problemsthat are primal
infeasible or dual infeasible. Options 1 and 2 in the ILOG CPLEX Barrier Optimizer
implement a barrier algorithm that also detects infeasibility. (They differ from each other in
how they compute a starting point.) Though they are slower than the default option, in a
problem demonstrating numeric difficulties, they may eliminate the numeric difficulties and
thus improve the quality of the solution.

Table 9.9 BarAlg Parameter Settings for Barrier Optimizer Algorithm

g:trt/i\r:g weauid

0 default

1 algorithm starts with infeasibility estimate
2 algorithm starts with infeasibility constant
3 standard barrier algorithm

Change the Limit on Barrier Corrections

The default barrier algorithm in the ILOG CPLEX Barrier Optimizer computes an estimate
of the maximum number of centering corrections that ILOG CPLEX should make on each
iteration. You can see this computed value by setting barrier display level two, as explained
in Interpreting the Barrier Log File on page 188, and checking the value of the parameter to
limit corrections. (Its default value is -1.) If you see that the current value is o (zero), then
you should experiment with greater settings. Setting the parameter BarMaxCor to avalue
greater than 0 may improve numeric performance, but there may also be anincreasein
computation time.

Choose a Different Starting-Point Heuristic

Asexplained in Using a Sarting-Point Heuristic on page 197, the default starting-point
heuristic works well for most problems suitable to barrier optimization. But for amodel that
is exhibiting numeric difficulty it is possible that setting the Barstartalg to select a
different starting point will make a difference. However, if you are preprocessing your
problem as dual (for example, in the Interactive Optimizer you issued the command

set preprocessing dual), then adifferent starting-point heuristic may perform better
than the default. To change the starting-point heuristic, see Table 9.8 on page 197.

ILOG CPLEX 10.0 — USER’'S MANUAL 199

200

Difficulties during Optimization

Numeric difficulties can degrade performance of the ILOG CPLEX Barrier Optimizer or
even prevent convergence toward a solution. There are several possible sources of numeric
difficulties:

—@limination of too many dense columns may cause humeric instability;

[tight convergence tolerance may aggravate small numeric inconsistenciesin a problem;
[—unbounded optimal faces may remain undetected and thus prevent convergence.

The following subsections offer guidance about overcoming those difficulties.

Numeric Instability Due to Elimination of Too Many Dense Columns

Detecting and Eliminating Dense Columns on page 196 explains how to change parameters
to encourage ILOG CPLEX to detect and eliminate as many dense columns as possible.
However, in some problems, if ILOG CPLEX removes too many dense columns, it may
cause numeric instability.

You can check how many dense columns ILOG CPLEX removes by looking at the
preprocessing statistics at the beginning of the log file. For example, the following log file
showsthat CPLEX removed 2249 columns, of which nine were dense.

Selected objective sense: MINIMIZE
Selected objective name: obj
Selected RHS name: rhs
Selected bound name: bnd

Problem 'XXX.mps' read.

Read time = 0.03 sec.

Tried aggregator 1 time.

LP Presolve eliminated 2200 rows and 2249 columns.
Aggregator did 8 substitutions.

Reduced LP has 171 rows, 182 columns, and 1077 nonzeros.
Presolve time = 0.02 sec.

***NOTE: Found 9 dense columns.

Number of nonzeros in lower triangle of A*A' = 6071
Using Approximate Minimum Degree ordering

Total time for automatic ordering = 0.00 sec.
Summary statistics for Cholesky factor:

Rows in Factor = 180
Integer space required = 313
Total non-zeros in factor = 7286
Total FP ops to factor = 416448

If you observe that the removal of too many dense columns results in numeric instability in
your problem, then increase the column nonzeros parameter, BarColNz.

The default value of the column nonzeros parameter is o (zero); that value tells
ILOG CPLEX to calculate the parameter automatically.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

To see the current value of the column nonzeros parameter (either one you have set or one
ILOG CPLEX has automatically calculated) you need to look at the level two display, by
setting the BarDisplay parameter to 2.

If you determine that the current value of the column nonzeros parameter isinappropriate for
your problem and thustells ILOG CPLEX to remove too many dense columns, then you can
increase the parameter BarColNz to keep the number of dense columns removed low.

Small Numeric Inconsistencies and Tight Convergence Tolerance

If your problem contains small numeric inconsistencies, it may be difficult for the

ILOG CPLEX Barrier Optimizer to achieve a satisfactory solution at the default setting of
the complementarity convergence tolerance. In such a case, you should increase the
convergence tolerance parameter (BarEpComp for LP or QP models, BarQCPEpComp for
QCP models).

Unbounded Variables and Unbounded Optimal Faces

An unbounded optimal face occursin amodel that contains a sequence of optimal solutions,
al with the same value for the objective function and unbounded variable values. The
ILOG CPLEX Barrier Optimizer will fail to terminate normally if an undetected unbounded
optimal face exists.

Normally, the ILOG CPLEX Barrier Optimizer usesits barrier growth parameter,
BarGrowth, to detect such conditions. If this parameter isincreased beyond its default
value, the ILOG CPLEX Barrier Optimizer will be lesslikely to determine that the problem
has an unbounded optimal face and more likely to encounter numeric difficulties.

Consequently, you should change the barrier growth parameter only if you find that the
ILOG CPLEX Barrier Optimizer is terminating its work before it finds the true optimum
because it has falsely detected an unbounded face.

Difficulties with Unbounded Problems
ILOG CPLEX detects unbounded problems in either of two ways:

[aither it finds a solution with small complementarity that is not feasible for either the
primal or the dual formulation of the problem;

[or the iterations tend toward infinity with the objective value becoming very largein
absolute value.

The ILOG CPLEX Barrier Optimizer stops when the absolute value of either the primal or
dual objective exceeds the objective range parameter, BarObjRng.

If you increase the value of BarObjRng, then the ILOG CPLEX Barrier Optimizer will
iterate more times before it decides that the current problem suffers from an unbounded
objective value.

If you know that your problem has large objective values, consider increasing BarObjRng.

ILOG CPLEX 10.0 — USER’'S MANUAL 201

Alsoif you know that your problem has large objective values, consider changing the barrier
algorithm by resetting the Baralg parameter.

Diagnosing Infeasibility Reported by Barrier Optimizer

When the ILOG CPLEX Barrier Optimizer terminates and reports an infeasible solution, al
theusual solution information is available. However, the solution values, reduced costs, and
dual variables reported then do not correspond to a basis; hence, that information does not
have the same meaning as the corresponding output from the ILOG CPLEX simplex
optimizers.

Actually, since the ILOG CPLEX Barrier Optimizer works in asingle phase, all reduced
costs and dual variables are calculated in terms of the original objective function.

If the ILOG CPLEX Barrier Optimizer reports to you that a problem isinfeasible, one
approach to overcoming the infeasibility is to invoke FeasOpt or the conflict refiner. See
Repairing Infeasibilities with FeasOpt on page 365 and Diagnosing Infeasibility by
Refining Conflicts on page 347 for an explanation of these tools.

If the ILOG CPLEX Barrier Optimizer reports to you that a problem isinfeasible, but you
still need abasic solution for the problem, use the primal simplex optimizer. ILOG CPLEX
will then use the solution provided by the barrier optimizer to determine a starting basis for
the primal simplex optimizer. When the primal simplex optimizer finishesitswork, you will
have an infeasible basic solution for further infeasibility analysis.

If the default algorithm in the ILOG CPLEX Barrier Optimizer determines that your
problemisprimal infeasible or dual infeasible, then try the alternate algorithmsin the barrier
optimizer. These algorithms, though slower than the default, are better at detecting primal
and dual infeasibility.

To select one of the barrier infeasibility algorithms, set the Baralg parameter to either 1
or 2.

202 ILOG CPLEX 10.0 — USER’'S MANUAL

10

Solving Network-Flow Problems

This chapter tells you more about the ILOG CPLEX Network Optimizer. It includes
information about:

[Choosing an Optimizer: Network Considerations on page 204
[—Formulating a Network Problem on page 204
[_HExample: Network Optimizer in the Interactive Optimizer on page 205

[Example: Using the Network Optimizer with the Callable Library netex1.c on page 209
[—Jolving Network-Flow Problems as LP Problems on page 210

[_Example: Network to LP Transformation netex2.c on page 212

[—Jolving Problems with the Network Optimizer on page 207

ILOG CPLEX 10.0 — USER’'S MANUAL 203

Choosing an Optimizer: Network Considerations

Asexplained in Using the Callable Library in an Application on page 107, to exploit
ILOG CPLEX inyour own application, you must first create an ILOG CPLEX environment,
instantiate a problem object, and populate the problem object with data. Asyour next step,
you call alLOG CPLEX optimizer.

If part of your problem is structured as a network, then you may want to consider calling the
ILOG CPLEX Network Optimizer. This optimizer may have a positive impact on
performance. There are two alternative ways of calling the network optimizer:

_If your problem isan LP where alarge part is a network structure, you may call the
network optimizer for the populated L P object.

_IF your entire problem consists of anetwork flow, you should consider creating a network
object instead of an LP object. Then populate it, and solve it with the network optimizer.
This alternative generally yields the best performance because it does not incur the
overhead of LP data structures. This option is available only for the Callable library.

How much performance improvement you observe between using only a simplex optimizer
versus using the network optimizer followed by either of the simplex optimizers depends on
the number and nature of the other constraintsin your problem. On a pure network problem,
performance has been measured as 100 times faster with the network optimizer. However, if
the network component of your problem is small relative to its other parts, then using the
solution of the network part of the problem as a starting point for the remainder may or may
not improve performance, compared to running the primal or dual simplex optimizer. Only
experiments with your own problem can tell.

Formulating a Network Problem

204

A network-flow problem finds the minimal-cost flow through a network, where a network
consists of aset N of nodes and a set A of arcs connecting the nodes. Anarc aintheset Ais
an ordered pair (i, j) wherei and j are nodesin the set N; nodei iscalled the tail or the from-
node and nodej is called the head or the to-node of the arc a. Not all the pairs of nodesin a
set N are necessarily connected by arcsin the set A. More than one arc may connect apair of
nodes; in other words, a; = (i, j) and a, = (i, j) may betwo different arcsin A, both
connecting the nodesi and j in N.

Each arc a may be associated with four values:

[, isthe flow value, that is, the amount passing through the arc a from itstail (or from-
node) to its head (or to-node). The flow values are the modeling variables of a network-
flow problem. Negative values are allowed; a negative flow value indicates that there is
flow from the head to the tail.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

11, the lower bound, determines the minimum flow allowed through the arc a. By default,
the lower bound on an arc is 0 (zero).

1, the upper bound, determines the maximum flow allowed through the arc a. By
default, the upper bound on an arc is positive infinity.

[—d,, the objective value, determines the contribution to the objective function of one unit
of flow through the arc.

Each node nn isassociated with one value:
3, isthe supply value at node n.

By convention, anode with strictly positive supply value (that is, s, > 0) is called a supply
node or a source, and a node with strictly negative supply value (that is, s, < 0) iscalled a
demand node or asink. A node where s, = O is called a transshipment node. The sum of all
supplies must match the sum of all demands; if not, then the network flow problemis
infeasible.

T, isthe set of arcswhose tails are node n; H,, isthe set of arcs whose heads are node n. The
usual form of a network problem looks like this:

Minimize (or maximize) Z (CXy)
ae A

subject to z Xq— Z Xq = an(ne N)
ae Tn ae Hn

with these bounds Ias XgSu,V(ae A)

That is, for each node, the net flow entering and |eaving the node must equal its supply
value, and al flow values must be within their bounds. The solution of a network-flow
problem is an assignment of flow valuesto arcs (that is, the modeling variables) to satisfy
the problem formulation. A flow that satisfies the constraints and bounds is feasible.

Example: Network Optimizer in the Interactive Optimizer

This example is based on a network where the aim is to minimize cost and where the flow
through the network has both cost and capacity. Figure 10.1 shows you the nodes and arcs of
this network. The nodes are labeled by their identifying node number from 1 through 8. The
number inside a node indicates its supply value; 0 (zero) is assumed where no number is
given. The arcs are labeled 1 through 14. The lower bound 1, upper bound u, and objective
value c of each arc are displayed in parentheses (1, u, c) besideeach arc. Inthis
example, node 1 and node 5 are sources, representing a positive net flow, whereas node 4
and node 8 are sinks, representing negative net flow.

ILOG CPLEX 10.0 — USER’'S MANUAL 205

206

———
AB (-inf, +inf, $6)

A14 (0, +inf, $6)

2 g

g o)
G || B e} 5)_}
N — 1 o
s ||s e S
N “ 9 0
< 8 < <

~

—» (") (N
A3 (12, 12, $4) % A4 (0, 10, $3) O

Figure10.1 A Directed Network with Arc-Capacity, Flow-Cost, Sinks, and Sources

The example in Figure 10.1 corresponds to the results of running the netex1 . c. If you run
that application, it will produce afile named netex1 .net which can beread into the
Interactive Optimizer with the command read netex1.net. After you read the problem
into the Interactive Optimizer, you can solve it with the command netopt or the command

optimize.

Understanding the Network Log File
AsILOG CPLEX solvesthe problem, it produces alog like the following lines:

Iteration log . . .
Iteration: 0 Infeasibility = 48.000000 (150)

Network - Optimal: Objective = 2.6900000000e+002
Solution time = 0.01 sec. Iterations = 9 (9)

This network log file differs slightly from the log files produced by other ILOG CPLEX
optimizers: it contains values enclosed in parentheses that represent modified objective
function values.

Aslong as the network optimizer has not yet found afeasible solution, it isin Phasel. In
Phase |, the network optimizer uses modified objective coefficients that penalize
infeasibility. At its default settings, the ILOG CPLEX Network Optimizer displaysthe value

ILOG CPLEX 10.0 — UsSER’'S MANUAL

of the objective function calculated in terms of these modified objective coefficientsin
parentheses in the network log file.

You can control the amount of information recorded in the network log file, just asyou
control the amount of information in other ILOG CPLEX log files. To record no information
a al inthelog file, use the command set network display 0. To display the current
objective value in parentheses relative to the actual unmodified objective coefficients, use
thecommand set network display 1. To seethedisplay mentioned earlier inthis
section, leave the network display parameter at its default value, 2. (If you have changed the
default value, you can reset it with the command set network display 2.)

Tuning Performance of the Network Optimizer

The default values of parameters controlling the network optimizer are generally the best
choices for effective performance. However, the following sections indicate parameters that
you may want to experiment with in your particular problem.

Controlling Tolerance

You control the feasibility tolerance for the network optimizer through the parameter
NetEpRHS. Likewise, you control the optimality tolerance for the network optimizer
through the parameter Net EpOpt.

Selecting a Pricing Algorithm for the Network Optimizer

On the rare occasions when the network optimizer seems to take too long to find a solution,
you may want to change the pricing algorithm to try to speed up computation. The pricing
algorithm for the network optimizer is controlled by parameter Net PpriInd. All the
choices use variations of partial reduced-cost pricing.

Limiting Iterations in the Network Optimizer

Use the parameter Net ItLim if you want to limit the number of iterations that the network
optimizer performs.

Solving Problems with the Network Optimizer

You instruct ILOG CPLEX to apply the network optimizer for solving the LP at hand by
sefting the cPX_PARAM LPMETHOD parameter to CPx_ALG NET in the Callable Library, or
by setting the RootAlg parameter to Network in Concert Technology. When you do so,
ILOG CPLEX performs a sequence of steps. It first searches for a part of the LP that
conforms to network structure. Such a part is known as an embedded network. It then uses
the network optimizer to solve that embedded network. Next, it uses the resulting basis to
construct a starting basis for the full LP problem. Finally, it solves the LP problem with a
simplex optimizer.

ILOG CPLEX 10.0 — USER’'S MANUAL 207

208

You can also use the network optimizer when solving QPs (that is, problems with a positive
semi-definite quadratic term in the objective function), but not when solving quadratically
constrained problems. To do so using the Callable Library, you set the parameter
CPX_PARAM QPMETHOD t0 CPX_ALG NET. For Concert Technology, theRootalg parameter
must be set to Network. When ILOG CPLEX uses the network optimizer to solve a QP, it
first ignores the quadratic term and uses the network optimizer to solve the resulting LP.
ILOG CPLEX then uses the resulting basis to start a simplex algorithm on the QP model
with the original quadratic objective.

Network Extraction

The ILOG CPLEX network extractor searches an LP constraint matrix for a submatrix with
the following characteristics:

[the coefficients of the submatrix are all 0 (zero), 1 (one), or -1 (minus one);

[—@aach variable appearsin at most two rows with at most one coefficient of +1 and at most
one coefficient of -1.

ILOG CPLEX can perform different levels of extraction. The level it performs depends on
the Net Find parameter.

[When the Net Find parameter isset to 1 (one), ILOG CPLEX extracts only the obvious
network; it uses no scaling; it scansrowsin their natural order; it stops extraction as soon
as no more rows can be added to the network found so far.

[When the Net Find parameter is set to 2, the default setting, ILOG CPLEX also uses
reflection scaling (that is, it multiplies rows by -1) in an attempt to extract a larger
network.

[When the Net Find parameter is set to 3, ILOG CPLEX uses general scaling, rescaling
both rows and columns, in an attempt to extract alarger network.

In terms of total solution time expended, it may or may not be advantageous to extract the
largest possible network. Characteristics of your problem will determine the tradeoff
between network size and the number of simplex iterations required to finish solving the
model after solving the embedded network.

Even if your problem does not conform precisely to network conventions, the network
optimizer may still be advantageous to use. When it is possible to transform the original
statement of alinear program into network conventions by these algebraic operations:

[—ahanging the signs of coefficients,

[multiplying constraints by constants,
[rescaling columns,

[—adding or eliminating redundant relations,

ILOG CPLEX 10.0 — UsSER’'S MANUAL

then ILOG CPLEX will carry out such transformations automatically if you set the
NetFind parameter appropriately.

Preprocessing and the Network Optimizer

If your LP problem includes network structures, there is a possibility that ILOG CPLEX
preprocessing may eliminate those structures from your model. For that reason, you should
consider turning off preprocessing before you invoke the network optimizer on a problem.

Example: Using the Network Optimizer with the Callable Library netexl.c

In the standard distribution of ILOG CPLEX, thefilenetex1 . c contains code that creates,
solves, and displays the solution of the network-flow problem illustrated in Figure 10.1 on
page 206.

Briefly, themain function initializes the ILOG CPLEX environment and creates the
problem object; it also calls the optimizer to solve the problem and retrieves the solution.

In detail, main first callsthe Callable Library routine cpxopencpPLEX. Asexplainedin
Initialize the ILOG CPLEX Environment on page 107, CPxopenCPLEX must always be the
first ILOG CPLEX routine called in alLOG CPLEX Callable Library application. Those
routines create the ILOG CPLEX environment and return a pointer (called env) toit. This
pointer will be passed to every Callable Library routine. If thisinitialization routine fails,
env Will be NULL and the error code indicating the reason for the failure will be written to
status. That error code can be transformed into a string by the Callable Library routine
CPXgeterrorstring.

After main initializesthe ILOG CPLEX environment, it uses the Callable Library routine
CPXsetintparam to turn onthe ILOG CPLEX screen indicator parameter

CPX_PARAM SCRIND SO that ILOG CPLEX output appears on screen. If this parameter is
turned off, ILOG CPLEX does not produce viewabl e output, neither on screen, nor in alog
file. It isagood ideato turn this parameter on when you are debugging your application.

The Callable Library routine CPxXNETcreateprob Creates an empty problem object, that is,
aminimum-cost network-flow problem with no arcs and no nodes.

Thefunction buildNetwork populatesthe problem object; that is, it loadsthe problem data
into the problem object. Pointer variablesin the example are initialized as NULL so that you
can check whether they point to valid data (a good programming practice). The most
important callsin this function are to the Callable Library routines, CPXNETaddnodes,
which adds nodes with the specified supply val ues to the network problem, and
CPxNETaddarcs, Which adds the arcs connecting the nodes with the specified objective
values and bounds. In this example, both routines are called with their last argument NULL
indicating that no names are assigned to the network nodes and arcs. If you want to name
arcs and nodes in your problem, pass an array of strings instead.

ILOG CPLEX 10.0 — USER’'S MANUAL 209

The function buildNetwork aso includes afew routines that are not strictly necessary to
this example, but illustrate concepts you may find useful in other applications. To delete a
node and all arcs dependent on that node, it uses the Callable Library routine
CPXNETdelnodes. TO change the objective sense to minimization, it usesthe Callable
Library routine CPXNETchgobjsen.

Look again at main, where it actualy calls the network optimizer with the Callable Library
routine, CPXNETprimopt. If CPXNETprimopt returns anonzero value, then an error has
occurred; otherwise, the optimization was successful. Before retrieving that solution, it is
necessary to alocate arrays to hold it. Then use CPXNETsolution to copy the solution into
those arrays. After displaying the solution on screen, write the network problem into afile,
netexl.net inthe NET file format.

The TERMINATE: label is used as a place for the program to exit if any type of error occurs.
Therefore, code following this label cleans up: it frees the memory that has been allocated
for the solution data; it frees the network object by calling CPXNETfreeprob; and it frees
the ILOG CPLEX environment by calling cpxclosecpLEX. All freeing should be done
only if the datais actually available. The Callable Library routine cpxclosecpLEX should
always be thelast ILOG CPLEX routine called in alLOG CPLEX Callable Library
application. In other words, al ILOG CPLEX objects that have been allocated should be
freed before the call to cPxcloseCPLEX.

The complete program netex1 . c appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

Solving Network-Flow Problems as LP Problems

A network-flow model isan LP model with special structure. The ILOG CPLEX Network
Optimizer is ahighly efficient implementation of the primal simplex technique adapted to
take advantage of this special structure. In particular, no basis factoring occurs. However, it
is possible to solve network models using any of the ILOG CPLEX LP optimizersif first,
you convert the network data structures to those of an LP model. To convert the network
data structures to L P data structures, in the I nteractive Optimizer, use the command
change problem 1p;from the Callable Library, usethe routine cPxcopynettolp.

The LP formulation of our example from Figure 10.1 on page 206 looks like this:

Minimize
3a; + 3a, + 4ag + 3a4 + S5ag + bag + 7a; + 4ag + 2ag + 6a;g + 5a;; + 4a;p; + 3a;3 + bag,
subject to

a

210 ILOG CPLEX 10.0 — USER’'S MANUAL

-ag +

a

as + as

with these bounds

a; < 24
as; <10
a; <20
ajg < 15

813S 6

- a - & +t ay
+ ag
+ ay + a9 + all - app
a7 + ag - ap T A3
- a5 + ag -ap tap tag - ay
S ta
S8 - &
0< a, < 25 ag = 12
0< a5 <9 ag free
0< ag < 10 0<ag <5
0< a;; <10 0<ap <11
0< ayy

In that formulation, in each column there is exactly one coefficient equal to 1 (one), exactly
one coefficient equal to -1, and all other coefficients are O (zero).

Since a network-flow problem correspondsin this way to an LP problem, you can indeed
solve a network-flow problem by means of aILOG CPLEX LP optimizer aswell. If you
read a network-flow problem into the Interactive Optimizer, you can transform it into its LP
formulation with the command change problem 1p. After thischange, you can apply any
of the LP optimizers to this problem.

When you change a network-flow problem into an LP problem, the basis information that is
available in the network-flow problem is passed along to the LP formulation. In fact, if you
have already solved the network-flow problem to optimality, then if you call the primal or
dual simplex optimizers (for example, with the Interactive Optimizer command primopt oOr
tranopt), that simplex optimizer will perform no iterations.

Generally, you can also use the same basis from a basis file for both the L P and the network
optimizers. However, there is one exception: in order to use an LP basis with the network
optimizer, at least one slack variable or one artificial variable needs to be basic. Sarting
from an Advanced Basis on page 164 explains more about thistopic in the context of LP
optimizers.

If you have already read the LP formulation of aproblem into the Interactive Optimizer, you
can transform it into a network with the command change problem network. Given any

ILOG CPLEX 10.0 — USER’'S MANUAL 211

-10

L P problem and this command, ILOG CPLEX will try to find the largest network embedded
inthe LP problem and transform it into a network-flow problem. However, asit does so, it

discards al rows and columns that are not part of the embedded network. At the same time,
ILOG CPLEX passes along as much basis information as possible to the network optimizer.

Example: Network to LP Transformation netex2.c

212

This example shows how to transform a network-flow problem into its corresponding LP
formulation. That example a so indicates why you might want to make such a change. The
exampl e reads a network-flow problem from afile (rather than populating the problem
object by adding rows and columns asin netex1 . c). You can find the data of this example
inthefileexamples/data/infnet .net. After reading the datafrom that file, the example
then attempts to solve the problem by calling the Callable Library routine CPXNETprimopt.
If it determines that the problem isinfeasible, it then invokes the conflict refiner to analyze
the problem and possibly indicate the cause of the infeasibility.

The complete program netex2 . ¢ appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

11

Solving Problems with a
Quadratic Objective (QP)

This chapter tells you about solving convex quadratic programming problems (QPs) with
ILOG CPLEX. This chapter contains sections about:

[Identifying Convex QPs on page 214

[_Entering QPs on page 215

[Faving QP Problems on page 218

[Changing Problem Type in QPs on page 218

[Changing Quadratic Terms on page 219

[Optimizing QPs on page 220

[—Example: Creating a QP, Optimizing, Finding a Solution on page 222
[HExample: Reading a QP from a File gpex2.c on page 224

ILOG CPLEX 10.0 — USER’'S MANUAL 213

Identifying Convex QPs

Conventionaly, a quadratic program (QP) is formulated this way:
Minimize %,x'Qx+ c'x
subjectto Ax~b

with these bounds| < x <u

where the relation ~ may be any combination of equal to, less than or equal to, greater than
or equal to, or range constraints. Asin other problem formulations, | indicates lower and u
upper bounds. Q isamatrix of obj ectlvefunctlon coefficients. That is, the elements Q;; are
the coefficients of the quadratic terms xJ and the elements Q;; and Q;; are summed together
to be the coefficient of the term x;x;.

ILOG CPLEX distinguishes two kinds of Q matrices:
[1n a separable problem, only the diagonal terms of the matrix are defined.
[1n a nonseparable problem, at least one off-diagonal term of the matrix is nonzero.

ILOG CPLEX can solve minimization problems having a convex quadratic objective
function. Equivalently, it can solve maximization problems having a concave quadratic
objective function. All linear objective functions satisfy this property for both minimization
and maximization. However, you cannot always assume this property in the case of a
quadratic objective function. Intuitively, recall that any point on the line between two
arbitrary points of a convex function will be above that function. In more formal terms, a
continuous segment (that is, a straight line) connecting two arbitrary points on the graph of
the objective function will not go below the objective in aminimization, and equivalently,
the straight line will not go above the objectivein amaximization. Figure 11.1 illustrates this
intuitive ideafor an objective function in one variable. It is possible for a quadratic function
in more than one variable to be neither convex nor concave.

| -

Figure11.1 Minimize a Convex Objective Function, Maximize a Concave Objective Function

Informal terms, the question of whether a quadratic objective function is convex or concave
is equivalent to whether the matrix Q is positive semi-definite or negative semi-definite. For

214 ILOG CPLEX 10.0 — USER’'S MANUAL

convex QPs, Q must be positive semi-definite; that is, X' Qx > 0 for every vector X, whether
or not X isfeasible. For concave maximization problems, the requirement isthat Q must be
negative semi-definite; that is, x'Qx < 0 for every vector x. It is conventional to usethe same
term, positive semi-definite, abbreviated PSD, for both cases, on the assumption that a
maximization problem with a negative semi-definite Q can be transformed into an
equivalent PSD.

For aseparable function, it is sufficient to check whether the individual diagonal elements of
the matrix Q are of the correct sign. For a nonseparable case, it may be less easy to
determine in advance the convexity of Q. However, ILOG CPLEX determines this property
during the early stages of optimization and terminatesif the quadratic objectivetermina QP
isfound to be not PSD.

For a more complete explanation of quadratic programming generally, atext, such as one of
those listed in Further Reading on page 35 of the preface of this manual, will be helpful.

Entering QPs

ILOG CPLEX supports two views of quadratic objective functions: a matrix view and an
algebraic view.

[Matrix View on page 215

[—Algebraic View on page 216

[Examples for Entering QPs on page 216
[Reformulating QPs to Save Memory on page 217

Matrix View

In the matrix view, commonly found in textbook presentations of QP, the objective function
is defined as 1/2 x'Qx + ¢"x, where Q must be symmetric and positive semi-definite for a
minimization problem, or negative semi-definite for a maximization problem. Thisview is
supported by the MPS file format and the Callable Library routines, where the quadratic
objective function information is specified by providing the matrix Q. Thus, by definition,
the factor of 1/2 must be considered when entering a model using the matrix view, asit will
be implicitly assumed by the optimization routines.

Similarly, symmetry of the Q matrix datais required; the MPS reader will return an error
status code if the file contains unequal off-diagonal components, such as anonzero value for
one and zero (or omitted) for the other.

This symmetry restriction applies to quadratic programming input formats rather than the
quadratic programming problem itself. For models with an asymmetric Q matrix, either
express the quadratic terms algebraically, as described in Algebraic View on page 216, or

ILOG CPLEX 10.0 — USER’'S MANUAL 215

216

provide asinput (Q + Q')/2 instead of Q. Thislatter approach relies on the identity
Q=(Q+ Q)2+ (Q-Q")/2 combined with the fact that (Q - Q')/2 contributes O (zero) to
the quadratic objective.

Algebraic View

In the algebraic view, a quadratic objective function is specified as an expressions of the
form:

cl*xl + ... + cn*xn + gll*x1*x1l + gl2*xX1*X2 + ... + gnn*xn*xn.

Thisview is supported by the LP format, when entering quadratic objective functionsin the
Interactive Optimizer, and by Concert Technology. Again, a quadratic objective function
must be convex in the case of a minimization problem, or concave in the case of a
maximization problem. When entering a quadratic objective with the algebraic view, neither
symmetry considerations nor any implicit factors need to be considered, and indeed
attempting to specify both of the off-diagonal elements for one of the quadratic terms may
result in double the intended value of the coefficient.

Examples for Entering QPs
ILOG CPLEX LP format requires the factor of 1/2 to be explicitly specified in thefile.

Minimize
obj: [100 x1 "2 - 200 x1 * x2 + 100 x2 "2] / 2

mps format for this same objective function would contain the following.

QMATRIX
x1 x1 100
x1 x2 -100
x2 x1 -100
x2 x2 100

A C++ Concert program having such an objective function might include the following.

100*x[1] *x[1]

model .add (IloMinimize(env, 0.5 * (100*x[0]*x[0] +
200*x[0] *x[1]))

)i

Or since the algebraic view is supported, the factor of one-half could be simplified asin the
following equivalent expression:
model.add (IloMinimize (env, (50*x[0]*x[0] +

50*x[1]*x[1] -
100*x[0]*x[1]1)));

ILOG CPLEX 10.0 — UsSER’'S MANUAL

A similar Java program using Concert might expressit thisway:

IloNumExpr x00 model.prod (100, x[0], x[0])
IloNumExpr x11 model.prod (100, x[1], x[1])
IloNumExpr x01 model.prod(-200, x[0], x[1]
I1oNumExpr Q model.prod (0.5, model.sum(x
model .add (model .minimize (Q)) ;

7

7

)
00, x11, x01));

Again, the user could choose to simplify the above expression algebraically if that suits the
purposes of the application better.

Finally, a Callable Library application in C might construct the quadratic objective function
inaway similar to the following:

zgmatind [0] = O; zgmatind [2] = O;
zgmatval [0] = 100.0; zgmatval[2] = -100.0;
zgmatind[1] = 1; zgmatind [3] = 1;
zgmatval [1] =-100.0; zgmatvall[3] = 100.0;

To re-emphasize the point about the factor of 1/2 in any of these methods: if that objective
function isevaluated with asolutionof x1 = 1.000000andx2 = 3.000000, theresult to
be expected is 200, not 400.

Reformulating QPs to Save Memory

When the Q matrix is very dense or extremely large in dimension, excessive memory may
be needed to solve the problem as conventionally formulated. However, you may be able to
use an alternative formulation to avoid such bottlenecks. Specifically, if you can express Q
asFF’, (where F is another matrix, not necessarily square, having fewer nonzeros than Q,
and F’ isitstranspose) then you can reformulate the QP like this:

min ¢'x + y'y

Ax ~b

y - Fx =0

1l <=x <=1u

y free

In the reformulation, y is a vector of free variables, one variable for each column of F.

Portfolio optimization modelsin particular can benefit from this reformulation. In the most
common portfolio models, Q isacovariance matrix of asset returns, while F isthe matrix of
the deviations of the asset returns from their mean used to compute the covariances. In that
reformulation, the number of columns of F corresponds to the number of time periods for
which returns are measured.

In general, while the number of rowsin F must match the dimension of the square matrix Q,
the number of columns of F can be fewer. So, evenif Q isdenseand F isalso dense, you still
may reduce the memory requirements to solve the model if F has more rows than columns.

Furthermore, if F is a sparser matrix than Q, this alternative formulation may improve
performance even if F has more columns than Q.

ILOG CPLEX 10.0 — USER’'S MANUAL 217

Saving QP Problems

After you enter a QP problem, whether interactively or by reading a formatted file, you can
then save the problem in aformatted file. The formats available to you are LP, MPS, and
SAV. When you save a QP problem in one of these formats, the quadratic information will
also be recorded in the formatted file.

Changing Problem Type in QPs

218

Concert Technology (that is, applications written in the C++, Java, or .NET API of

ILOG CPLEX) treats all models as capable of containing quadratic coefficientsin the
objective function. These coefficients can therefore be added or deleted at will. When
extracting amodel with a quadratic objective function, 11oCplex will automatically detect
it as a QP and make the required adjustments to data structures.

However, the other ways of using ILOG CPLEX (the Callable Library and the Interactive
Optimizer) require an explicit problem type to distinguish Linear Programs (L Ps) from QPs.
The following sections discuss the topic for these users.

When you enter a problem, ILOG CPLEX determines the problem type from the available
information. When read from afile (LP, MPS, or SAV format, for example), or entered
interactively, a continuous optimization problem is usually treated as being of type gp if
quadratic coefficients are present in the objective function and no quadratic terms are
present among the constraints. (Quadratic terms among the constraints may make a problem
of type QCP. For more about that type, see Solving Problems with Quadratic Constraints
(QCP) on page 225.) Otherwise, the problem typeisusually 1p. The issue of problem types
that support integer restrictionsin conjunction with quadratic variables is discussed in
Chapter 13, Solving Mixed Integer Programming Problems (MIP).

If you enter a problem that lacks any quadratic coefficients, its Problem Typeisinitialy 1p.
If you then wish to modify the problem to contain quadratic coefficients in the objective
function, you do this by first changing the Problem Typeto gp. Conversely, if you have
entered a QP model and wish to remove all the quadratic coefficients from the objective
function and thus convert the model to an LP, you can change the Problem Typeto 1p. Note
that deleting each of the quadratic coefficientsindividually still leaves the Problem Type as
ap, athough in most instances the distinction between this problem and its 1p or gqp
counterpart is somewhat arbitrary in terms of the steps to solve it.

When using the I nteractive Optimizer, you use the command change problem with one of
the following options:

[1p indicates that you want ILOG CPLEX to treat the problem asan LP. Thischangein
Problem Type removes from your problem all the quadratic information, if thereis any
present.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

[dp indicates that you want ILOG CPLEX to treat the problem as a QP. This changein
Problem Type creates in your problem an empty quadratic matrix, if thereis not one
already present, for the objective function, ready for populating viathe change gpterm
command.

From the Callable Library, use the routine cpxchgprobtype to change the Problem Typeto
either cpxPROB_LP Or cPXPROB_QP for the LP and QP case, respectively, for the same

pUrpOSes.

Changing Quadratic Terms

ILOG CPLEX distinguishes between a quadratic algebraic term and a quadratic matrix
coefficient. The quadratic algebraic terms are the coefficients that appear in the algebraic
expression defined as part of the ILOG CPLEX LP format. The quadratic matrix coefficients
appear in Q. The quadratic coefficient of an off-diagonal term must be distributed within the
Q matrix, and it is always one-half the value of the quadratic algebraic term.

To clarify that terminology, consider this example:

Minimizea+ b + 1/2(a2 + 4ab + 7b?)

subjecttoa+ b> 10

with these boundsa=0and b >0

The off-diagonal quadratic algebraic termin that example is 4, so the quadratic matrix Q is

=

[1n a QP, you can change the quadratic matrix coefficientsin the Interactive Optimizer by
using the command change gpterm.

_#rom the Callable Library, use the routine cPxchggpcoef to change quadratic matrix
coefficients.

[_Concert Technology does not support direct editing of expressions other than linear
expressions. Consequently, to change a quadratic objective function, you need to create
an expression with the modified quadratic objective and use the set Expr method of
IloObjective toinstal it.

Changing an off-diagonal element changes the corresponding symmetric element aswell. In

other words, if acall to cPxchggpcoef changes Qj to avalue, it also changes Qi to that

same value.

ILOG CPLEX 10.0 — USER’'S MANUAL 219

To change the off-diagonal quadratic term from 4 to 6, use this sequence of commandsin the
Interactive Optimizer:

CPLEX> change gpterm

Change which quadratic term ['variable' 'variable'l: a b

Present quadratic term of variable 'a', variable 'b' is 4.000000.
Change quadratic term of variable 'a', variable 'b' to what: 6.0
Quadratic term of variable 'a', variable 'b' changed to 6.000000.

From the Callable Library, the cPxchggpcoef cal to change the off-diagonal term from 4
to 6 would change both of the off-diagonal matrix coefficientsfrom 2 to 3. Thus, the indices
would be 0 and 1, and the new matrix coefficient value would be 3.

If you have entered alinear problem without any quadratic terms, and you want to create
quadratic terms, you must first change the problem type to QP. To do so, use the command
change problem gp. Thiscommand will create an empty quadratic matrix with Q = 0.

When you change quadratic terms, there are still restrictions on the properties of the Q
matrix. In aminimization problem, it must be convex, positive semi-definite. In a
maximization problem, it must be concave, negative semi-definite. For example, if you
change the sense of an objective function in aconvex Q matrix from minimization to
maximization, you will thus make the problem unsolvable. Likewise, in aconvex Q matrix,
if you make a diagonal term negative, you will thus make the problem unsolvable.

Optimizing QPs

220

ILOG CPLEX alowsyou to solve your QP modelsthrough asimpleinterface, by caling the
default optimizer as follows:

. Inthe Interactive Optimizer, use the command opt imize.
. Fromthe Callable Library, use the routine cPxgpopt.

« In Concert applications, use the solve method of 11oCplex.

With default settings, thiswill result in the barrier optimizer being called to solve a
continuous QP.

For users who wish to tune the performance of their applications, there are two Simplex
optimizersto try for solving QPs. They are Dual Simplex and Primal Simplex. You can also
use the Network Simplex optimizer; this solves the model as an LP network (temporarily
ignoring the quadratic term in the objective function) and takes this solution as a starting
point for the Primal Simplex QP optimizer. This choice of QP optimizer is controlled by the

ILOG CPLEX 10.0 — UsSER’'S MANUAL

RootAlg parameter (QPMETHOD in the Interactive Optimizer and in the Callable Library).
Table 11.1 shows you the possible settings.

Table 11.1 RootAlg Parameter Settings

R\(;:m;g Optimizer

0 Automatic (default)
1 Primal Simplex

2 Dual Simplex

3 Network Simplex
4 Barrier

5 Sifting

6 Concurrent

Many of the optimizer tuning decisions for LP apply in the QP case; and parameters that
control Barrier and Simplex optimizersin the LP case can be set for the QP case, although in
some instances to differing effect. Most models are solved fastest by default parameter
settings. See the LP chapter for tuning advice.

Just asfor the LP case, each of the available QP optimizers automatically preprocesses your
model, conducting presolution problem analysis and reductions appropriate for a QP.

The Barrier optimizer for QP supports crossover, but unlike other LP optimizers, its
crossover step is off by default for QPs. The QP Simplex optimizers return basic solutions,
and these bases can be used for purposes of restarting sequences of optimizations, for
example. Asaresult, application writers who wish to allow end users control over the choice
of QP optimizer need to be aware of this fundamental difference and to program carefully.
For most purposes, the nonbasic barrier solution is entirely satisfactory, in that all such
solutions fully satisfy the standard optimality and feasibility conditions of optimization
theory.

Diagnosing QP Infeasibility
Diagnosis of an infeasible QP problem can be carried out by the conflict refiner. See
Diagnosing Infeasibility by Refining Conflicts on page 347.

Notethat it is possible for the outcome of that analysis to be a confirmation that your model
(viewed as an LP) isfeasible after al. Thisistypically a symptom that your QP model is
numerically unstable, or ill-conditioned. Unlike the simplex optimizers for LP, the QP

ILOG CPLEX 10.0 — USER’'S MANUAL 221

optimizers are primal-dual in nature, and one result of that is the scaling of the objective
function interacts directly with the scaling of the constraints.

Just as our recommendation regarding numeric difficulties on LP models (see Numeric
Difficulties on page 170) isfor coefficientsin the constraint matrix not to vary by more than
about six orders of magnitude, for QP this recommendation expands to include the quadratic
elements of the objective function coefficients as well. Fortunately, in most instancesit is
straightforward to scale your objective function, by multiplying or dividing al the
coefficients (linear and quadratic) by a constant factor, which changes the unit of
measurement for the objective but does not alter the meaning of the variables or the sense of
the problem as awhole. If your objective function itself contains awide variation of
coefficient magnitudes, you may also want to consider scaling the individual columnsto
achieve a closer range.

Example: Creating a QP, Optimizing, Finding a Solution

222

This example shows you how to build and solve a QP. The problem being created and solved
is:

Maximize
X1 + 2X, + 3x3 - 05 (33x12 + 22x22 + 11x32 - 12xyXo - 23XoX3)

subject to
-X1 + X + X3 < 20
X1 - 3x, + X3 < 30

with these bounds

0 < X1 < 40
0 < X < +oo
0 < X3 < +oo

Example: ilogpexl.cpp

This exampleisamost identical to i1olpex1 . cpp with only function populatebyrow to
create the model. Also, this function differs only in the creation of the objective from its
ilolpex1.cpp counterpart. Here the objective function is created and added to the model
likethis:

model .add (IloMaximize (env, x[0] + 2 * x[1] + 3 * x[2]
- 0.5 * (33*x[0]*x[0] + 22*x[1]*x[1] +
]

1*x[2] *x[2]
- 12*x[0]*x[1] - 23*x[1 [2]

21))

1
*x

In general, any expression built of basic operations +, -, *, / constant, and brackets [] that
amounts to a quadratic and optional linear term can be used for building QP objective

ILOG CPLEX 10.0 — UsSER’'S MANUAL

function. Note that, if the expressions of the objective or any constraint of the model
contains I1oPiecewiseLinear, then when a quadratic objective is specified the model
becomes an MIQP problem. (Piecewise-linearity is not the only characteristic that rendersa
model MIQP. See also, for example, the featuresin Logical Constraintsin Optimization on
page 305, where automatic transformation with logical constraints can render a problem
MIQP)

The complete program ilogpex1 . cpp appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

Example: QPex1.java

This exampleis amost identical to Lrex1 . java using only the function populatebyrow
to create the model. Also, this function differs only in the creation of the objective from its
LPex1.java counterpart. Here the objective function is created and added to the model like
this:

// Q = 0.5 (33*x0*x0 + 22*x1*x1l + 11*x2*x2 - 12*x0*x1 - 23*x1*x2)
IloNumExpr x00 model.prod(33, x[0], x[0]);
IloNumExpr x11 model .prod(22, x[1], x[1]);
I1oNumExXpr x22 model.prod(11, x[2], x[2]);
IloNumExpr x01 model.prod(-12, x[0], xI[1]);
I1oNumExpr x12 model.prod(-23, x[1], x[2]);
I1oNumExpr Q model.prod (0.5, model.sum(x00, x11, x22, x01, x12));

double[] objvals = {1.0, 2.0, 3.0};
model .add (model.maximize (model.diff (model.scalProd(x, objvals), Q)));

A quadratic objective may be built with square, prod or sum methods. Note that inclusion
of I1oPiecewiseLinear will change the model from a QP to aMIQP.

Example: gpexl.c

This example shows you how to optimize a QP with routines from the ILOG CPLEX
Callable Library when the problem datais stored in afile. The example derives from
1pex1.c discussed in ILOG CPLEX Getting Sarted. The Concert forms of this example,
ilogpex1.cpp and Qpex1 . java, areincluded online in the standard distribution.

Instead of calling cpx1popt to find a solution as for the linear programming problemin
lpex1.c, thisexample calls cpxgpopt to optimize this quadratic programming problem.

Like other applications based on the ILOG CPLEX Callable Library, this one begins with
callsto cPxopencPLEX to initialize the ILOG CPLEX environment and to
CPXcreateprob to create the problem object. Before it ends, it frees the problem object
with a call to cpxfreeprob, and it frees the environment with a call to cPxcloseCPLEX.

Intheroutine setproblemdata, there are parameters for gmatbeg, gmatcnt, gmatind,
and gmatval tofill the quadratic coefficient matrix. The Callable Library routine

ILOG CPLEX 10.0 — USER’'S MANUAL 223

CPxcopyquad copies this datainto the problem object created by the Callable Library
routine CPXcreateprob.

In this example, the problem is a maximization, so the objective sense is specified as
CPX_MAX.

The off-diagonal termsin the matrix Q are one-half the value of the terms Xy x,, and xoX3 as
they appear in the algebraic form of the example.

Instead of calling cpx1popt to find a solution as for the linear programming problemin
lpex1.c, thisexample calls cPxgpopt to optimize this quadratic programming problem.

Example: Reading a QP from a File gpex2.c

224

This example shows you how to optimize a QP with routines from the ILOG CPLEX
Callable Library when the problem datais stored in afile. The example derives from
1pex2.c discussed in ILOG CPLEX Getting Sarted. The Concert forms of this example,
ilogpex2 .cpp and Qpex2 . java, areincluded online in the standard distribution.

Instead of calling cpx1popt to find asolution as for the linear programming problem in
lpeg2.c, thisexample calls cpxgpopt to optimize this quadratic programming problem.

Like other applications based on the ILOG CPLEX Callable Library, this one begins with
callsto cPXopenCcPLEX to initialize the ILOG CPLEX environment and to
CPXcreateprob to create the problem object. Before it ends, it frees the problem object
with acall to cpxfreeprob, and it frees the environment with acall to cPXcloseCPLEX.

The complete program, gpex2 . ¢, appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

12

Solving Problems with Quadratic
Constraints (QCP)

This chapter tells you how to solve quadratically constrained programming problems
(QCPs), including the special case of second order cone programming (SOCP) problems.
This chapter contains sections aboult:

[Identifying a Quadratically Constrained Program (QCP) on page 225;
[_Determining Problem Type on page 229;

[_Changing Problem Type on page 235

[Changing Quadratic Constraints on page 236;

—Jolving with Quadratic Constraints on page 236;

[Numeric Difficulties and Quadratic Constraints on page 237.

Identifying a Quadratically Constrained Program (QCP)

The distinguishing characteristic of QCP is that quadratic terms may appear in one or more
constraints of the problem. The objective function of such aproblem may or may not contain
quadratic terms as well. Thus, the most general formulation of aQCPis:

Minimize Y,x"Qx+ c'x

ILOG CPLEX 10.0 — USER’'S MANUAL 225

226

subjectto Ax~b

and a'x+x'Qx<r fori=l,...q

with these bounds| < x<u

Aswith aquadratic objective function, convexity plays an important role in quadratic
congtraints. The constraints must each define a convex region. To make sure of convexity,
ILOG CPLEX reguiresthat each Q; matrix be positive semi-definite (PSD) or that the

constraint must be in the form of a second order cone. The following sections offer more
information about these concepts.

Convexity

Theinequality x? + y? < 1 is convex. To give you an intuitive idea about convexity,
Figure 12.1 graphs that inequality and shades the area that it defines as a constraint. If you
consider a and b as arbitrary values in the domain of the constraint, you see that any
continuous line segment between them is contained entirely in the domain.

y

Figure12.1 X2 + yzs 1isconvex

Theinequality X2 + y? > 1 is not convex; it is concave. Figure 12.2 graphs that inequality
and shades the area that it defines as a constraint. If you consider ¢ and d as arbitrary values
in the domain of this constraint, then you see that there may be continuous line segments that
join the two values in the domain but pass outside the domain of the constraint to do so.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Figure12.2 X+ y2 > 1 isnot convex

It might be less obvious at first glance that the equality X + y? = 1 is not convex either. As
you seein Figure 12.3, there may be a continuous line segment that joins two arbitrary
points, such as e and f, in the domain but the line segment may pass outside the domain.
Another way to seethisideaisto note that an equality constraint is algebraically equivalent
to the intersection of two inequality constraints of opposite sense, and you have already seen
that at least one of those quadratic inequalities will not be convex. Thus, the equality is not
convex either.

ILOG CPLEX 10.0 — USER’'S MANUAL 227

228

- (-1,0) / @wo =

Figure12.3 X2+ y2: 1isnot convex

Semi-definiteness

I dentifying a Quadratically Constrained Program (QCP) on page 225 explained that the
quadratic matrix in each constraint must be positive semi-definite (PSD), thus providing
convexity. A matrix Q; is PSD if xTQix > 0 for every vector x, whether or not x isfeasible.
Other issues pertaining to positive semi-definiteness are discussed in the context of a
quadratic objective function in Identifying Convex QPs on page 214.

When you call the barrier optimizer, your quadratic constraints will be checked for the
necessary PSD property, and an error status 5002 will be returned if any of them violateiit.

Second Order Cone Programming (SOCP)

There is one exception to the PSD requirement; that is, thereis an additional form of
quadratic constraint which is accepted but is not covered by the general formulation in
Identifying a Quadratically Constrained Program (QCP) on page 225. Technically, the
quadratically constrained problem class that the barrier optimizer solvesis a Second-Order
Cone Program (SOCP). ILOG CPLEX, through its preprocessing feature, makes the
translation to SOCP for you, transparently, returning the solution in terms of your original
formulation. A constraint will be accepted for solution by the barrier optimizer if it can be
transformed to the following convex second-order cone constraint:

2 2
—CoXy+ > CiX? <0
That formulation is distinguished primarily by the specific signs of the coefficients ¢ and by
the lack of alinear term, where g is a nonnegative variable

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Determining Problem Type

ILOG CPLEX determines the type of your QCP model according to various criteria.

Concert Technology and QCP Problem Type

Concert Technology treats all models as capable of containing quadratic constraints. In other
words, applications written in Concert Technology are capable of handling quadratic
constraints. These constraints can be added or deleted at will in your application. When
extracting amodel with a quadratic constraint, I1oCplex will automatically detect it asa
QCP and make the required adjustments to its internal data structures.

Callable Library and QCP Problem Type

When routines of the Callable Library read a problem from afile, they are capable of
detecting quadratic constraints. If they detect a quadratic constraint in the model they read,
Callable Library routines will automatically set the problem type as QCP If there are no
quadratic constraints, then Callable Library routines consider whether there are any
quadratic coefficientsin the objective function. If there is a quadratic term in the objective
function, then Callable Library routines automatically set the problem type as QP, as
explained in Changing Problem Type in QPs on page 218.

Interactive Optimizer and QCP Problem Type

In the Interactive Optimizer, a problem containing a quadratic constraint, as denoted by
sguare brackets, is automatically identified as QCP when the problem is read from afile or
entered interactively.

File Formats and QCP Problem Type

ILOG CPLEX supportsthe definition of quadratic constraintsin SAV fileswith the .sav file
extension, in LP files with the .1p file extension, and in MPS files with the . mps file
extension. In LP files, you can state your quadratic constraints in the subject to section of
the file. For more detail about representing QPC modelsin MPS file format, see the

ILOG CPLEX File Format Reference Manual, especially the section Quadratically
Constrained Programs (QCP) in MPS Files on page 27. Here isasample of afile including
quadratic constraintsin MPS format.

ILOG CPLEX 10.0 — USER’'S MANUAL 229

NAME /ilog/models/migcp/all/p0033_gcl.lp.gz
ROWS

R100
R118
R119
R120
R121
R122
R123
R124
R125
R126
R127
R128
ZBESTROW
QC1

Qc2

QC3

Qc4

[e e o o o Y o o o e e e e

230 ILOG CPLEX 10.0 — USER’'S MANUAL

COLUMNS
MARKO0000
C157
C157
C157
C158
Cl58
C1l58
Cl1l59
C159
Cl159
C159
Cl159
Cle60
Cle0
Cl60
Cle0
Clel
Clel
Clel
Clel
Clel
Cle2
Cle2
Cle2
Cle2
Cle2
Cl63
Cleé3
Cle4
Cle4
Cle4
Cle4
Cle4
Cleé5
Cl65
Cleé5
Cl65
Cleé5
Clee6
Clee6

ILOG CPLEX 10.0

'MARKER'

R100
R122
R123
R100
R126
R127
R100
R119
R120
R123
oc1

R100
R119
R120
R121
R100
R119
R120
R124
R125
R100
R119
R120
R122
R123
R100
R128
R100
R119
R120
R124
R125
R100
R119
R120
R122
R123
R100
R118

' INTORG'
171
-300
-300
171
-300
-300
171
300
-300
-300
1
171
300
-300
-300
163
285
-285
-285
-285
162
285
-285
-285
-285
163
-285
69
265
-265
-265
-265
69
265
-265
-265
-265
183
-230

USER'S MANUAL

231

232

Cle7
Cle7
Cle7
Cles8
Cles
Cles8
Cles
Cl69
Cle9
Cl69
Cle9
C170
C170
C170
C170
C170
C171
C172
c172
C173
C173
Cl74
Cl174
Cl74
Cl175
C175
Cl175
Cl76
Cl76
Cc177
Cc177
Cc178
C178
Cc178
C178
Cc178
C179
C179
C179
C179
C179

ILOG CPLEX 10.0

R100
R124
R125
R100
R119
R120
R125
R100
R119
R120
R123
R100
R119
R120
R122
R123
R100
R100
R118
R100
R118
R100
R126
R127
R100
R126
R127
R100
R127
R100
R127
R100
R119
R120
R124
R125
R100
R119
R120
R124
R125

183
-230
-230

183

230
-230
-230

183

230
-230
-230

49

190
-190
-190
-190

183

258
-200

517
-400

250
-200
-200

500
-400
-400

250
-200

500
-400

159

200
-200
-200
-200

318

400
-400
-400
-400

USER'S MANUAL

C180
C180
C180
C180
cls81
c181
cl81
c1s81
cl182
c182
cl182
c182
c182
C183
C183
C183
C183
C183
Cl84
Cl84
Cl84
Cl84
C185
C185
C185
C185
Cl86
Cl86
Cl86
Cl86
c187
c187
c187
c187
cl188
c188
C189
Cc189
MARK0001

ILOG CPLEX 10.0

R100
R119
R120
R125
R100
R119
R120
R125
R100
R119
R120
R122
R123
R100
R119
R120
R122
R123
R100
R119
R120
R123
R100
R119
R120
R123
R100
R119
R120
R121
R100
R119
R120
R121
R100
R128
R100
R128

'MARKER'

159
200
-200
-200
318
400
-400
-400
159
200
-200
-200
-200
318
400
-400
-400
-400
159
200
-200
-200
318
400
-400
-400
114
200
-200
-200
228
400
-400
-400
159
-200
318
-400
'INTEND'

USER'S MANUAL

233

234

RHS

rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs

BOUNDS

UP
UP
UP
UP
UP
Up
UP
UP
UP
Up
UP
Up
UP
UPp
UP
Up
UP
Up
UP
UPp
UP
UP
UP
UpP
UP
UpP
UP
UP
UP
UP
UP
UP
UP

bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd

ILOG CPLEX 10.0

R118
R119
R120
R121
R122
R123
R124
R125
R126
R127
R128
oc1

Qc2

folek!

Qc4

C157
C158
C159
Cle0
Clel
Cle2
Cl63
Cle4
Cl65
Cleeé
Cle7
Cles
Cl69
C170
C1l71
C172
C173
Cl74
C175
C1l76
C177
C178
C179
C180
c181l
c182
C183
Cl84
C185
c186
c187
c188
C189

-5
2700
-2600
-100
-900
-1656
-335
-1026
-5
-500
-270

B RN

HFRPRPRPRRERRRPRPRPRERRPRPRERRRERRPRPRPRRERRERRPRERPRRERPRRBRPR

USER'S MANUAL

QMATRIX

C1s8 C158 1
ci1s8 c189 0.5
189 C158 0.5
c189 c189 1

QCMATRIX QC1
C157 C157 1
157 C158 0.5
c1s58 C157 0.5
C1s58 C158 1
C159 C159 1
C160 C160 1

QCMATRIX QC2
c161 c161 2
Cc162 Cc162 2
C163 C163 1

QCMATRIX QC3
Ccl64 Cc164 1
C165 C165 1

QCMATRIX QC4
Cl166 C166 1
167 C167 1
c168 C168 1
169 C169 1
Cc171 c171 1

ENDATA

Changing Problem Type

By default, every model in Concert Technology isthe most general problem type possible.
Consequently, it isnot necessary to declare the problem type nor to change the problem type,
even if you add quadratic constraints to the model or remove them from it. In contrast, both
the Callable Library and the Interactive Optimizer need for you to indicate a change in
problem type explicitly if you remove the quadratic constraints that make your model a
QCP.

In both the Callable Library and Interactive Optimizer, if you want to remove the quadratic
congtraints in order to solve the problem as an LP or a QP, then you must first change the
problem type, just as you would, for example, if you removed the quadratic coefficients
from a quadratic objective function.

From the Callable Library, use the routine cpxchgprobtype to change the problem typeto
CPxXPROB_LP if you remove the quadratic constraints from your model in order to solveit as
an LP. Contrariwise, if you want to add quadratic constraints to an LP or a QP model and
then solve it as a QCP, use the routine cPxchgprobtype to change the problem type to
CPXPROB_QCP.

When using the Interactive Optimizer, you apply the command change problem with one
of the following options:

ILOG CPLEX 10.0 — USER’'S MANUAL 235

[p indicates that you want ILOG CPLEX to treat the problem asan LP. Thischangein
the problem type removes all the quadratic information from your problem, if thereis
any present.

[dp indicates that you want ILOG CPLEX to treat the problem as a QP (that is, aproblem
with a quadratic objective). This choice removes the quadratic constraints, if there were
any in the model.

[dcp indicates that you want ILOG CPLEX to treat the problem as a QCP.

Changing Quadratic Constraints

To modify a quadratic constraint in your model, you must first delete the old quadratic
constraint and then add the new one.

In Concert Technology, you add constraints (whether or not they are quadratic) by means of
the method add of the class 11oModel, as explained about C++ applicationsin Adding
Constraints: lloConstraint and IloRange on page 44 and about Java applicationsin The
Active Model on page 74. To add constraintsto a model in the .NET framework, see ILOG
Concert Technology for .NET Users on page 93.

Also in Concert Technology, you can remove constraints (again, whether or not they are
quadratic) by means of the method remove of the class 11oMode1, as explained about C++
applications in Deleting and Removing Modeling Objects on page 57 and about Java
applications in Modifying the Model on page 90.

The Callable Library has a separate set of routines for creating and modifying quadratic
constraints; do not use the routines that create or modify linear constraints.

In the Callable Library, you add a quadratic constraint by means of the routine
cpxaddgconstr. You remove and delete quadratic constraints by means of the routine
cpxdelgconstr. Don't forget to change the problem type, as explained in Changing
Problem Type on page 235. If you want to change a quadratic constraint, first delete it by
calling cpxdelgconstrs and then add the new constraint using cpxaddgconstr.

In the Interactive Optimizer, if you want to change a quadratic constraint, you must delete
the constraint (change delete gconstraints) and add the new constraint. Again, you
must change the problem type, as explained in Changing Problem Type on page 235.

Solving with Quadratic Constraints

ILOG CPLEX allows you to solve your QCP models (that is, problems with quadratic
constraints) through a simpleinterface, by calling the default optimizer.

[1n Concert applications, use the solve method of I1oCplex.

236 ILOG CPLEX 10.0 — USER’'S MANUAL

_#rom the Callable Library, use the routine cPxbaropt.
[1In the Interactive Optimizer, use the command optimize.

With default settings, each of these approaches will result in the barrier optimizer being
called to solve a continuous QCP.

The barrier optimizer isthe only optimizer available to solve QCPs.

Numeric Difficulties and Quadratic Constraints
A word of warning: numeric difficulties are likely to be more acute for QCP than for LP or
QP. Symptoms include:
[Tck of convergence to an optimal solution;
[iolation of constraints.

Consequently, you will need to scale your variables carefully so that units of measure are
roughly comparable among them.

Examples: QCP

For examples of QCPs, see these variations of the same problem in
yourCPLEXhome/examples/src:

[dcpexl.c
[dlogcpexl.cpp
[QdCcpPexl.java
[QdCPexl.cs

ILOG CPLEX 10.0 — USER’'S MANUAL 237

238 ILOG CPLEX 10.0 — USER’'S MANUAL

Part IV

Discrete Optimization

v objective

~ optimum of
,_‘::w\:;:"' LP relaxation

feasible

solutions = *

~__rounding dnwn\ﬁptimum
of LP relaxation

This part focuses on algorithmic considerations about the ILOG CPLEX optimizers that
solve problems formulated in terms of discrete variables, such as integer, Boolean,
piecewise-linear, or semi-continuous variables. While default settings of ILOG CPLEX
enable you to solve many problems without changing parameters, this part also documents
features that enable you to tune performance. This part contains:

[3olving Mixed Integer Programming Problems (MIP) on page 241

[Wsing Special Ordered Sets (SOS) on page 285

[Wsing Semi-Continuous Variables: a Rates Example on page 289

[Wsing Piecewise Linear Functions in Optimization: a Transport Example on page 293
[Logical Constraintsin Optimization on page 305

[Wsing Indicator Constraints on page 311

[Wsing Logical Constraints: Food Manufacture 2 on page 315

[Early Tardy Scheduling on page 323

[Wsing Column Generation: a Cutting Sock Example on page 329

13

Solving Mixed Integer Programming
Problems (MIP)

The ILOG CPLEX Mixed Integer Optimizer enables you to solve modelsin which one or
more variables must take integer solution values. This chapter tells you more about

optimizing mixed integer programming (MI1P) problems with ILOG CPLEX. It includes
information about:

[—%ating a MIP Problem on page 242

[Considering Preliminary Issues on page 243

[Wsing the Mixed Integer Optimizer on page 247

[Tuning Performance Features of the Mixed Integer Optimizer on page 250
[Wsing the MIP Solution on page 266

[—Progress Reports. Interpreting the Node Log on page 268
[_Troubleshooting MIP Performance Problems on page 272

[HExample: Optimizing a Basic MIP Problem on page 283

[HExample: Reading a MIP Problem from a File on page 283

ILOG CPLEX 10.0 — USER’'S MANUAL 241

Stating a MIP Problem

242

A mixed integer programming (MIP) problem may contain both integer and continuous
variables. If the problem contains an objective function with no quadratic term, (alinear
objective), then the problem istermed a Mixed Integer Linear Program (MILP). If thereisa
quadratic term in the objective function, the problem is termed a Mixed Integer Quadratic
Program (MIQP). If the model has any constraints containing a quadratic term, regardl ess of
the objective function, the problem is termed a Mixed Integer Quadratically Constrained
Program (MIQCP).

In ILOG CPLEX documentation, if the discussion pertains specifically to the MILP, MIQP,
or MIQCP case, then that term is used. For the majority of topics that pertain equally to
MILP, MIQP, and MIQCP, the comprehensive term MIP is used.

Integer variables may be restricted to the values 0 (zero) and 1 (one), in which case they are
referred to as binary variables. Or they may take on any integer values, in which case they
arereferred to as general integer variables. A variable of any MIP that may take either the
value 0 (zero) or avalue between alower and an upper bound is referred to as
semi-continuous. A semi-continuous variable that is restricted to integer valuesisreferred to
as semi-integer. Using Semi-Continuous Variables: a Rates Example on page 289 says a bit
more about semi-continuous variables later in this manual. Special Ordered Sets (SOS) are
discussed in Using Special Ordered Sets (SOS) on page 285. Continuous variablesin aMIP
problem are those which are not restricted in any of these ways, and are thus permitted to
take any solution value within their (possibly infinite) lower and upper bounds.

InILOG CPLEX documentation, the comprehensive term integer variable means any of the
various types just mentioned except for continuous or SOS. The presence or absence of a
quadratic term in the objective function or among the constraints for a given variable has no
bearing on its being classified as continuous or integer.

The following formulation illustrates a mixed integer programming problem, which is
solved in the example program ilomipex1.cpp / mipex1.c, discussed later in this
chapter:

Maximize X + 2% + X3 t+ X
subject to - X +t X + X3 + 10x4, < 20
X - Ao + X3 < 30
Xo - 35 = 0
with these bounds 0 < x < 40
0 £ X £ +e
0 £ X3 < +oo
2 < %X < 3
X4 integer
ILOG CPLEX 10.0 — USER’'S MANUAL

Considering Preliminary Issues

When you are optimizing aMIP, there are afew preliminary issuesthat you need to consider
to get the most out of ILOG CPLEX. The following sections cover such topics as entering
variable type, displaying MIPs in the Interactive Optimizer, determining the problem type,
and switching to the fixed form of your problem.

[HEntering MIP Problems on page 243

[Displaying MIP Problems on page 244

[Changing Problem Type in MIPs on page 245
[Changing Variable Type on page 246

Entering MIP Problems

You enter MIPsinto ILOG CPLEX as explained in each of the chapters about the APIs of
ILOG CPLEX, with this additional consideration: you need to indicate which variables are
binary, general integer, semi-continuous, and semi-integer, and which are contained in
special ordered sets (SOS).

Concert Technology users can specify thisinformation by passing the value of atype to the
appropriate constructor when creating the variable, as summarized in Table 13.1.

Table13.1 Specifying Type of Variablein a MIP

Type of Variable | C++ API Java API .NET API
binary IloNumVar: :Type: : ILOBOOL IloNumVarType.Bool |NumVarType.Bool
integer IloNumVar: :Type: : ILOINT IloNumVarType.Int NumVarType.Int

semi-continuous

IloSemiContVar: : Type: : ILONUM | IloNumVarType.Float | NumVarType.Float

semi-integer

IloSemiContVar: :Type: : ILOINT | IloNumVarType. Int NumVarType. Int

Callable Library users can specify this information through the routine cpXcopyctype.

In the Interactive Optimizer, to indicate binary integersin the context of the enter
command, typebinaries on aseparate line, followed by the designated binary variables.
To indicate general integers, type generals on aseparate line, followed by the designated
general variables. To indicate semi-continuous variables, type semi -cont inuous On a
separate line, followed by the designated variables. Semi-integer variables are indicated by
being specified as both general integer and semi-continuous. The order of these three

ILOG CPLEX 10.0 — USER’'S MANUAL 243

244

sections does not matter. To enter the general integer variable of the Sating a MIP Problem
on page 242, you type this:

generals
x4

You may also read MIP datain from aformatted file, just as you do for linear programming
problems. Understanding File Formats on page 138 in this manual lists the file formats
briefly, and the ILOG CPLEX Reference Manual documents file formats, such as MPS, LP,
and others.

[Toread MIP problem datainto the Interactive Optimizer, use the read command with an
option to indicate the file type.

[To read MIP problem data into your application, use the importModel method in
Concert Technology or use cPXxreadcopyprob in the Callable Library.

Displaying MIP Problems

Table 13.2 summarizes display optionsin the Interactive Optimizer that are specific to MIP
problems.

Table 13.2 Interactive Optimizer Display Options for MIP Problems

Interactive command Purpose
display problem binaries lists variables restricted to binary values
display problem generals lists variables restricted to integer values

display problem semi-continuous |lists variables of type semi-continuous and

semi-integer
display problem integers lists all of the above
display problem sos lists the names of variables in one or more

Special Ordered Sets

display problem stats lists LP statistics plus:

« binary variable types, if present;
« general variable types, if present;
« and number of SOS, if present.

In Concert Technology, use one of the accessors supplied with the appropriate object class,
such as110S0S2: :getVariables.

From the Callable Library, use the routines cpxgetctype and CPxgetsos to accessthis
information.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Changing Problem Type in MIPs

Concert Technology applications treat all models as capable of containing integer variables,
and thus these variable declarations may be added or deleted at will. When extracting a
model with integer variables, it will automatically detect it as a MIP and make the required
adjustments to interna data structures.

However, the other ways of using ILOG CPLEX, the Callable Library and the Interactive
Optimizer, require an explicit declaration of a Problem Type to distinguish continuous L Ps,
QPs, and QCPs from MIPs. Techniques to determine the Problem Type with the Callable
Library and the Interactive Optimizer are discussed in thistopic.

When you enter aproblem, ILOG CPLEX determines the Problem Type from the available
information. If the problem isread from afile (Lp, MPs, or sav format, for example), or
entered interactively, the Problem Type is determined according to Table 13.3.

Table 13.3 Problem Type Definitions

No Quadratic giZdratic Has
Problem No Integer Has Integer Terms in the . Quadratic
. . Lo Terms in the .
Type Variables Variables Objective L Terms in
. Objective .
Function . Constraints
Function
1p X X
ap X X
qcp X possibly X
milp X X
migp X X
migecp X possibly X

However, if you enter a problem with no integer variables, so that its Problem Typeis
initially 1p, gp, of gcp, and you then wish to modify the problem to contain integer
variables, thisis accomplished by first changing the Problem Typeto milpf, migp, Or
migcep. Conversely, if you have entered an MILP, MIQP, or MIQCP model and wish to
remove all the integer declarations and thus convert the model to a continuous formulation,
you can change the Problem Type to 1p, gp, or gcp. Note that deleting each of the integer
variable declarations individually still 1eaves the Problem Type asmilp, migp, Of migcp,
although in most instances the distinction between this problem and its continuous
counterpart is somewhat arbitrary in terms of the steps that will be taken to solveit.

Thus, when using the Interactive Optimizer, you use the command change problem with
one of the following options:

ILOG CPLEX 10.0 — USER’'S MANUAL 245

246

[dilp, migp,Or migcp

indicating that you want ILOG CPLEX to treat the problem asan MILP, MIQP, or
MIQCER, respectively. This change in Problem Type makes the model ready for
declaration of the integer variables via subsequent change type commands. If you
change the problem to be an MIQP and there are not already quadratic termsin the
objective function, an empty quadratic matrix is created, ready for populating viathe
change gpterm command.

[dp, gcp,0rgp

indicating that you want all integer declarations removed from the variables in the
problem. If you choose the gp problem type and there are not already quadratic termsin
the objective function, an empty quadratic matrix is created, ready for populating viathe
change gpterm command.

From the Callable Library, use the routine cpxchgprobtype to change the Problem Typeto
CPXPROB_MILP, CPXPROB MIQP, Of CPXPROB MIQCP for the MILP MIQP and MIQCP
case respectively, and then assign integer declarations to the variables through the
Ccpxcopyctype function. Conversely, remove al integer declarations from the problem by
using cPxchgprobtype With Problem Type CPXPROB LP, CPXPROB QP, Of
CPXPROB_QCP.

At the end of aMIP optimization, the optimal values for the variables are directly available.
However, you may wish to obtain information about the LP, QP, or QCP associated with this
optimal solution (for example, to know the reduced costs for the continuous variables of the
problem at this solution). To do this, you will want to change the problem to be of type
Fixed, either fixed milp forthe MILP caseor f£ixed migp for the MIQP case. Thefixed
MIP is the continuous problem in which the integer variables are fixed at the values they
attained in the best integer solution. After changing the problem type, you can then call any
of the continuous optimizers to re-optimize, and then display solution information for the
continuous form of the problem. If you then wish to change the problem type back to the
associated milp Or migp, you can do so without loss of information in the model.

Changing Variable Type

The command change type adds (or removes) the restriction on avariable that it must be
an integer. In the I nteractive Optimizer, when you enter the command change type, the
system prompts you to enter the variable that you want to change, and then it prompts you to
enter the type (c for continuous, b for binary, i for general integer, s for semi-continuous, n
for semi-integer).

You can change avariable to binary evenif its bounds are not 0 (zero) and 1 (one). However,
in such a case, the optimizer will change the bounds to be 0 and 1.

If you change the type of avariable to be semi-continuous or semi-integer, be sure to create
both alower bound and an upper bound for it. These variable types specify that at an optimal

ILOG CPLEX 10.0 — UsSER’'S MANUAL

solution the value for the variable must be either exactly zero or else be between the lower
and upper bounds (and further subject to the restriction that the value be an integer, in the
case of semi-integer variables).

A problem may be changed to amixed integer problem, even if al itsvariables are
continuous.

Note: Itisnot required to specify explicit bounds on general integer variables. However, if
during the branch and cut algorithm a variable exceeds 2,100,000,000 in magnitude of its
solution, an error termination will occur. In practice, it iswiseto limit integer variablesto
values far smaller than the stated limit, or numeric difficulties may occur; trying to enforce
the difference between 1,000,000 and 1,000,001 on a finite precision computer might work
but could be difficult due to roundoff.

Using the Mixed Integer Optimizer

The ILOG CPLEX Mixed Integer Optimizer solves MIP models using a very general and
robust branch & cut agorithm. While MIP models have the potential to be much more
difficult than their continuous LP, QCP, and QP counterparts, it is also the case that large
MIP models are routinely solved in many production applications. A great deal of
algorithmic development effort has been devoted to establishing default ILOG CPLEX
parameter settings that achieve good performance on awide variety of MIP models.
Therefore, it is recommended to try solving your model by first calling the Mixed Integer
Optimizer in its most straightforward form.

To invoke the Mixed Integer Optimizer, use one of these approaches:
[1In the Interactive Optimizer, use the mipopt command.
[1n Concert Technology, with the 11ocplex method solve.

[1In the Callable Library, use the cPxmipopt routine.

Emphasizing Feasibility and Optimality

The following section, Tuning Performance Features of the Mixed Integer Optimizer, goes
into great detail about the algorithmic features, controlled by parameter settings, that are
availablein ILOG CPLEX to achieve performance tuning on difficult MIP models.
However, thereis an important parameter, MIPEmphasis, that is oriented less toward the
user understanding the algorithm being used to solve the model, and more toward the user
telling the algorithm something about the underlying aim of the optimization being run. That
parameter is discussed here.

Optimizing a MIP model involves:

ILOG CPLEX 10.0 — USER’'S MANUAL 247

248

1. finding a succession of improving integer feasible solutions (solutions satisfying the
linear and quadratic constraints and the integrality conditions); while

2. aso working toward a proof that no better feasible solution exists and is undiscovered.

For most models, a balance between these two sometimes-competing aims works well, and
thisis another way of stating the philosophy behind the default MIPEmphasis setting: it
balances optimality and integer feasibility.

At thisdefault MIPEmphasis setting of 0 (that is, MIPEmphasisBalanced in Concert
Technology or cPx_MIPEMPHASIS BALANCED inthe CallableLibrary), ILOG CPLEX uses
tactics intended to find a proven optimal solution quickly, for models of a broad range of
difficulty. That is, considerable analysis of the model is performed before branching ever
begins, in the expectation that the investment will result in afaster total run time, yet not
every possible analysisis performed. And then branching is performed in a manner that
seeksto find good quality feasible solutions, without sacrificing too much timethat could be
spent proving the optimality of any solution that has already been found.

In many situations, the user will desire a greater emphasis on feasibility and less emphasis
on analysis and proof of optimality. For instance, arestrictive time limit (set by the user
using the TiLim parameter) may bein force due to areal-time application deployment,
where amodel is of sufficient difficulty that a proof of optimality is unlikely, and the user
wants to have simply as good a solution asis practicable when the time limit isreached. The
MIPEmphasis Setting of 1 (MIPEmphasisFeasibility in Concert Technology or, inthe
Calable Library, cPXx MIPEMPHASIS FEASIBILITY) directs|LOG CPLEX to adopt this
emphasis. Less computational effort is applied at the outset toward the analyses that aid in
the eventual proof of optimality, and more effort is spent in immediately beginning
computations that search for early (and then improved) feasible solutions. It islikely on
most models that an eventua proof of optimality would take longer by setting
MIPEmphasis t0 1, but since the user has given ILOG CPLEX the additional information
that this proof is of lessimportance than usual, the user's needs will actually be met more
effectively.

Another choicefor MIPEmphasis iS2 (MIPEmphasisOptimality in Concert Technology
or, inthe Callable Library, cPXx_MIPEMPHASIS OPTIMALITY), Which resultsin agreater
emphasis on optimality than on feasibility. The search for feasible solutionsis not ignored
completely, but the balance is shifted toward moving the Best Bound (described in the
following paragraph) more rapidly, at the likely expense of feasible solutions being found
less rapidly, and improved feasible solutions less frequently, than under the default
emphasis.

The fourth choice for MIPEmphasis, 3 (MIPEmphasisBestBound in Concert Technology
or, inthe Callable Library, CPx_MIPEMPHASIS BESTBOUND), Worksexclusively at moving
the Best Bound. The Best Bound represents the objective function value at which an integer
feasible solution could till potentially exist. As possibilities are eliminated, this Best Bound
value will movein the opposite direction to that of any improving series of integer feasible
solutions. The process of moving the Best Bound will eventually result in the optimal

ILOG CPLEX 10.0 — UsSER’'S MANUAL

feasible solution being discovered, at which point the optimization is complete, and feasible
solutions may be discovered along the way anyway, due to branches that happen to locate
feasible solutions that do not match the Best Bound. A great deal of analysis may be
performed on the model, beyond what is done under the default emphasis. Therefore it is
recommended to use this setting only on models that are difficult for the default emphasis,
and for which you do not care about interim feasible solutions that may or may not be
optimal.

Thefinal choice for MIPEmphasis iS4 (CPX_MIPEMPHASIS HIDDENFEAS). It applies
considerable additional effort toward finding high quality feasible solutionsthat are difficult
to locate, and for this reason the eventual proof of optimality may take longer than with
default settings. This choiceis intended for use on difficult models where a proof of
optimality is unlikely, and where emphasis 1 (one) does not deliver solutions of an
appropriately high quality.

To make clear a point that has been alluded to so far: every choice of MIPEmphasis results
in the branch & cut algorithm proceeding in a manner that eventually will find and prove an
optimal solution, or will prove that no integer feasible solution exists. The choice of
emphasisonly guides ILOG CPLEX to produce feasible solutionsin away that isin keeping
with the user's particular purposes, but the accuracy and completeness of the algorithm is not
sacrificed in the process.

The MIPEmphasis parameter may be set in conjunction with any other ILOG CPLEX
parameters (discussed at length in the next section). For example, if you wish to set an
upward branching strategy viathe Brpir parameter, thiswill be honored under any setting
of MIPEmphasis. Of course, certain combinations of MIPEmphasis with other parameters
may be counter-productive, such as turning off all cuts with emphasis 3, but the user hasthe
option if that iswhat is wanted.

Terminating MIP Optimization

ILOG CPLEX terminates MIP optimization under a variety of circumstances. First,

ILOG CPLEX declaresinteger optimality and terminates when it finds an integer solution
and all nodes of the branch & cut tree have been processed. Optimality in thiscaseisrelative
to whatever tolerances and optimality criteriayou have set. For example, ILOG CPLEX
considers any user-supplied cutoff value (such as cutLo or cutUp) aswell as the objective
difference parameter (0bjDif) whenit treats nodes during branch & cut. Thusthese settings
indirectly affect termination.

An important termination criterion that the user can set explicitly is the MIP gap tolerance.
In fact, there are two such tolerances: arelative MIP gap tolerance that is commonly used,
and an absolute MIP gap tolerance that is appropriate in cases where the expected optimal
objective function is quite small in magnitude. The default value of the relative MIP gap
tolerance is 1e-4; the default value of the absolute MIP gap tolerance is 1e-6. These default
valuesindicate to CPLEX to stop when an integer feasible solution has been proved to be
within 0.01% of optimality. On a difficult model with input data obtained with only

ILOG CPLEX 10.0 — USER’'S MANUAL 249

approximate accuracy, where a proved optimum is thought to be unlikely within a
reasonable amount of computation time, a user might choose a larger relative MIP Gap, for
example, 0.05 (corresponding to 5%) to allow early termination. Conversely, in a model
where the objective function amounts to billions of dollars and the data are accurate to a
degree that further processing is worthwhile, atighter relative MIP Gap (even 0.0) may be
advantageous to avoid any chance of missing the best possible solution.

ILOG CPLEX also terminates optimization when it reaches alimit that you have set. You
can set limits on time, number of nodes, size of tree memory, and number of integer
solutions. Table 13.4 summarizes those parameters and their purpose.

Table 13.4 Parametersto Limit MIP Optimization

Use this parameter
To set a limit on

Concert Technology | Callable Library Interactive Optimizer
elapsed time TiLim CPX_PARAM TILIM timelimit
number of nodes NodeLim CPX_PARAM NODELIM mip limits nodes
size of tree TreLim CPX_PARAM TRELIM mip limits treememory
number of integer solutions | IntSolLim CPX_PARAM INTSOLLIM |mip limits solutions
relative MIP gap tolerance |EpGap CPX_PARAM EPGAP mip tolerances mipgap
absolute MIP gap tolerance | EpAGap CPX_ PARAM EPAGAP mip tolerances absmipgap

ILOG CPLEX also terminates when an error occurs, such as when ILOG CPLEX runs out
of memory or when a subproblem cannot be solved. If an error is dueto failureto solve a
subproblem, an additional line appears in the node log file to indicate the reason for that
failure. For suggestions about overcoming such errors, see Troubleshooting MIP
Performance Problems on page 272.

Tuning Performance Features of the Mixed Integer Optimizer

250

The ILOG CPLEX Mixed Integer Optimizer contains awealth of features intended to aid in
the solution of challenging MIP models. While default strategies are provided that solve the
majority of models without user involvement, there exist difficult models that benefit from
attention to performance tuning. This section discusses the ILOG CPLEX features and
parameters that are the most likely to offer help on such models.

[Branch & Cut on page 251
[—_Probing on page 256

ILOG CPLEX 10.0 — UsSER’'S MANUAL

[_Cuts on page 257

[Heuristics on page 260

[Preprocessing: Presolver and Aggregator on page 262
[—Harting from a Solution on page 264

[Issuing Priority Orders on page 265

Branch & Cut

Because many of these parameter settings directly affect the branch & cut algorithm, hereis
adescription of how that algorithm isimplemented within ILOG CPLEX.

In the branch & cut algorithm, ILOG CPLEX solves a series of continuous subproblems. To
manage those subproblems efficiently, ILOG CPLEX builds atree in which each
subproblem isanode. The root of the tree is the continuous relaxation of the original MI1P

problem.

If the solution to the relaxation has one or more fractional variables, ILOG CPLEX will try
to find cuts. Cuts are constraints that cut away areas of the feasible region of the relaxation
that contain fractional solutions. ILOG CPLEX can generate severa types of cuts. (Cutson
page 257 tells you more about that topic.)

If the solution to the relaxation still has one or more fractional-valued integer variables after
ILOG CPLEX triesto add cuts, then ILOG CPLEX branches on afractiona variable to
generate two new subproblems, each with more restrictive bounds on the branching variable.
For example, with binary variables, one node will fix the variable at O (zero), the other,

a 1 (one).

The subproblems may result in an all-integer solution, in an infeasible solution, or another
fractional solution. If the solution isfractional, ILOG CPLEX repeats the process.

[How Cutoff Values Are Applied on page 252

[_How Tolerance Parameters Are Applied on page 252

[When Heuristics Are Applied on page 252

[When an Integer Solution Is Found: the Incumbent on page 252
[Controlling Srategies: Diving and Backtracking on page 253
[Ielecting Nodes on page 254

[Ielecting Variables on page 255

[CThanging Branching Direction on page 255

[Wsing Node Files on page 256

ILOG CPLEX 10.0 — USER’'S MANUAL 251

252

How Cutoff Values Are Applied

ILOG CPLEX cuts off nodes when the value of the objective function associated with the
subproblem at that node is worse than the cutoff value.

You set the cutoff value by means of the cutup parameter (for a minimization problem) or
the cut Lo parameter (for amaximization problem), toindicateto ILOG CPLEX that integer
feasible solutions worse than this cutoff value should be discarded. The default value of the
lower cutoff is -1e+75; the default value of the upper cutoff is1e+75. The defaults, in
effect, mean that no cutoff isto be supplied. You can supply any number that you find
appropriate for your problem. It is never required that you supply a cutoff, and in fact for
most applicationsisit not done.

How Tolerance Parameters Are Applied

ILOG CPLEX will usethe value of the best integer solution found so far, as modified by the
tolerance parameters objDi £ (absolute objective function difference) or Re10bjDif
(relative objective function difference) as the cutoff. Again, it is not typical that users set
these parameters, but they are available if you find them useful. Use care in changing these
tolerances: if either of them is nonzero, you may miss the optimal solution by as much as
that amount. For example, in amodel where the true minimum is 100 and the absol ute cutoff
issetto s, if afeasible solution of say, 103 isfound at some point, the cutoff will discard all
nodes with a solution worse than 98, and thus the solution of 100 would be overlooked.

When Heuristics Are Applied

Periodically during the branch & cut algorithm, ILOG CPLEX may apply a heuristic
process that attempts to compute an integer solution from available information, such asthe
solution to the relaxation at the current node. This activity does not replace the branching
steps, but sometimes is able to inexpensively locate a new feasible solution sooner than by
branching, and a solution found in thisway is treated in the same way as any other feasible
solution. At intervalsin the tree, new cuts beyond those computed at the root node may also
be added to the problem.

When an Integer Solution Is Found: the Incumbent
After ILOG CPLEX finds an integer solution, it does the following:
1t makes that integer solution the incumbent solution and that node the incumbent node.

1t makes the value of the objective function at that node (modified by the objective
difference parameter) the new cutoff value.

1z prunes from the tree al subproblems for which the value of the objective functionisno
better than the incumbent.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Controlling Strategies: Diving and Backtracking

You control the path that CPLEX traverses in the tree through several parameters, as
summarized in Table 13.5.

Table 13.5 Parametersfor Controlling Branch & Cut Srategy

Interactive Optimizer
Command

Concert Technology
IloCPLEX Method

Callable Library Routine

set mip strategy
backtrack

setParam (BtTol, n)

CPXsetdblparam(env,

CPX_PARAM BTTOL, n)

set mip strategy
nodeselect

setParam(NodeSel, 1)

CPXsetintparam(env,

CPX_PARAM NODESEL, 1)

set mip strategy
variableselect

setParam(VarSel, i)

CPXsetintparam(env,

CPX_PARAM VARSEL, i)

set mip strategy
bbinterval

setParam (BBInterval,

i)

CPXsetintparam(env,

CPX_ PARAM BBINTERVAL,

i)

set mip strategy
branch

setParam (BrDir, 1)

CPXsetintparam(env,

CPX_PARAM BRDIR, i)

During the branch & cut algorithm, ILOG CPLEX may choose to continue from the present
node and dive deeper into the tree, or it may backtrack (that is, begin a new dive from
elsawhere in the tree). The value of the backtrack parameter, Bt Tol, influences this
decision, in terms of the relative degradation of the objective function caused by the
branchestaken so far in thisdive. Setting Bt To1 to avalue near o . o increasesthe likelihood
that a backtrack will occur, while the default value near 1. 0 makesit more likely that the
present dive will continue to a resolution (fathoming either via a cutoff or an infeasible
combination of branches or the discovery of anew incumbent integer feasible solution). See
the reference manual ILOG CPLEX Parameters for more details about how this parameter
influences the computation that determines the decision to backtrack.

ILOG CPLEX 10.0 —

USER'S MANUAL

253

Selecting Nodes

When ILOG CPLEX backtracks, there usually remain large numbers of unexplored nodes
from which to begin a new dive. The node selection parameter, Nodesel, determines this
choice.

Table 13.6 NodeSel Parameter Settings for Node Search Type

NodeSel

value Symbolic Value Node Search Type

1 (Default) | CPX_NODESEL_BESTBOUND Best Bound search, which means that
the node with the best objective function
will be selected, generally near the top

of the tree.

2 CPX_NODESEL BESTEST Best Estimate search, whereby

ILOG CPLEX will use an estimate of a
given node's progress toward integer
feasibility relative to its degradation of
the objective function. This setting can
be useful in cases where there is
difficulty in finding feasible solutions or
in cases where a proof of optimality is
not crucial.

3 CPX_NODESEL BESTEST ALT |A variation on the Best Estimate search.

0 CPX_NODESEL DFS Depth First search will be conducted. In
many cases this amounts to a brute
force strategy for solving the
combinatorial problem, gaining a small
amount of tactical efficiency due to a
variety of reasons, and it is rare that it
offers any advantage over other
settings.

In instances where Best Estimate node selection (Nodesel =2 or 3) isin effect, the
BBInterval parameter determines the frequency at which backtracking is done by Best
Bound anyway. The default value of 7 workswell, but you can set it to o (zero) to make sure
that Best Estimate is used every time backtracking occurs.

254 ILOG CPLEX 10.0 — USER’'S MANUAL

Selecting Variables

After anode has been selected, the variabl e selection parameter, varsel, influences which
variable is chosen for branching at that node.

Table 13.7 VarSdl Parameter Settings for Branching Variable Choice

VarSeI Symbolic Value Branching Variable Choice

Setting

-1 CPX_VARSEL_MININFEAS Branch strictly at the nearest integer value
which is closest to the fractional variable.

1 CPX_VARSEL_MAXINFEAS Branch strictly at the nearest integer value
which is furthest from the fractional variable.

0 CPX VARSEL DEFAULT ILOG CPLEX automatically determines each

(Default) branch direction.

2 CPX_VARSEL_PSEUDO Use pseudo costs, which derives an estimate
about the effect of each proposed branch from
duality information.

3 CPX_VARSEL_ STRONG Use strong branching, which invests
considerable effort in analyzing potential
branches in the hope of drastically reducing
the number of nodes that will be explored.

4 CPX_VARSEL_ PSEUDOREDUCED | Use pseudo reduced costs, which is a
computationally less-intensive form of pseudo
costs.

Changing Branching Direction

After avariable has been selected for branching, the BrDir parameter influences the
direction, up or down, of the branch on that variable to be explored first.

Table 13.8 BrDir Parameter Settings for Branching Direction Choice

BrDI.r Symbolic Value Branching Direction Choice
Setting
-1 CPX_BRANCH_DOWN Branch downward
0 CPX_BRANCH GLOBAL ILOG CPLEX automatically determines each
(Default) branch direction.
1 CPX_BRANCH UP Branch upward

Priority orders complement the behavior of these parameters. They areintroduced in Issuing
Priority Orders on page 265. They offer a mechanism by which you supply

ILOG CPLEX 10.0 — USER’'S MANUAL 255

problem-specific directives about the order in which to branch on variables. In a priority
order, you can also provide preferred branching directions for specific variables.

Using Node Files

On difficult models that generate a great number of nodes in the tree, the amount of
available memory for node storage can become a limiting factor. Node files can be an
effective technique which uses disk space to augment RAM, at little or no penalty in terms
of solution speed.

The node-file storage-feature enables you to store some parts of the branch & cut treeinfiles
while the branch & cut algorithm is being applied. If you use this feature, ILOG CPLEX
will be able to explore more nodes within a smaller amount of computer memory. This
feature includes several options to reduce the use of physical memory, and it entails a very
small increase in runtime. Node-file storage as managed by ILOG CPLEX itself offersa
much better option in terms of memory use and performance time than relying on swap
space as managed by your operating system in this context.

For more about the parameters controlling node files, see Use Node Files for Sorage on
page 278.

Probing

The probing feature can help in many different ways on difficult models. Probing isa
technique that looks at the logical implications of fixing each binary variable to O (zero) or
1 (one). It is performed after preprocessing and before the solution of the root relaxation.
Probing can be expensive, so this parameter should be used selectively. On models that are
in some sense easy, the extratime spent probing may not reduce the overall time enough to
be worthwhile. On difficult models, probing may incur very large runtime costs at the
beginning and yet pay off with shorter overall runtime. When you are tuning performance, it
isusually because the model is difficult, and then probing is worth trying.

At the default setting of the probe parameter (0 (zero)), ILOG CPLEX will automatically
determine an appropriate level of probing. Setting the probe parameter to 1, 2, or 3, results
inincreasing levels of probing to be performed beyond the default level of probing. A
setting of -1 resultsin no probing being performed.

To activate an increasing level of probing:

[In the Interactive Optimizer, use the command set mip strategy probe i.
[In Concert Technology, set the integer parameter probe .

[Inthe Callable Library, set the integer parameter CPx PARAM PROBE.

256 ILOG CPLEX 10.0 — USER’'S MANUAL

Cuts

Cuts are constraints added to a model to restrict (cut away) noninteger solutions that would
otherwise be solutions of the continuous relaxation. The addition of cuts usually reducesthe
number of branches needed to solve aMIP.

In the following descriptions of cuts, the term subproblem includes the root node (that is, the
root relaxation). Cuts are most frequently seen at the root node, but they may be added by
ILOG CPLEX at other nodes as conditions warrant.

ILOG CPLEX generatesits cutsin such away that they are valid for al subproblems, even
when they are discovered during analysis of a particular subproblem. If the solutionto a
subproblem violates one of the subsequent cuts, ILOG CPLEX may add a constraint to
reflect this condition.

[_Clique Cuts on page 257

[_Cover Cuts on page 257

[_Disjunctive Cuts on page 258

_Hlow Cover Cuts on page 258

Hlow Path Cuts on page 258

[Gomory Fractional Cuts on page 258

[Generalized Upper Bound (GUB) Cover Cuts on page 258
[Implied Bound Cuts on page 258

[Mixed Integer Rounding (MIR) Cuts on page 258
[Adding Cuts and Re-Optimizing on page 259
[_Counting Cuts on page 259

[_PParameters Affecting Cuts on page 259

Clique Cuts

A cligueisarelationship among agroup of binary variables such that at most onevariablein
the group can be positive in any integer feasible solution. Before optimization starts,

ILOG CPLEX constructs a graph representing these rel ationships and finds maximal cliques
in the graph.

Cover Cuts

If aconstraint takesthe form of aknapsack constraint (that is, asum of binary variableswith
nonnegative coefficients less than or equal to a nonnegative right-hand side), then thereisa
minimal cover associated with the constraint. A minimal cover isasubset of the variables of
theinequality such that if al the subset variables were set to one, the knapsack constraint
would be violated, but if any one subset variable were excluded, the constraint would be

ILOG CPLEX 10.0 — USER’'S MANUAL 257

258

satisfied. ILOG CPLEX can generate a constraint corresponding to this condition, and this
cut is called acover cut.

Disjunctive Cuts

A MIP problem can be divided into two subproblems with disjunctive feasible regions of
their LP relaxations by branching on an integer variable. Digunctive cuts are inequalities
valid for the feasible regions of LP relaxations of the subproblems, but not valid for the
feasible region of LP relaxation of the MIP problem.

Flow Cover Cuts

Flow covers are generated from constraints that contain continuous variables, where the
continuous variables have variable upper bounds that are zero or positive depending on the
setting of associated binary variables. The idea of aflow cover comes from considering the
constraint containing the continuous variables as defining a single node in a network where
the continuous variables are in-flows and out-flows. The flows will be on or off depending
on the settings of the associated binary variables for the variable upper bounds. The flows
and the demand at the single node imply a knapsack constraint. That knapsack constraint is
then used to generate a cover cut on the flows (that is, on the continuous variables and their
variable upper bounds).

Flow Path Cuts

Flow path cuts are generated by considering a set of constraints containing the continuous
variables that define a path structure in a network, where the constraints are nodes and the
continuous variables are in-flows and out-flows. The flows will be on or off depending on
the settings of the associated binary variables.

Gomory Fractional Cuts

Gomory fractional cuts are generated by applying integer rounding on a pivot row in the
optimal LP tableau for a (basic) integer variable with afractional solution value.
Generalized Upper Bound (GUB) Cover Cuts

A GUB constraint for aset of binary variablesisasum of variables|essthan or equal to one.
If the variablesin a GUB constraint are a'so members of a knapsack constraint, then the
minimal cover can be selected with the additional consideration that at most one of the
members of the GUB constraint can be onein a solution. This additional restriction makes
the GUB cover cuts stronger (that is, more restrictive) than ordinary cover cuts.

Implied Bound Cuts

In some models, binary variables imply bounds on continuous variables. ILOG CPLEX
generates potential cuts to reflect these relationships.

Mixed Integer Rounding (MIR) Cuts

MIR cuts are generated by applying integer rounding on the coefficients of integer variables
and the right-hand side of a constraint.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Adding Cuts and Re-Optimizing

Each time ILOG CPLEX adds a cut, the subproblem is re-optimized. ILOG CPLEX repeats
the process of adding cuts at a node until it finds no further effective cuts. It then selects the

branching variable for the subproblem.

Counting Cuts

To know the number of cuts added to a problem during M 1P optimization, implement one of
the following techniques in your application:

[_Hor Concert Technology users:

Declare an output stream in the conventional C++, Java, or .NET way. Capture the
output and examine it for a string identifying the type of cut you want to count. For
example, look for the string "Cover cuts applied:" to know the number of cover
cuts, or look for thestring "cover cuts applied:" toknow the number of clique cuts.
The number of cuts of that type follows immediately after the string.

[Hor Calable Library users:

Before calling the MIP optimizer in your application, use the routine

CPxsetmipcallback to set up aMIP callback function that queries the cut count. Use
the routine cpxgetcallbackinfo to count the number of cuts of each type of interest
to you.

Parameters Affecting Cuts

Parameters control the way each class of cutsisused. Those parameters are listed in
Table 13.9.

Table 13.9 Parametersfor Controlling Cuts

Cut Type Interactive Command ggp;n?:t;':echnology g:::lnl:gé_:brary

Clique set mip cuts cliques Cliques CPX_PARAM CLIQUES
Cover set mip cuts covers Covers CPX_PARAM COVERS
Disjunctive set mip cuts disjunctive |DisjCuts CPX_PARAM DISJCUTS
Flow Cover set mip cuts flowcuts FlowCovers CPX_PARAM FLOWCOVERS
Flow Path set mip cuts pathcut FlowPaths CPX_PARAM FLOWPATHS
Gomory set mip cuts gomory FracCuts CPX PARAM FRACCUTS
GUB Cover set mip cuts gubcovers GUBCovers CPX_PARAM GUBCOVERS
Implied Bound set mip cuts implied ImplBd CPX_PARAM IMPLBD
Mixed Integer Rounding (MIR) | set mip cuts mircut MIRCuts CPX_PARAM MIRCUTS

ILOG CPLEX 10.0 —

USER'S MANUAL

259

260

The default value of each of those parametersis o (zero). By default, ILOG CPLEX
automatically determines how often (if at all) it should try to generate that class of cut. A
setting of -1 indicates that no cuts of the class should be generated; a setting of 1 indicates
that cuts of the class should be generated moderately; and a setting of 2 indicatesthat cuts of
the class should be generated aggressively. For clique cuts, cover cuts, and digunctive cuts,
asetting of 3 is permitted, which indicates that the specified type of cut should be generated
very aggressively.

In the Interactive Optimizer, the command set mip cuts all i appliesthevaluei to
all types of cut parameters. That is, you can set them all at once.

The cutsFactor parameter controls the number of cuts ILOG CPLEX adds to the model.
The problem can grow to cutsFactor timesthe original number of rows in the model (or
in the presolved model, if the presolver is active). Thus, a cutsFactor of 1.0 would mean
that no cuts will be generated, which may be a more convenient way of turning off all cuts
than setting them individually. The default cut sFactor value of 4.0 works well in most
cases, asit allows a generous number of cuts whilein rareinstances it also servesto limit
unchecked growth in the problem size.

The aggcutLim parameter controls the number of constraints allowed to be aggregated for
generating MIR and flow cover cuts.

The Fracpass parameter controls the number of passes for generating Gomory fractional
cuts. This parameter will not have any effect if the parameter for set mip cuts gomory
has anondefault value.

The Fraccand parameter controls the number of variable candidates to be considered for
generating Gomory fractional cuts.

Heuristics

InILOG CPLEX, aheuristic is a procedure that tries to produce good or approximate
solutions to a problem quickly but which lacks theoretical guarantees. In the context of
solving aMIP, aheuristic is amethod that may produce one or more solutions, satisfying all
constraints and all integrality conditions, but lacking an indication of whether it has found
the best solution possible.

ILOG CPLEX provides these families of heuristics to find integer solutions at nodes
(including the root node) during the branch & cut procedure:

[Mode Heuristic on page 261
[Relaxation Induced Neighborhood Search (RINS) Heuristic on page 261
[—Jolution Polishing on page 261

Being integrated into branch & cut, these heuristic solutions gain the same advantages
toward a proof of optimality as any solution produced by branching, and in many instances,
they can speed the final proof of optimality, or they can provide a suboptimal but

ILOG CPLEX 10.0 — UsSER’'S MANUAL

high-quality solution in a shorter amount of time than by branching alone. With default
parameter settings, ILOG CPLEX automatically invokes the heuristics when they seem
likely to be beneficial.

Node Heuristic

The node heuristic employs techniquesto try to construct afeasible solution from the current
(fractional) branch & cut node. Thisfeature is controlled by the parameter HeurFreq. Atits
default value of o, ILOG CPLEX dynamically determines the frequency with which the
heuristic isinvoked. The setting -1 turns the feature off. A positive value specifies the
frequency (in node count) with which the heuristic will be called. For example, if the
HeurFreq parameter is set to 20, then the node heuristic will be applied at node o, node 20,
node 40, and so on.

Relaxation Induced Neighborhood Search (RINS) Heuristic

Relaxation induced neighborhood search (RINS) is a heuristic that explores a neighborhood
of the current incumbent solution to try to find anew, improved incumbent. It formulates the
neighborhood exploration as another M1P (known as the subM|1P), and truncates the subM 1P
optimization by limiting the number of nodes explored in the search tree.

Two parameters apply specifically to RINS: RINSHeur and SubMIPNodeLim.

RINSHeur controls how often RINSisinvoked, in a manner analogous to the way that
HeurFreg Works. A setting of 100, for example, means that RINS isinvoked every 100th
node in the tree, while -1 turnsit off. The default setting is 0 (zero), which means that
ILOG CPLEX decides when to apply it; with this automatic setting, RINS is applied very
much less frequently than the node heuristic is applied because RINS typically consumes
moretime. Also, with the default setting, RINS is turned entirely off if the node heuristic
has been turned off viaaHeurFreq setting of -1; with any other RINSHeur Setting

than 0 (zero), the HeurFreq Setting does not affect RINS frequency.

SubMIPNodeLim restricts the number of nodes searched in the subMIP during application
of the relaxation induced neighborhood search (RINS) heuristic. Its default is500 is
satisfactory in most situations, but you can set this parameter to any positive integer if you
need to tune performance for your problem.

Solution Polishing

Solution polishing can be used to improve the best known solution at the end of branch &
cut if optimality has not been proven. Alternatively, it can used instead of the branch & cut
algorithm if aninitial solution can be found at the root node. If Solution Polishing is used as
an alternative algorithm to branch & cut, optimality may not be proven, even if the optimal
solution is found.

A parameter enables you to specify the amount of time ILOG CPLEX spends polishing the
best solution found. The default value of this parameter is 0.0, so that by default no separate
polishing phase is performed. The parameter accepts any nonnegative value, to set alimitin
seconds.

ILOG CPLEX 10.0 — USER’'S MANUAL 261

. PolishTime in Concert Technology
. CPX PARAM POLISHTIME inthe Callable Library

. mip limit polishtime inthe Interactive Optimizer

If aMIP optimization has |ocated a feasible solution and already terminated, you can invoke
polishing alone in the same application call or interactive session by following these steps:

1. Set the polishing time parameter to a positive value.
2. Set the ordinary time limit to 0.0.

. TiLimin Concert Technology

. CPX PARAM TILIM inthe CallableLibrary

. timelimit inthe Interactive Optimizer

3. Call the optimizer again.

Remember to leave the advanced indicator parameter at its default value of 1 (2 isaso
acceptable) so that the polishing will proceed from the advanced start.

. AdvInd in Concert Technology
. CPX PARAM ADVIND inthe Callable Library

. advance inthe Interactive Optimizer

Aswith the RINS heuristic, the subMIP node-limit parameter also control s aspects of the
work that solution polishing performs.

. SubMIPNodeLim in Concert Technology
. CPX PARAM SUBMIPNODELIM inthe CallableLibrary

. mip limits submipnodelim inthe Interactive Optimizer
Solution polishing always requires the presence of a feasible solution from which to start.

Solution polishing is much more time-intensive than any of the other heuristics, but can
yield better solutions in some situations.

Preprocessing: Presolver and Aggregator

When you invoke the MIP optimizer, whether through the Interactive Optimizer command
mipopt, through acall to the Concert Technology I1ocCplex method solve, or through the
Callable Library routine cpxmipopt, ILOG CPLEX by default automatically preprocesses
your problem. Table 13.10 summarizes the preprocessing parameters. In preprocessing,
ILOG CPLEX appliesits presolver and aggregator one or more times to reduce the size of

262 ILOG CPLEX 10.0 — USER’'S MANUAL

theinteger program in order to strengthen theinitial linear relaxation and to decrease the

overall size of the mixed integer program.

Table 13.10 Parametersfor Controlling MIP Preprocessing

Concert
Interactive Command Technology Callable Library Parameter Comment
Parameter
set preprocessing aggregator AggInd CPX_ PARAM AGGIND on by default
set preprocessing presolve PreInd CPX_ PARAM PREIND on by default
set preprocessing boundstrength |BndStrenInd CPX PARAM BNDSTRENIND presolve must be on
set preprocessing coeffreduce CoeRedInd CPX PARAM COEREDIND presolve must be on
set preprocessing relax RelaxPreInd CPX_PARAM RELAXPREIND applies to relaxation
set preprocessing reduce Reduce CPX_ PARAM REDUCE all on by default
set preprocessing numpass PrePass CPX_PARAM PREPASS automatic by default
set preprocessing represolve RepeatPresolve | CPX PARAM REPEATPRESOLVE | automatic by default

These and other parameters also control the behavior of preprocessing of the continuous
subproblem (LP, QP, or QCP) solved during a MIP optimization. See Preprocessing on
page 162 for further details about these parametersin that context. The following discussion
pertains to these parameters specifically in MIP preprocessing.

While preprocessing, ILOG CPLEX attempts to strengthen bounds on variables. This bound
strengthening may take along time. In such cases, you may want to turn off bound
strengthening.

ILOG CPLEX attempts to reduce coefficients of constraints during preprocessing.
Coefficient reduction usually strengthens the continuous relaxation and reduces the number
of nodesin the branch & cut tree, but not always. Sometimes, it increases the amount of time
needed to solve the linear relaxations at each node, possibly enough timeto offset the benefit
of fewer nodes. Two levels of coefficient reduction are available, so it is worthwhile to
experiment with these preprocessing options to see whether they are beneficial to your
problem.

The rRelaxPreInd parameter controls whether an additional round of presolveis applied
before ILOG CPLEX solvesthe continuous subproblem at the root rel axation. Often the root
relaxation is the single most time-consuming subproblem solved during branch-and-cut.
Certain additional presolve reductions are possible when MIP restrictions are not present,
and on difficult models this extra step will often pay off in faster root-solve times. Even
when there is no appreciable benefit, there is usually no harm either. However, the
RelaxPrelInd parameter isavailableif you want to explore whether skipping the additional

ILOG CPLEX 10.0 — USER’'S MANUAL 263

264

presolve step will improve overall solution speed, for example, if you are solving along
sequence of very easy models and need maximum speed on each one.

Itis possible to apply preprocessing a second time, after cuts and other analyses have been
performed and before branching begins. If your models tend to require alot of branching,
this technique is sometimes useful in further tightening the formulation. Usethe
RepeatPresolve parameter (CPX_PARAM REPEATPRESOLVE inthe Callable Library) to
invoke this additional step. Its default value of -1 meansthat ILOG CPLEX makesthe
decision internally whether to repeat presolve; 0 (zero) turns off thisfeature unconditionally,
while positive values allow you control over which aspects of the preprocessed model are
re-examined during preprocessing and whether additional cuts are then permitted.

Table 13.11 summarizes the possible values of this parameter.

Table 13.11 Values of RepeatPresolve Parameter

Value | Effect

-1 Automatic (default)

0 Turn off repeat presolve

1 Repeat presolve without cuts

2 Repeat presolve with cuts

3 Repeat presolve with cuts and allow new root cuts

ILOG CPLEX preprocesses a MIP by default. However, if you use abasisto start LP
optimization of the root relaxation, ILOG CPLEX will proceed with that starting basis
without preprocessing it. Frequently the strategic benefits of MIP presolve outweigh the
tactical advantage of using a starting basis for the root node, so use caution when
considering the advantages of a starting basis.

Starting from a Solution

You can provide a known solution (for example, from a MIP problem previoudly solved or
from your knowledge of the problem) to serve as the first integer solution. When you
provide such a starting solution, you may invoke rel axation induced neighborhood search
(its RINS heuristic)or solution polishing to improve the given solution. Thisfirst integer
solution may include continuous and discrete variables of various types, such as
semi-continuous variables or those in lazy constraints, linearized constraints, or specia
ordered sets.

If you specify values for all discrete variables, ILOG CPLEX will check the validity of the
values as an integer-feasible solution; if you specify values for only a portion of the discrete
variables, CPLEX will attempt to fill in the missing valuesin away that leads to an
integer-feasible solution. If the specified values do not lead directly to an integer-feasible
solution, CPLEX will apply a quick heuristic to try to repair the MIP Start. The number of

ILOG CPLEX 10.0 — UsSER’'S MANUAL

times that CPLEX applies the heuristic is controlled by the repair tries parameter
(RepairTries in Concert Technology, CPx_PARAM REPAIRTRIES inthe Callable
Library). If this process succeeds, the solution will be treated as an integer solution of the
current problem.

After aMIP start has been established for your model, its use is controlled by the advanced
indicator parameter (advind in Concert Technology; cpx PARAM ADVIND inthe Callable

Library). At its default setting of 1, the MIP start values that you specify are used. If you set
AdvInd tothevalue 0 (zero), then the MIP Start will not be used. The other optional setting
for advind, 2, has meaning only for continuous models being solved by one of the simplex
optimizers; for MIP, the setting 2 has the same effect as 1 (one).

You can establish MIP starting values by using the method setvectors in aConcert
program, or by using cPxcopymipstart in aCallable Library program.

For Interactive Optimizer use, or as an alternative approach in a Calable Library
application, you can establish MIP starting values from afile. MST format (described briefly
in the reference manual ILOG CPLEX File Formats) is used for this purpose. Use the
routine cPxreadcopymipstart inthe Callable Library, the method readmIpPStart in
Concert Technology, or the read command in the Interactive Optimizer, for this purpose.

At the end of a MIP optimization call, when afeasible (not necessarily optimal) solution is
still in memory, you can create an MST file from the Callable Library with the routine
Ccrxmstwrite, from Concert Technology with the method writeMIpPstart, or from the
Interactive Optimizer with the write command, for later use as starting values to another
MIP problem. Care should be taken to make sure that the naming convention for the
variablesis consistent between models when this approach is used.

Issuing Priority Orders

In branch & cut, ILOG CPLEX makes decisions about which variable to branch on at a
node. You can control the order in which ILOG CPLEX branches on variables by issuing a
priority order. A priority order assigns a branching priority to some or all of the integer
variablesin amodel. ILOG CPLEX performs branches on variables with a higher assigned
priority number before variables with alower priority; variables not assigned an explicit
priority value by the user aretreated as having apriority value of 0. Notethat ILOG CPLEX
will branch only on variables that take a fractional solution value at a given node. Thusa
variable with a high priority number might still not be branched upon until late in the tree, if
at al, and indeed if the presolve or the aggregator feature of the ILOG CPLEX Preprocessor
removes a given variable then branching on that variable would never occur regardless of a
high priority order assigned to it by the user.

You can specify priority for any variable, though the priority isused only if the variableisa
general integer variable, a binary integer variable, a semi-continuous variable, a
semi-integer variable, or amember of a special ordered set. To specify priority, use one of
the following routines or methods:

ILOG CPLEX 10.0 — USER’'S MANUAL 265

[—_Hrom the Callable Library, use cpPxcopyorder to copy a priority order and apply it, or
Ccpxreadcopyorder to read the copy order from afilein ORD format. That format is
documented in the reference manual ILOG CPLEX File Formats.

[_#rom Concert Technology, use the method setPriority to set the priority of agiven
variable or setPriorities to set prioritiesfor an array of variables. Use the method
readOrder to read priorities from afile in ORD format and apply them.

ILOG CPLEX can generate a priority order automatically, based on problem-data
characteristics. Thisfacility can be activated by setting theMIPordType parameter to one of
thevaluesin Table 13.12.

Table 13.12 Parametersfor Branching Priority Order

Parameter |Branching Priority Order

0 no automatic priority order will be generated (default)

1 decreasing cost coefficients among the variables

2 increasing bound range among the variables

3 increasing cost per matrix coefficient count among the variables

If you explicitly read afile of priority orders, its settings will override any generic priority
order you may have set by interactive commands.

The parameter MIPOrdInd, when set to O (zero), allows you to direct ILOG CPLEX to
ignore a priority order that was previously read from afile. The default setting for this
parameter means that a priority order will be used, if one has been read in.

Problems that use integer variables to represent different types of decisions should assign
higher priority to those that must be decided first. For example, if some variablesin amodel
activate processes, and others use those activated processes, then the first group of variables
should be assigned higher priority than the second group. In that way, you can use priority to
achieve better solutions.

Setting priority based on the magnitude of objective coefficientsis also sometimes hel pful.

Using the MIP Solution

266

After you have solved aMIP, you will usually want to make use of the solution in some way.
If you areinterested only in the values of the variables at the optimum, then you can perform
some simple steps to get that information:

[1n Concert Technology, the method getvalues accesses thisinformation.

[In the Callable Library, use the routine cpxgetx.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

After your program has placed the solution valuesinto arraysin thisway, it can print the
valuesto the screen, write the values to afile, perform computations using the values, and so
forth.

In the Interactive Optimizer, you can print the nonzero solution values to the screen with the
command display solution variables.A copy of thisinformation goesto the log
file, named cplex. 1og by default. Thus one way to print your solution to afileisto
temporarily rename the log file. For example, the following series of commandsin the
Interactive Optimizer will place the solution values of all variables whose values are not
zero into afile named solution.asc:

set logfile solution.asc
display solution variables
set logfile cplex.log

Further solution information, such as the optimal values of the slack variables for the
congtraints, can be writtento afilein the SOL format. Seethe description of thisfile format
inthe ILOG CPLEX File Formats Reference Manual in SOL File Format: Solution Fileson

page 38.
For any of the MIP problem types, the following additional solution information isavailable

in the Interactive Optimizer through the di sp1ay command after optimization has produced
asolution:

. objective function value for the best integer solution, if one exists;

. best bound, that is, best objective function value among remaining subproblems;
. solution quality;

- primal valuesfor the best integer solution, if one has been found;

- dlack values for best integer solution, if one has been found.

If you request other solution information than these items for aMIP, an error status will be
issued. For example, in the Interactive Optimizer, you would get the following message:

Not available for mixed integer problems-
use CHANGE PROBLEM to change the problem type

Such post-solution information does not have the same meaning in a mixed integer program
(MIP) asin alinear program (L P) because of the special nature of the integer variablesin the
MIP. The reduced costs, dual values, and sensitivity ranges give you information about the
effect of making small changesin problem data so long as feasibility is maintained. Integer
variables, however, lose feasibility if asmall changeis made in their value, so this

post-sol ution information cannot be used to evaluate changes in problem datain the usual
way of continuous models.

Integer variables often represent major structural decisionsin amodel, and many continuous
variables of the model may be related to these major decisions. With that observation in
mind, if you take the integer variable solution val ues as given, then you can obtain useful

ILOG CPLEX 10.0 — USER’'S MANUAL 267

post-solution information, applying only to the continuous variables, in the usual way. This
isthe idea behind the so-called "fixed MIP" problem, aform of the MIP problem where al
of the discrete variables are placed at values corresponding to the MIP solution, and thusit is
a continuous problem though not strictly arelaxation of the MIP.

If you wish to access dual information in such a problem, first optimize your MILP problem
to create the fixed MILP problem; then re-optimize it, like this:

[1n Concert Technology, call the method solveFixed. (Thereisno explicit problem type
in Concert Technology, so there is ho need to change the problem type asin other
components.)

[In the Callable Library, call the routine cPxchgprobtype with the argument
CPXPROB_FIXEDMILP asthe problem type and then call cpxlpopt.

[1In the Interactive Optimizer, use these commands to change the problem type and
re-optimize;

« change problem fixed milp

. optimize

Progress Reports: Interpreting the Node Log

Asexplained earlier, when ILOG CPLEX optimizes mixed integer programs, it builds atree
with the linear relaxation of the original MIP at the root and subproblems to optimize at the
nodes of the tree. ILOG CPLEX reports its progress in optimizing the original problemin a
node log file asit traverses this tree.

You control how information in the log file is recorded and displayed, through two

ILOG CPLEX parameters. The MIPDisplay parameter controls the general nature of the
output that goesto the node log. Table 13.13 summarizes its possible values and their
effects.

268 ILOG CPLEX 10.0 — USER’'S MANUAL

Table 13.13 Settings of the MIP Display Parameter

Setting | Effect

0 no display

1 display integer feasible solutions

2 display nodes under mip interval control

3 same as 2, but add information on node cuts
4 same as 3, but add LP display for root node
5 same as 3, but add LP display for all nodes

TheMIPInterval parameter controls how frequently nodelog lines are printed. Its default
is100 and can be set to any positive integer value. A lineisrecorded in the node log for
every node with an integer solution if theMIPDisplay parameter isset to 1 or higher, and
also for any node whose number is amultiple of themipInterval valueif the
MIPDisplay iSSetto 2 or higher.

Hereis an example of alog file from the Interactive Optimizer, where the MIPInterval
parameter has been set to 10:

Tried aggregator 1 time.

No MIP presolve or aggregator reductions.
Presolve time = 0.00 sec.

Root relaxation solution time = 0.00 sec
Objective is integral.

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 4.0000 6 4.0000 12
* 4 2 0 5.0000 4.0000 17 20.00%
10 1 cutoff 5.0000 4.0000 31 20.00%
Integer optimal solution: Objective = 5.0000000000e+000
Solution time = 0.02 sec. Iterations = 41 Nodes = 13

In that example, ILOG CPLEX found the optimal objective function value of 5.0 after
exploring 13 nodes and performing 41 (dual simplex) iterations, and ILOG CPLEX found an
optimal integer solution at node 4. The MIP interval parameter was set at 10, so every tenth
node was logged, in addition to the node where an integer solution was found.

Asyou can see in that example, ILOG CPLEX logs an asterisk (*) in the left-most column
for any node where it finds an integer-feasible solution. In the next column, it logs the node
number. It next logs the number of nodes left to explore.

ILOG CPLEX 10.0 — USER’'S MANUAL 269

270

In the next column, objective, ILOG CPLEX either records the objective value at the
node or areason to fathom the node. (A node is fathomed if the solution of a subproblem at
the nodeisinfeasible; or if the value of objective function at the node is worse than the
cutoff valuefor branch & cut; or if the node supplies an integer solution.) Thiscolumn is|eft
blank for lines where the first column contains an asterisk (*) indicating a node where
ILOG CPLEX found an integer-feasible solution.

In the column labeled 11nf, ILOG CPLEX records the number of integer-infeasible
variables and special ordered sets. If no solution has been found, the next column is left
blank; otherwise, it records the best integer solution found so far.

The column labeled cuts/Best Node records the best objective function value achievable.
If the word cuts appearsin this column, it means various cuts were generated; if a
particular name of a cut appears, then only that kind of cut was generated.

The column labeled rtcnt records the cumulative iteration count of the algorithm solving
the subproblems. Until a solution has been found, the column labeled cap isblank. If a
solution has been found, the relative gap valueis printed when it islessthan 999. 99;
otherwise, hyphens are printed. The gap is computed as

abs (best integer - best node)/(le-10 + abs (best integer)).
Consequently, the printed gap value may not always move smoothly. In particular, there may
be sharp improvements whenever a new best integer solution is found.

ILOG CPLEX asologsits addition of cutsto amodel. Here is an example of anodelog file
from a problem where ILOG CPLEX added severa cover cuts.

MIP Presolve eliminated 0 rows and 1 columns.

MIP Presolve modified 12 coefficients.

Reduced MIP has 15 rows, 32 columns, and 97 nonzeros.
Presolve time = 0.00 sec.

Nodes Cuts/
Node Left Objective TIInf Best Integer Best Node ItCnt Gap

0 0 2819.3574 7 2819.3574 35
2881.8340 8 Covers: 4 44
2881.8340 12 Covers: 3 48

* 7 6 0 3089.0000 2904.0815 62 5.99%

Cover cuts applied: 30

Integer optimal solution: Objective = 3.0890000000e+003
Solution time = 0.10 sec. Iterations = 192 Nodes = 44

ILOG CPLEX aso logsthe number of clique inequalitiesin the clique table at the beginning
of optimization. Cuts generated at intermediate nodes are not logged individually unless
they happen to be generated at a node logged for other reasons. ILOG CPLEX logs the
number of applied cuts of all classes at the end.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

ILOG CPLEX also indicates, in the node log file, each instance of a successful application
of the node heuristic. The following example shows anode log file for a problem where the
heuristic found a solution at node 0. The + denotes a node generated by the heuristic.

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap
0 0 403.8465 640 403.8465 4037
405.2839 609 Cliques: 10 5208
405.2891 612 Cliques: 2 5288

Heuristic: feasible at 437.000, still looking

Heuristic: feasible at 437.000, still looking

Heuristic complete

* 0+ 0 0 436.0000 405.2891 5288 7.04%

Periodically, if the MIP display parameter is 2 or greater, ILOG CPLEX records the
cumulative time spent since the beginning of the current M1 P optimization and the amount
of memory used by branch & cut. (Periodically means that time and memory information
appear either every 20 nodes or ten times the MIP display parameter, whichever is greater.)
The following example shows you one line from anode log file indicating elapsed time and
memory use.

Elapsed b&c time = 120.01 sec. (tree size = 0.09 MB)

The Interactive Optimizer prints an additional summary linein the log if optimization stops
beforeit is complete. This summary line shows the best MIP bound, that is, the best
objective value among all the remaining node subproblems. The following example shows
you lines from a node log file where an integer solution has not yet been found, and the best
remaining objective value is 2973.9912281.

Node limit, no integer solution.

Current MIP best bound = 2.9739912281e+03 (gap is infinite)
Solution time = 0.01 sec. Iterations = 68 Nodes = 7 (7)

ILOG CPLEX 10.0 — USER’'S MANUAL 271

Sating a MIP Problem on page 242 presents atypical MIP problem. Here is the node log
file for that problem with the default setting of the M1P display parameter:

Tried aggregator 1 time.

Aggregator did 1 substitutions.

Reduced MIP has 2 rows, 3 columns, and 6 nonzeros.

Presolve time = 0.00 sec.

Clique table:0 GUB, 0 GUBEQ, 0 two-covers, 0 probed

ImplBd table: 0 bounds

Root relaxation solution time = 0.00 sec.

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 125.2083 1 125.2083 3
* 0 122.5000 Cuts: 2 4

Mixed integer rounding cuts applied: 1

Integer optimal solution: Objective = 1.2250000000e+002
Solution time = 0.02 sec. Iterations = 4 Nodes = 0

These additional items appear only in the node log file (not on screen):

[rariable recordsthe name of the variable where ILOG CPLEX branched to create this
node. If the branch was due to a special ordered set, the name listed here will be the
right-most variable in the left subset.

8 indicates the branching direction:

. D means the variables was restricted to alower value;

. U meansthe variable was restricted to a higher value;

. L meansthe left subset of the special ordered set was restricted to O (zero);

. R meanstheright subset of the special ordered set was restricted to 0 (zero).

. A meansthat constraints were added or more than one variable was restricted.
[RBarent indicates the node number of the parent.

[Depth indicates the depth of this node in the branch & cut tree.

Troubleshooting MIP Performance Problems

272

Even the most sophisticated methods currently available to solve pure integer and mixed
integer programming problems require noticeably more computation than the methods for
similarly sized continuous problems. Many relatively small integer programming models
still take enormous amounts of computing time to solve. Indeed, some such models have

ILOG CPLEX 10.0 — UsSER’'S MANUAL

never yet been solved. In the face of these practical obstacles to a solution, proper
formulation of the model is crucial to successful solution of pure integer or mixed integer
programs.

For help in formulating a model of your own integer or mixed integer problem, you may
want to consult H.P. Williams's textbook about practical model building (referenced in
Further Reading on page 35 in the preface of this manual).

Also you may want to develop a better understanding of the branch & cut algorithm. For that
purpose, Williams's book offers agood introduction, and Nemhauser and Wolsey’s book
(also referenced in Further Reading on page 35 in the preface of this manual) goesinto
greater depth about branch & cut as well as other techniques implemented in the

ILOG CPLEX MIP Optimizer.

Tuning Performance Features of the Mixed Integer Optimizer on page 250 in this chapter
has already discussed several specific features that are important for performance tuning of
difficult models. Here are more specific performance symptoms and the remedies that can be
tried.

[_Too Much Time at Node O on page 273

[Trouble Finding More than One Feasible Solution on page 274

[flarge Number of Unhelpful Cuts on page 274

[fack of Movement in the Best Node on page 274

_Time Wasted on Overly Tight Optimality Criteria on page 275
JHightly Infeasible Integer Variables on page 276

[—_Running out of Memory on page 277

[Difficulty Solving Subproblems: Overcoming Degeneracy on page 281
[Wnsatisfactory Subproblem Optimization on page 281

Too Much Time at Node O

If you observe that a very long time passes before the branch & cut algorithm begins
processing nodes, it may be that the root relaxation problem itself istaking along time. The
standard screen display will print alinetelling "Root relaxation solution time ="
once thisroot solve is complete, and a large solution time would be an indicator of an
opportunity for tuning. If you set the MIPDisplay parameter to 4, you may get afurther
indication of the difficultiesthis root solve has run into. Tuning techniques found in Chapter
8, Solving LPs: Smplex Optimizers, Chapter 11, Solving Problems with a

Quadratic Objective (QP), and Chapter 12, Solving Problems with Quadratic Constraints
(QCP) are applicable to tuning the root solve of a MIP model, too. In particular, it isworth
considering setting the RootAlg parameter to a nondefault setting, such as the Barrier
optimizer, to see if asimple change in algorithm will speed up this step sufficiently.

ILOG CPLEX 10.0 — USER’'S MANUAL 273

274

For some problems, ILOG CPLEX will spend a significant amount of time performing
computation at node 0, apart from solving the continuous L P, QP, or QCP relaxation. While
thisinvestment of time normally savesin the overall branch & cut, it does not aways do so.
Time spent at node 0 can be reduced by two parameters.

First, you can try turning off the node heuristic by setting the parameter HeurFreq to - 1.
Second, try aless expensive variable selection strategy by setting the parameter varsel to
4, pseudo reduced costs.

It isworth noting that setting the MI PEmphasis parameter to 1, resulting in an emphasis on
feasibility instead of optimality, often aso speeds up the processing of the root node. If your
purposes are compatible with this emphasis, consider using it.

Trouble Finding More than One Feasible Solution

For some models, ILOG CPLEX finds an integer feasible solution early in the process and
then does not find a better one for quite awhile. One possibility, of course, isthat the first
feasible solution is optimal. In that case, there are no better solutions.

One possible approach to finding more feasible solutions is to increase the frequency of the
node heuristic, by setting the HeurFreq parameter to avaluelike 10 or 5 or even 1. This
heuristic can be expensive, so exercise caution when setting this parameter to values less
than 1o0.

Another approach to finding more feasible solutions is to try a node selection strategy
alternative. Setting the NodeSel parameter to 2 invokes a best-estimate search, which
sometimes does a better job of locating good quality feasible solutions than the default node
selection strategy.

Large Number of Unhelpful Cuts

While the cuts added by ILOG CPLEX reduce runtime for most problems, on occasion they
can have the opposite effect. If you notice, for example, that ILOG CPLEX adds alarge
number of cuts at the root, but the objective value does not change significantly, then you
may want to experiment with turning off cuts.

[1In the Interactive Optimizer, you can turn cuts off selectively
(set mip cuts covers -1 for exampleto turn off only the cover cuts) or all at once
(set mip cuts all -1).

[1n the Component Libraries, you can set the parameters that control classes of cuts. The
parameters are listed in Table 13.9 on page 259.

Lack of Movement in the Best Node

For some models, the Best Node value in the node log changes very slowly or not at al.
Runtimes for such models can sometimes be reduced by the variable selection strategy

ILOG CPLEX 10.0 — UsSER’'S MANUAL

known as strong branching. Strong branching explores a set of candidate
branching-variables in-depth, performing alimited number of simplex iterations to estimate
the effect of branching up or down on each.

I mportant: Srong branching consumes significantly more computation time per node than
the default variable selection strategy.

To activate strong branching, set the varsel parameter to avalue of 3.

On rare occasions, it can be helpful to modify strong branching limits. If you modify the
limit on the size of the candidate list, then strong branching will explore alarger (or smaller)
set of candidates. If you modify the limit on strong branching iteration, then strong
branching will perform more (or fewer) simplex iterations per candidate.

These limits are controlled by the parameters st rongCandLim and St rongItLim,
respectively.

Other parameters to consider trying, in the case of slow movement of the Best Node value,
are non-default levelsfor probe (try the aggressive setting of 3 first, and then reduceit if the
probing step itself takes excessive time for your purposes), and MIPEmphasis Set to avalue
of 3.

Time Wasted on Overly Tight Optimality Criteria

Sometimes ILOG CPLEX finds agood integer solution early, but must examine many
additional nodes to prove the solution is optimal. You can speed up the process in such a
case if you are willing to change the optimality tolerance. ILOG CPLEX supports two kinds
of tolerance:

[Relative optimality tolerance guarantees that a solution lies within a certain percentage
of the optimal solution.

[Absol ute optimality tolerance guarantees that a solution lies within a certain absolute
range of the optimal solution.

The default relative optimality tolerance is 0.0001. At this tolerance, the final integer
solution is guaranteed to be within 0.01% of the optimal value. Of course, many
formulations of integer or mixed integer programs do not require such tight tolerance, so
requiring ILOG CPLEX to seek integer solutions that meet this tolerance in those casesis
wasted computation. If you can accept greater optimality tolerance in your model, then you
should change the parameter EpGap.

If, however, you know that the objective values of your problem are near zero, then you
should change the absol ute gap because percentages of very small numbers areless useful as
optimality tolerance. Change the parameter Epacap in this case.

To speed up the proof of optimality, you can set objective difference parameters, both
relative and absolute. Setting these parameters helps when there are many integer solutions

ILOG CPLEX 10.0 — USER’'S MANUAL 275

276

with similar objective values. For example, setting the objDif parameter to 100 . 0 makes

ILOG CPLEX skip any potential solution with its objective value within 100.0 units of the
best integer solution so far. Or, setting theRe10bjDif to 0.01 would mean that

ILOG CPLEX would skip any potential new solution that is not at least 1% better than the

incumbent solution. Naturally, since this objective difference setting may make

ILOG CPLEX skip an interval where the true integer optimum may be found, the objective
difference setting weakens the guarantee of optimality.

Cutoff parameters can also be helpful in restricting the search for optimality. If you know
that there are solutions within a certain distance of theinitial relaxation of your problem,
then you can readily set the upper cutoff parameter for minimization problems and the lower
cutoff parameter for maximization problems. Set the parameters cutUp and CutLo,
respectively, to establish a cutoff value.

When you set aMIP cutoff value, ILOG CPLEX searches with the same solution strategy as
though it had already found an integer solution, using a node selection strategy that differs
from the one it uses before afirst solution has been found.

Slightly Infeasible Integer Variables

On some models, the integer solution returned by CPLEX at default settings may contain
solution values for the discrete variables that violate integrality by a small amount. The
integrality tolerance parameter, EpInt, has adefault value of 1e-5, which means that any
discrete variable that violates integrality by no more than this amount will not be branched
upon for resolution. For most model formulations, this situation is satisfactory and avoids
branching that may be essentially meaningless and only consumes additional computing
time.

However, some formulations combine discrete and continuous variables, for example,
involving constraint coefficients over amillion in magnitude, where even asmall integrality
violation can be magnified elsewhere in the model. In such situations, you may attempt to
address this variation by tightening the simplex feasibility tolerance, EprHS, from its default
value of 1e-6 to aslow as 1e-9, its minimum, and also tighten EpInt to asimilar value, and
re-run the MIP optimization from the beginning.

If this adjustment isinsufficient to give satisfactory results, you can also try setting EpInt
all theway to zero, preferably in conjunction with atightened EprHS setting. This very tight
integrality tolerance directs CPLEX to attempt to branch on any integer infeasibility, no
matter how small. Numeric roundoff due to floating-point arithmetic on any computer may
make it impossible to achieve this tolerance, but in practice, the setting achievesitsaimin
many models and reduces the integrality violations in many others. In cases where the
integrality violation even after branching remains above EpInt or isabove 1e-10 when
EpInt hasbeen set to avalue smaller than that, a solution status returned will be
CPX_STAT OPTIMAL INFEAS instead of the usual cPx STAT OPTIMAL. In most casesa
solution with status cPx_STAT OPTIMAL INFEAS Will be satisfactory, and reflects only

ILOG CPLEX 10.0 — UsSER’'S MANUAL

roundoff error after presolve uncrush, but extra care in using the solution may be advisable
in numerically sensitive formulations.

Running out of Memory

A very common difficulty with MIPsis running out of memory. This problem almost always
occurs when the branch & cut tree becomes so large that insufficient memory remains to
solve a continuous LP, QP, or QCP subproblem. (In the rare case that the dimensions of a
very large model are themselves the main contributor to memory consumption, you can try
adjusting the memory emphasis parameter, as described in Lack of Memory on page 169.)
As memory gets tight, you may observe warning messages from ILOG CPLEX asit
attempts various operations in spite of limited memory. In such asituation, if ILOG CPLEX
does not find a solution shortly, it terminates the process with an error message.

The information about atree that ILOG CPLEX accumulates in memory can be substantial.
In particular, ILOG CPLEX saves a basis for every unexplored node. Furthermore, when
ILOG CPLEX usesthe best bound or best estimate strategies of node selection, the list of
unexplored nodes itself can become very long for large or difficult problems. How large the
unexplored node list can be depends on the actual amount of memory available, the size of
the problem, and algorithm selected.

A less frequent cause of memory consumption is the generation of cutting planes. Gomory
fractional cuts, and, in rareinstances, Mixed Integer Rounding cuts, are the ones most likely
to be dense and thus use significant memory at default automatic settings. You can try
turning off these cuts, or any of the cuts you see listed as being generated for your model (in
the cuts summary at the end of the node log), or simply all cuts, through the use of parameter
settings discussed in the section on cuts in this manual; doing this carries the risk that this
will make the model harder to solve and only delay the eventual exhaustion of available
memory during branching. Since generation of cutting planesis not afrequent cause of
memory consumption, apply these recommendations only as a last resort, after trying to
resolve the problem with |ess drastic measures.

Certainly, if you increase the amount of available memory, you extend the problem-solving
capability of ILOG CPLEX. Unfortunately, when a problem fails because of insufficient
memory, it is difficult to project how much further the process needed to go and how much
more memory is needed to solve the problem. For these reasons, the following suggestions
aim at avoiding memory failure whenever possible and recovering gracefully otherwise.

Reset the Tree Memory Parameter

To avoid afailure due to running out of memory, set the working memory parameter,
WorkMem, to avalue significantly lower than the available memory on your computer (in
megabytes), to instruct ILOG CPLEX to begin compressing the storage of nodes before it
consumes al of available memory. See the related topic Use Node Files for Sorage on
page 278, for other choices of what should happen when workMem is exceeded. That topic
explains how to indicate to CPLEX that it should use disk for working storage.

ILOG CPLEX 10.0 — USER’'S MANUAL 277

278

Because the storage of nodes can require alot of space, it may also be advisable to set atree
limit on the size of the entire tree being stored so that not all of your disk will be filled up
with working storage. The call to the MIP optimizer will be stopped once the size of the tree
exceedsthevalue of TreLim, thetreelimit parameter. At default settings, the limit isinfinity
(1e"™®), but you can set it to alower value (in megabytes).

Use Node Files for Storage

Asnoted in Using Node Files on page 256, ILOG CPLEX offers a node-file storage-feature
to store some parts of the branch & cut tree in files as it progresses through its search. This
feature allows ILOG CPLEX to explore more nodes within a smaller amount of computer
memory. It also includes several options to reduce the use of physical memory. Importantly,
it entails only avery small increasein runtime. In terms of performance, node-file storage
offers amuch better option than relying on generic swap space managed by your operating
system.

Thisfeature is especially helpful when you are using steepest-edge pricing asthe
subproblem simplex pricing strategy because pricing information itself consumes a great
deal of memory.

Note: Try node files whenever the MIP optimizer terminates with the condition "out of
memory" and the node count is greater than zero. The message in such a situation looks
like the following sample output.

Clique cuts applied: 30
CPLEX Error 1001: Out of memory.

Consider using CPLEX node files to reduce memory usage.

Error termination, integer feasible: Objective = 5.6297000000e+04
Current MIP best bound = 5.5731783224e+04 (gap = 565.217, 1.00%)
Solution time = 220.75 sec. Iterations = 16707 Nodes = 101 (58)

There are several parameters that control the use of node files. They are:
[dorkMem in Concert Technology or CPX_PARAM WORKMEM in the Callable Library

[NodeFileInd in Concert Technology or CPx PARAM NODEFILEIND inthe Callable
Library

[TreLimin Concert Technology or cpx paraM TRELIM inthe Callable Library
[dorkDir in Concert Technology or CPX_PARAM WORKDIR inthe Callable Library

ILOG CPLEX uses node file storage most effectively when the amount of working memory
isreasonably large so that it does not have to create node files too frequently. The default

ILOG CPLEX 10.0 — UsSER’'S MANUAL

value of the workMem parameter is 128 megabytes. Setting it to higher values, even on a
machine with very large memory, can be expected to result in only marginally improved
efficiency. However, it is advisable to reduce this setting to approximately half the available
memory of your machine if your machine has less than 256 megabytes of RAM to avoid
defeating the purpose of node files, a situation that would occur if your application
inadvertently triggers the swap space of your operating system.

When tree storage size exceeds the limit defined by workmem, and if the tree-memory limit
has not been exceeded, then what happens next is determined by the setting of the node file
indicator (NodeFileInd in Concert Technology or CPX PARAM NODEFILEIND inthe
Callable Library). If that parameter is set to zero, then optimization proceeds with the tree
stored in memory until ILOG CPLEX reaches the tree memory limit (TreLim in Concert
Technology or cpx_paraM TRELIM inthe Callable Library). If the nodefileindicator is set
to 1 (the default), then afast compression algorithm is used on the nodes to try to conserve
memory, without resorting to writing the node files to disk. If the parameter is set to 2, then
node files are written to disk. If the parameter is set to 3, then nodes are both compressed (as
in option 1) and written to disk (asin option 2). Table 13.14 summarizes these different
options.

Table 13.14 Settings for the Node File Sorage Parameter

Setting [Meaning Comments

0 no node files optimization continues

1 node file in memory and compressed | optimization continues (default)

2 node file on disk files created in temporary directory
3 node file on disk and compressed files created in temporary directory

Among the memory conservation tactics employed by ILOG CPLEX when the memory
emphasis parameter has been set, the maximum setting for the node file indicator is
automatically chosen, so that node-file storage will go to disk. You may still wish to adjust
the working memory or tree limit parameters to fit the capabilities of your computer.

In cases where node files are written to disk, ILOG CPLEX will create atemporary
subdirectory under the directory specified by the working directory parameter (WworkDir in
Concert Technology or cPX_PARAM WORKDIR in the Callable Library). The directory
named by this parameter must exist before ILOG CPLEX attempts to create node files. By

default, the value of this parameter is“.”, which means the current working directory.

ILOG CPLEX creates the temporary directory by means of system calls. If the system
environment variableis set (on Windows platforms, the environment variable Tmp; on UNIX
platforms, the environment variable TMPDIR), then the system ignoresthe ILOG CPLEX
node-file directory parameter and creates the temporary node-file directory in the location
indicated by its system environment variable. Furthermore, if the directory specified in the
ILOG CPLEX node-file directory parameter isinvalid (for example, if it containsillegal

ILOG CPLEX 10.0 — USER’'S MANUAL 279

280

characters, or if the directory does not allow write access), then the system chooses a
location according to its own logic.

The temporary directory created for node file storage will have a name prefixed by cpx. The
fileswithin it will also have names prefixed by cpx.

ILOG CPLEX automatically removes the files and their temporary directory when it frees
the branch & cut tree:

[ih the Interactive Optimizer,
. a problem modification;
. a normal termination;
—from Concert Technology,
. whenyou cal env.end
. when you modify the extracted model
[—from the Callable Library,
- when you call a problem modification routine;

. whenyou call cPxfreeprob.
If a program terminates abnormally, the files are not removed.

Node files could grow very large. Use the TreMem parameter to limit the size of the tree so
that it does not exceed available disk space, when you choose NodeFileInd Settings2 or 3.
Itisusually better to let ILOG CPLEX terminate the run gracefully, with whatever current
feasible solution has been found, than to trigger an error message or even a program abort.

When ILOG CPLEX uses node-file storage, the sequence of nodes processed may differ
from the sequence in which nodes are processed without node-file storage. Nodes in
node-file storage are not accessible to user-written callback routines.

Change Algorithms

The best approach to reduce memory use is to modify the solution process. Here are some
ways to do so:

—Jwitch the node selection strategy to best estimate, or more drastically to depth-first, as
explained in Table 13.6 on page 254. Depth-first search rarely generates along,
memory-consuming list of unexplored nodes since ILOG CPLEX dives deeply into the
tree instead of jumping around. A narrowly focused search, like depth-first, also often
resultsin faster processing times for individual nodes. However, overall solution timeis
generally much worse than with best-bound node sel ection because each branch is
searched exhaustively to its deepest level beforeit is fathomed in favor of better
branches.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

—_Another memory-conserving strategy isto use strong branching (varsel parameter
value 3) for variable selection. Strong branching requires substantial computational
effort at each node to determine the best branching variable. As aresult, it generates
fewer nodes and thus makes less overall demand on memory. Often, strong branching is
faster aswell.

Difficulty Solving Subproblems: Overcoming Degeneracy

There are classes of MIPs that produce very difficult subproblems, for example, if the
subproblems are dual degenerate. In such a case, a different optimizer, such as the primal
simplex or the barrier optimizer, may be better suited to your problem than the default dual
simplex optimizer for subproblems. These alternatives are discussed in Unsatisfactory
Subproblem Optimization on page 281. A stronger dual pricing agorithm, such as dual
steepest-edge pricing (the parameter bpriInd Set to 2), could also be considered.

If the subproblems are dual degenerate, then consider using the primal simplex optimizer for
the subproblems. You make this change by setting the subalg parameter to 1.

Unsatisfactory Subproblem Optimization

In some problems, you can improve performance by evaluating how the continous LP, QP,
or QCP subproblems are solved at the nodes in the branch & cut tree, and then possibly
maodifying the choice of algorithm to solve them. You can control which algorithm

ILOG CPLEX appliesto theinitial relaxation of your problem separately from your control
of which agorithm ILOG CPLEX appliesto other subproblems. The following sections
explain those parameters more fully.

RootAlg Parameter

The Rootalg algorithm parameter indicates the algorithm for ILOG CPLEX to use on the
initial subproblem. In atypical MIP, that initial subproblem is usualy the linear relaxation
of the original MIP. By default, ILOG CPLEX starts theinitial subproblem with the dual
simplex optimizer. You may have information about your problem that indicates another
optimizer could be more efficient. Table 13.15 summarizes the values available for the
RootAlg parameter.

To set this parameter:

[IntheInteractive Optimizer, usethecommand set mip strategy startalgorithm
with the value to indicate the optimizer you want.

[1n Concert Technology, use the method I11ocplex method set Param with the
parameter RootAlg and the appropriate algorithm enumeration value.

[In the Callable Library, use the routine cPxset intparam with the parameter
CPX_PARAM STARTALG, and the appropriate symbolic constant.

ILOG CPLEX 10.0 — USER’'S MANUAL 281

282

Table 13.15 Settings of RootAlg and NodeAlg Parameters

Auto CPX_ALG_AUTO 0 automatic

Primal CPX_ALG_ PRIMAL 1 primal simplex

Dual CPX_ALG DUAL 2 dual simplex (default)

Network CPX_ALG HYBNETOPT |3 network simplex

Barrier CPX_ALG_BARRIER 4 barrier with crossover

Sifting CPX_ALG_SIFTING 5 sifting

Concurrent CPX_ALG CONCURRENT |6 concurrent: allowed at root, but
not at nodes

NodeAlg Parameter

The Nodealg parameter indicates the algorithm for ILOG CPLEX to use on node
relaxations other than the root node. By default, ILOG CPLEX applies the dual simplex
optimizer to subproblems, and unlikethe Root A1g parameter it is extremely unusual for this
to not be the most desirable choice, but again, you may have information about your
problem that tells you another optimizer could be more efficient. The values and symbolic
constants are the same for the NodeA1g parameter as for the RootAlg parameter in

Table 13.15.

To set the NodeAlg parameter:

[1n Concert Technology, use the 11oCplex method setParam with the parameter
Nodealg and the appropriate algorithm enumeration value.

[In the Callable Library, use the routine cPxset intparam with the parameter
CPX_PARAM SUBALG, and the appropriate symbolic constant.

[In the Interactive Optimizer, use the command set mip strategy subalgorithm
with the value to indicate the optimizer you want.

Note: Only simplex and barrier optimizers can solve problems of type QP (quadratic term
in the objective function).

Only the barrier optimizer can solve problems of type QCP (quadratic terms among the
constraints).

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Example: Optimizing a Basic MIP Problem

These examplesillustrate how to optimize a MIP with the ILOG CPLEX Component
Libraries.

Complete Program: ilomipex1.cpp

The example derives from ilolpexs8 . cpp. Here are the differences between that linear

program and this mixed integer program:

[_The problem to solve is slightly different. It appearsin Sating a MIP Problemon
page 242.

[Theroutine populatebyrow added the variables, objective, and constraints to the
model created by the method 11oModel model (env).

Complete Program: mipex1l.c

The example derives from 1pex8 . c. Here are the differences between that linear program
and this mixed integer program:

[_The problem to solveis slightly different. It appearsin Sating a MIP Problemon
page 242.

[Theroutine setproblemdata hasaparameter, ctype, to set the types of the variables
to indicate which ones must assume integer values. The routine cPXcopyctype
associates this data with the problem that cPxcreateprob creates.

[The example calls cpxmipopt to optimize the problem, rather than cpx1popt.

[_The example callsthe routines cpPxgetstat, CPXgetobjval, CPXgetx, and
Ccpxgetslack (instead of cPxsolution) to get a solution.

You do not get dual variables thisway. If you want dual variables, you must do the
following:

. Usecpxchgprobtype to change the problem typeto CPXPROB FIXEDMILP.
. Thencall cPxprimopt to optimize that problem.

. Thenuse cPxsolution to get asolution to the fixed problem.

Example: Reading a MIP Problem from a File

These examples show you how to solve a MIP with the Component Libraries when the
problem datais stored in afile.

ILOG CPLEX 10.0 — USER’'S MANUAL 283

284

Complete Program: ilomipex2.cpp
This example derives from i1olpex2 . cpp, an LP example explained in the manual
ILOG CPLEX Getting Sarted. That L P example differs from this MIP example in these
ways:
[_This example solvesonly MIPs, so it callsonly 11oCplex: : solve, and its command
line does not require the user to indicate an optimizer.

[_This example does not generate or print a basis.

Like other applications based on ILOG CPLEX Concert Technology, this one uses 11cEnv
env to initialize the Concert Technology environment and T1oModel model (env) to
create a problem object. Beforeit ends, it callsenv . end to free the environment.

Complete Program: mipex2.c
The example derives from 1pex2 . c, an LP example explained in the manual ILOG CPLEX
Getting Sarted. That LP example differs from this MIP example in these ways:
[_This example solves only MIPs, so it callsonly cPxmipopt, and its command line does
not require the user to indicate an optimizer.

[_This example does not generate or print a basis.

Like other applications based on the ILOG CPLEX Callable Library, this one calls
CPXopenCPLEX toinitialize the ILOG CPLEX environment; it sets the screen-indicator
parameter to direct output to the screen and calls cPXcreateprob to create a problem
object. Beforeit ends, it calls cpxfreeprob to free the space allocated to the problem

object and cpxcloseCPLEX to free the environment.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

14

Using Special Ordered Sets (SOS)

ILOG CPLEX enables you to define special ordered sets (SOSs) in the model of your
problem as away to specify integrality conditions. The following sectionstell you more
about special ordered sets.

[What Is a Special Ordered Set (SOS)? on page 285

[Example: SOSType 1 for Szing a Warehouse on page 286
[Declaring SOS Members on page 287

[Example: Using SOSand Priority on page 287

What Is a Special Ordered Set (SOS)?

A special ordered set (SOS) isan additional way to specify integrality conditionsin amodel.
In particular, aspecial ordered set is away to restrict the number of nonzero solution values
among a specified set of variablesin amodel. There are various types of SOS:

3OS Type lisaset of variables where at most one variable may be nonzero.

3OS Type 2 isa set of variables where at most two variables may be nonzero. If two
variables are nonzero, they must be adjacent in the set.

The members of a special ordered set (SOS) individually may be continuous or discrete
variables in any combination. However, even when all the members are themselves

ILOG CPLEX 10.0 — USER’'S MANUAL 285

continuous, amodel containing one or more special ordered sets (SOSs) becomes a discrete
optimization problem requiring the mixed integer optimizer for its solution.

ILOG CPLEX uses special branching strategies to take advantage of SOSs. For many
classes of problems, these branching strategies can significantly improve performance.
These special branching strategies depend upon the order among the variablesin the set. The
order is specified by assigning weights to each variable. The order of the variablesin the
model (such asinthe MPS or LP format datafile, or the column index in aCallable Library
application) is not used in SOS branching. If there is no ordered relationship among the
variables (such that weights cannot be specified or would not be meaningful), other
formulations should be used instead of a special ordered set.

Example: SOS Type 1 for Sizing a Warehouse

286

To giveyou afeel for how SOSs can be useful, here’s an example of an SOS Type 1 used to
choose the size of awarehouse. Assume for this example that awarehouse of 10000, 20000,
40000, or 50000 square feet can be built. Define binary variables for the four sizes, say, Xy,
X, X4, @nd X5. Connect these variables by a constraint defining another variable to denote
available square feet, like this: z - 10000x; - 20000x, - 40000x, - 50000x5 = O.

Those four variables are members of a special ordered set. Only one size can be chosen for
the warehouse; that is, at most one of the x variables can be nonzero in the solution. And,
there is an order relationship among the x variables (namely, the sizes) that can be used as
weights. Then the weights of the set members are 10000, 20000, 40000, and 50000.

Assume furthermore that there is a known fractional (that is, noninteger) solution of

X1 = 0.1, X5 = 0.9. These valuesindicate that other parts of the model have imposed the
reguirement of 46000 square feet since 0.1* 10000 + 0.9*50000 = 46000. In SOS parlance,
the weighted average of the set is (0.1* 10000 + 0.9*50000)/(0.1 + 0.9) = 46000.

Solit the set before the variable with weight exceeding the weighted average. In this case,
split the set like this: x4, X5, and X4 will bein one subset; xs in the other.

Now branch. One branch restricts x4, X, X4 to O (zero). This branch resultsin xg being set
to 1 (one).

The other branch, where xs is set to 0 (zero), resultsin an infeasible solution, so it is
removed from further consideration.

If awarehouse must be built, then the additional constraint is needed that
X1+ X+ X4 + X5 = 1. Theimplicit constraint for an SOS Type 1 islessthan or equal to one.
The continuous relaxation may more closely resemble the MIP if that constraint is added.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Declaring SOS Members

ILOG CPLEX offers you several ways to declare an SOS in a problem:

[Wse features of Concert Technol ogy.

. Inthe C++ API, use the classes 1105081, 1105052, or the methods
IloCplex: :addSOS1 OF addS0OS2.

. IntheJavaAPI, usetheinterfaces 11050S1 or 1108082, or use the methods
IloCplex.addSOS1 Or addsoOs2.

. Inthe .NET API, usetheinterfaces 1sos1 or 1s0s2, or use the methods
CplexModeler.AddSOS1 O CplexModeler .AddSOS2.

[Wse routines from the Callable Library, such as cpxaddsos OF CPXcopysos.

[Wse SOS declarations within an LP file (that is, one in LP format with the file extension
.1p). Conventions for declaring SOS information in LP files are documented in the
ILOG CPLEX File Format Reference Manual.

[Wse SOS declarations within an MPSfile (that is, one in MPS format with the file
extension .mps). If you aready have MPS files with SOS information, you may prefer
this option, but keep in mind that this way of declaring an SOS supports the fewest
number of digits of precision in the data. Conventions for declaring SOS information in
MPS files are documented in the ILOG CPLEX File Format Reference Manual.

Members of an SOS should be given unique weights that in turn define the order of the
variablesin the set. (These unique weights are also called reference row values.) Each of
those ways of declaring SOS members allows you to specify weights.

The SOS example, Example: SOS Type 1 for Szing a Warehouse on page 286, used the
coefficients of the warehouse capacity constraint to assign weights.

Example: Using SOS and Priority

These examples illustrate how to use SOS and priority orders.

Complete Program: ilomipex3.cpp

This example derives from i1lomipex1 . cpp. The differences between that smpler MIP
example and this one are:

[_The problem solved is slightly different so the output is interesting. The actual SOS and
priority order that the example implements are arbitrary; they do not necessarily
represent good data for this problem.

ILOG CPLEX 10.0 — USER’'S MANUAL 287

288

[Theroutine setPriorities setsthe priority order.

Complete Program: mipex3.c

This example derives from mipex1 . c. The differences between that simpler MIP example
and thisone are:

[_The problem solved is slightly different so the output is interesting. The actual SOS and
priority order that the example implements are arbitrary; they do not necessarily
represent good data for this problem.

[ThelLOG CPLEX preprocessing parameters for the presolver and aggregator are turned
off to make the output interesting. Generally, thisis not required nor recommended.

[Theroutine set sosandorder setsthe SOS and priority order:
. ltcalscpxcopysos to copy the SOS into the problem object.
. ltcalscpxcopyorder to copy the priority order into the problem object.
. It writesthe priority order to filesby calling cpxordwrite.

[_Theroutine cPxwriteprob writes the problem with the constrainnts and SOSs to disk
before the exampl e copies the SOS and priority order to verify that the base problem was
copied correctly.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

15

Using Semi-Continuous Variables:
a Rates Example

This chapter uses an example of managing production in a power plant to demonstrate
semi-continuous variablesin Concert Technology. In it, you will learn:

[What Are Semi-Continuous Variables? on page 290
[_Describing the Problem on page 290

[Representing the Problem on page 291

[Building a Model on page 291

[3olving the Problem on page 292

[_Ending the Application on page 292

[Complete Program on page 292

This chapter walks through an examplein C++, rates.cpp. You will also find
Rates.java iN yourCPLEXinstallation/examples/src/. If your installation
includesthe .NET API of ILOG CPLEX, then you will aso find the C#.NET

implementation of thisexamplein Rates.cs and the VB.NET implmentation in
Rates.vb.

ILOG CPLEX 10.0 — USER’'S MANUAL 289

What Are Semi-Continuous Variables?

A semi-continuous variableis avariable that by default can take the value O (zero) or any
value between its semi-continuous lower bound (sclb) and its upper bound (ub). The
semi-continuous lower bound (sclb) must be finite. The upper bound (ub) need not be finite.
The semi-continuous lower bound (sclb) must be greater than or equal to 0 (zero). An
attempt to use a negative val ue for the semi-continuous lower bound (sclb) will raise an
error.

In Concert Technology, semi-continuous variables are represented by the class
IloSemiContVar. TO Create a semi-continuous variable, you use the constructor from that
classto indicate the environment, the semi-continuous lower bound, and the upper bound of
the variable, like this:

IloSemiContVar mySCV(env, 1.0, 3.0);

That statement creates a semi-continuous variable with a semi-continuous lower bound of
1.0 and an upper bound of 3.0. The method 11o0SemiContVar: :getSemiContinuousLB
returns the semi-continuous lower bound of the invoking variable, and the method
IloSemiContVar: : getUB returnsthe upper bound. That class, its constructors, and its
methods are documented in the ILOG CPLEX Reference Manual of the C++ API.

In that manual, you will seethat I11oSemiContvar derives from I1loNumvar, the Concert
Technology class for numeric variables. Like other numeric variables, semi-continuous
variables assume floating-point values by default (type ILOFLOAT). However, you can
designate a semi-continuous variable asinteger (type ILOINT). In that case, itisa
semi-integer variable.

For details about the feasible region of a semi-continuous or semi-integer variable, see the
documentation of 11oSemiContVar inthe ILOG CPLEX Reference Manual of the C++
API.

In the Callable Library, semi-continuous variables can be entered with type cPX SEMICONT
Or CPX_SEMIINT Viatheroutine cPxcopyctype. Inthat case, thelower bound of O (zero) is
implied; the semi-continuous lower bound is defined by the corresponding entry in the array
of lower bounds; and likewise, the semi-continuous upper bound is defined by the
corresponding entry in the array of upper bounds of the problem.

Semi-continuous variables can be specified in MPS and LP files. Sating a MIP Problem on
page 242 tells you how to specify variables as semi-continuous.

Describing the Problem

290

With this background about semi-continuous variables, consider an example using them.
Assume that you are managing a power plant of several generators. Each of the generators

ILOG CPLEX 10.0 — UsSER’'S MANUAL

may be on or off (producing or not producing power). When a generator ison, it produces
power between its minimum and maximum level, and each generator has its own minimum
and maximum levels. The cost for producing a unit of output differs for each generator as
well. The aim of the problem is to satisfy demand for power while minimizing cost in the
best way possible.

Representing the Problem

Asinput for this example, you need such data as the minimum and maximum output level
for each generator. The application will use Concert Technology arraysminArray and
maxArray for that data. It will read datafrom afile into these arrays, and then learn their
length (that is, the number of generators available) by calling the method getsize.

The application also needs to know the cost per unit of output for each generator. Again, a
Concert Technology array, cost, serves that purpose as the application reads datain from a
filewith the operator >».

The application also needs to know the demand for power, represented as a numeric
variable, demand.

Building a Model
After the application creates an environment and a model in that environment, it isready to
populate the model with extractable objects pertinent to the problem.

It represents the production level of each generator as a semi-continuous variable. In that
way, with the value 0 (zero), the application can accommodate whether the generator ison or
off; with the semi-continuous lower bound of each variable, it can indicate the minimum
level of output from each generator; and indicate the maximum level of output for each
generator by the upper bound of its semi-continuous variable. The following lines create the
array production of semi-continuous variables (one for each generator), like this:

IloNumVarArray production (env) ;
for (IloInt j = 0; j < generators; ++7j)
production.add(IloSemiContVar (env, minArray[j], maxArrayl[jl));
The application adds an objective to the model to minimize production costs in this way:

mdl.add (IloMinimize (env, IloScalProd(cost, production)));

It also adds a constraint to the model: it must meet demand.

mdl.add (IloSum(production) >= demand) ;

ILOG CPLEX 10.0 — USER’'S MANUAL 291

With that model, now the application is ready to create an algorithm (in this case, an instance
of IloCplex) and extract the model.

Solving the Problem

To solve the problem, create the algorithm, extract the model, and solve.

Ending the Application

Asinall C++ CPLEX applications, this program ends with acall to 110Env: :end to
de-allocate the model and algorithm after they are no longer in use.

env.end () ;

Complete Program

You can see the entire program online in the standard distribution of ILOG CPLEX at

yourCPLEXinstallation/examples/src/rates.cpp. 10 runthat example, you need
alicensefor ILOG CPLEX.

You will also find Rates.java in yourCPLEXinstallation/examples/src/. If your
installation includes the .NET API of ILOG CPLEX, then you will also find the C#£NET
implementation of thisexamplein Rates.cs and the VB.NET implmentation in
Rates.vb.

292 ILOG CPLEX 10.0 — USER’'S MANUAL

16

Using Piecewise Linear Functions in
Optimization: a Transport Example

This chapter shows you how to represent piecewise linear functions in optimization with
ILOG CPLEX and Concert Technology. In this chapter, you will find these topics:

[Piecewise Linearity in ILOG CPLEX on page 294
[_Describing the Problem on page 298
[_Developing a Model on page 301

—Jolving the Problem on page 303

[Displaying a Solution on page 303

[Ending the Application on page 303

This chapter walks through an example in C++, transport.cpp. You will also find

Transport.java iN yourCPLEXinstallation/examples/src/. If your installation
includesthe .NET API of ILOG CPLEX, then you will aso find the C#.NET

implementation of this examplein Transport . cs and the VB.NET implementation in
Transport.vb.

ILOG CPLEX 10.0 — USER’'S MANUAL 293

Piecewise Linearity in ILOG CPLEX

Some problems are most naturally represented by constraints over functions that are not
purely linear but consist of linear segments. Such functions are also known as piecewise
linear. In this chapter, atransportation example shows you various ways of stating and
solving problems that lend themselves to a piecewise linear model. Before plunging into the
problem itself, this section defines afew terms appearing in this discussion.

What Is a Piecewise Linear Function?

From a geometric point of view, Figure 16.1 shows a conventional piecewise linear function
£ (x) . This particular function consists of four segments. If you consider the function over
four separate intervals, (-e, 4) and [4, 5) and [5, 7) and [7, o), YyouSeethat £ (x)
islinear in each of those separate intervals. For that reason, it is said to be piecewise linear.
Within each of those segments, the slope of the linear function is clearly constant, though it
is different between segments. The points where the slope of the function changes are
known as breakpoints. The piecewise linear function in Figure 16.1 has three breakpoints.

fix)
5 —
4= ~. II
3 4
2 4
] 4
| | | | | | | | X
I I I I I I I I
0] 2 3 4 5 6 7 8

Figure16.1 A piecewiselinear function with breakpoints

Piecewise linear functions are often used to represent or to approximate nonlinear unary
functions (that is, nonlinear functions of one variable). For example, piecewise linear

294 ILOG CPLEX 10.0 — USER’'S MANUAL

functions frequently represent situations where costs vary with respect to quantity or gains
vary over time.

Syntax of Piecewise Linear Functions

To define a piecewise linear function in Concert Technology, you need these components:
[the independent variable of the piecewise linear function;

[_the breakpoints of the piecewise linear function;

[the slope of each segment (that is, the rate of increase or decrease of the function
between two breakpoints);

[_the geometric coordinates of at least one point of the function.

In other words, for a piecewise linear function of n breakpoints, you need to know n+1
sopes.

Typically, the breakpoints of a piecewise linear function are specified as an array of numeric
values. For example, the breakpoints of the function £ (x) asit appearsin Figure 16.1 are
specified in thisway:

IloNumArray (env, 3, 4., 5., 7)

The slopes of its segments are indicated as an array of numeric values as well. For example,
the slopes of £ (x) are specified in thisway:

IloNumArray (env, 4, -0.5, 1., -1., 2.)

The geometric coordinates of at least one point of the function, (x, £ (x)) must aso be
specified; for example, (4, 2). Thenin Concert Technology, those elements are brought
together in an instance of the class I1loPiecewiseLinear inthisway:

IloPiecewiseLinear (X,
IloNumArray (env, 3, 4., 5., 7.),
IloNumArray (env, 4, -0.5, 1., -1., 2.),
4, 2)

Another way to specify a piecewise linear function is to give the slope of the first segment,
two arrays for the coordinates of the breakpoints, and the slope of the last segment. In this
approach, the example £ (x) from Figure 16.1 looks like this:

IloPiecewiselLinear (x, -0.5, IloNumArray(env, 3, 4., 5.,
IloNumArray(env, 3, 2., 3.,

Discontinuous Piecewise Linear Functions

Thus far, you have seen a piecewise linear function where the segments are continuous.
Intuitively, in a continuous piecewise linear function, the endpoint of one segment has the
same coordinates astheinitia point of the next segment, asin Figure 16.1.

ILOG CPLEX 10.0 — USER’'S MANUAL 295

296

There are piecewise linear functions, however, where the endpoint of one segment and the
initial point of the next segment may have the same x coordinate but differ in the value of
f (x) . Such adifference is known as a step in the piecewise linear function, and such a
function is known as discontinuous. Figure 16.2 shows a discontinuous piecewise linear
function with two steps.

Syntactically, astep is represented in this way:

[_The x-coordinate of the breakpoint where the step occursis repeated in the array of the
breakpoint.

[_The vaue of the first point of astep in the array of slopesisthe height of the step.

[_Thevalue of the second point of the step in the array of slopesisthe slope of the function
after the step.

By convention, a breakpoint belongs in both segments associated with the step. For
example, in Figure 16.2, at the breakpoint x=3, the points (3, 1) and (3,3) are both
admissible. Similarly, whenx = s, thepoints (5,4) and (5, 5) are both admissible.

However, isolated points, as explained in Isolated Pointsin Piecewise Linear Functions on
page 297, are not alowed, neither in continuous nor in discontinuous piecewise linear
functions. In fact, only one step is allowed at a given point.

In Concert Technology, a discontinuous piecewise linear function is represented as an
instance of the class 11oPiecewiseLinear (the same class as used for continuous
piecewise linear functions). For example, the function in Figure 16.2 is declared in thisway:

IloPiecewiseLinear (X,
IloNumArray (env, 4, 3. ,3. ,5. ,5.),

IloNumArray (env, 5, 0., 2., 0.5, 1., -1.),
0, 1);
ILOG CPLEX 10.0 — USER’'S MANUAL

fix)
54%
44%
34%
24%
]]
X
| | | | | | | |
| | | | | | | |
0 i 2 3 4 5 6 7 8

Figure16.2 A discontinuous piecewise linear function with steps

Isolated Points in Piecewise Linear Functions

When you specify the same point more than twice as you declare a piecewise linear
function, you inadvertently create an isolated point. ILOG CPLEX does not support isol ated
points. When it encounters an isolated point in the declaration of a piecewise linear function,
ILOG CPLEX issuesawarning and ignores the isolated point. Anisolated point may appear
asavisible point in the graph of a discontinues piecewise linear function. For example, the
point (3, 2) would be anisolated point in Figure 16.2 and consequently ignored by
ILOG CPLEX. Isolated points may also be less conspicuoudly visible; for example, if the
height of a step in a discontinuous piecewise linear function is 0 (zero), the isolated point
overlaps with an endpoint of two other segments, and consequently, the isolated point will
beignored by ILOG CPLEX.

Using lloPiecewiseLinear

Whether it represents a continuous or a discontinuous piecewise linear function, an instance
of T1loriecewiseLinear behaveslike afloating-point expression. That is, you may use it
inaterm of alinear expression or in a constraint added to amodel (an instance of
IloModel).

ILOG CPLEX 10.0 — USER’'S MANUAL 297

Describing the Problem

298

Assume that a company must ship cars from factories to showrooms. Each factory can
supply afixed number of cars, and each showroom needs a fixed number of cars. Thereisa
cost for shipping a car from a given factory to a given showroom. The objectiveisto
minimize the total shipping cost while satisfying the demands and respecting supply.

In concrete terms, assume there are three factories and four showrooms. Here is the quantity
that each factory can supply:

supply0 = 1000
supplyl = 850
supply2 = 1250

Each showroom has a fixed demand:

demand, = 900
demand; = 1200

demand2 = 600
demand3 = 400

Let nbSupply be the number of factories and nbbemand be the number of showrooms. L et
x; ; bethe number of cars shipped from factory i to showroom ;. The model is composed of
nbDemand + nbSupply constraints that force all demands to be satisfied and all suppliesto

be shi pped Thusfar amodel for our problem looks like this:
bDemand — nbSupply -1

Minimize z Z cost;; - Xj;
i=0 i=0
spisso
pply-1
z X = supply, i =0,...,nbDemand-1

i=0
nbDemand -1
Y. %j=demand, j =0,...,nbSupply-1
i=0

Variable Shipping Costs

Now consider the costs of shipping from a given factory to a given showroom. Assume that
for every pair (factory, showroom), there are different rates, varying according to the
quantity shipped. To illustrate the difference between convex and concave piecewise linear
functions, in fact, this example assumes that there are two different tables of rates for
shipping cars from factories to showrooms. The first table of rates|ooks like this:

[arate of 120 per car for quantities between 0 and 200;
[arate of 80 per car for quantities between 200 and 400;
[arate of 50 per car for quantities higher than 400.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

These costs that vary according to quantity define the piecewise linear function represented
in Figure 16.3. Asyou see, the dlopes of the segments of that function are decreasing, so that
function is concave.

T

40000+

T

30000+

T

20000+

T

10000+

| | | | |

T
200 400

Figure 16.3 A concave piecewise linear cost function

Also assume that there is a second table of rates for shipping cars from factories to
showrooms. The second table of rates |ooks like this:

[arate of 30 per car for quantities between 0 and 200;
[arate of 80 per car for quantities between 200 and 400;
[arate of 130 per car for quantities higher than 400.

The costsin this second table of rates that vary according to the quantity of cars shipped
define a piecewise linear function, too. It appearsin Figure 16.4. The slopes of the segments
in this second piecewise linear function are increasing, so this function is convex.

ILOG CPLEX 10.0 — USER’'S MANUAL 299

40000 7

30000 |

20000

10000

0 200 400

Figure16.4 A convex piecewise linear cost function

Model with Varying Costs

With this additional consideration about costs varying according to quantity, our model how

looks like this:
nbDemand -1 nbSupply -1

minimize > >
subject to =0 /=0
yij = f(xj)for i=0,.., nbDemand-1andj = 0, ..., nbSupply-1

nbSupply -1
Z Xjj = demand, for i =0,...,nbDemand -1
i=0

nbDemand -1

Z Xj; = supply; for j =0, ...,nbSupply—1
i=0

With this problem in mind, consider how to represent the data and model in Concert
Technology.

300 ILOG CPLEX 10.0 — USER’'S MANUAL

Developing a Model

Asin other examples in this manual, this application begins by creating an environment, an
instance of T1cEnv.

I1oEnv env;

Within that environment, a model for this problem is created as an instance of T1oModel.

IloModel model (env) ;

Then constraints and an objective are added to the model. The following sections sketch
these steps.

[Representing the Data on page 301

[Adding Constraints on page 301

[Checking Convexity and Concavity on page 302
[Adding an Objective on page 302

Representing the Data

Asin other examples, the template class T1oarray appearsin atype definition to create
matrices for this problem, like this:

typedef IloArray<IloNumArray> NumMatrix;
typedef IloArray<IloNumVarArray> NumVarMatrix;

Those two-dimensional arrays (that is, arrays of arrays) are now available in the application
to represent the demands from the showrooms and the supplies available from the factories.

IloInt nbDemand 4;

IloInt nbSupply = 3;

IloNumArray supply(env, nbSupply, 1000., 850., 1250.);
IloNumArray demand(env, nbDemand, 900., 1200., 600., 400.);

NumVarMatrix x(env, nbSupply);

NumVarMatrix y(env, nbSupply) ;

for(i = 0; i < nbSupply; i++){
x[1i] IloNumVarArray (env, nbDemand, 0, IloInfinity, ILOFLOAT) ;
y[i] IloNumVarArray (env, nbDemand, 0, IloInfinity, ILOFLOAT) ;

}

Adding Constraints

According to the description of the problem, the supply of cars from the factories must meet
the demand of the showrooms. At the same time, it isimportant not to ship cars that are not

ILOG CPLEX 10.0 — USER’'S MANUAL 301

302

in demand; in terms of this model, the demand should meet the supply as well. Those ideas
are represented as constraints added to the model, like this:

for(i = 0; i < nbSupply; i++) { // supply must meet demand
model.add (IloSum(x[i]) == supplyl[il);

}

for(j = 0; j < nbDemand; j++) { // demand must meet supply

IloExpr v (env) ;

for(i = 0; i < nbSupply; i++)
v += x[1]1 [§1;

model.add (v == demand[j]) ;

v.end () ;

Checking Convexity and Concavity

Toillustrate the ideas of convex and concave piecewise linear functions, two tables of costs
that vary according to the quantity of cars shipped wereintroduced in the problem
description. To accommodate those two tables in the model, the following lines are added.

if (convex) {
for(i = 0; i < nbSupply; i++){
for(j = 0; j < nbDemand; j++) {
model.add(y[i] [j] == IloPiecewiseLinear (x[i] [j],
IloNumArray (env, 2, 200.0, 400.0),
IloNumArray (env, 3, 30.0, 80.0, 130.0),
0.0, 0.0));
}
}
telsef
for(i = 0; i < nbSupply; i++){
for(j = 0; j < nbDemand; j++) {
model.add(y[i] [j] == IloPiecewiseLinear (x[i] []]
IloNumArray (env,
IloNumArray (env,
0.0, 0.0));

, 200.0, 400.0)
, 120.0, 80.0, 50.0),

w N~

Adding an Objective

The objective is to minimize costs of supplying cars from factories to showrooms, It is
added to the model in these lines:

IloExpr obj (env) ;

for(i = 0; i < nbSupply; i++){
obj += IloSum(y[i]);

}

model.add (IloMinimize (env, obj));
obj.end() ;

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Solving the Problem

The following lines create an agorithm (an instance of 11oCplex) in an environment (an
instance of T1o0Env) and extract the model (an instance of 11oMode1l) for that algorithm to
find a solution.

IloCplex cplex(env) ;

cplex.extract (model) ;
cplex.exportModel ("transport.lp") ;
cplex.solve() ;

Displaying a Solution

To display the solution, use the methods of I110Env and I1oCplex.

env.out () << '' - Solution: '' << endl;
for(i = 0; i < nbSupply; i++)({
env.out () << "! R T A L

for(j = 0; j < nbDemand; j++) {
env.out () << cplex.getValue (x[i] [j]) << ''\t'';

}

env.out () << endl;

}

env.out () << '!' Cost = '' << cplex.getObjValue() << endl;

Ending the Application

Asin other C++ examplesin this manual, the application ends with a call to the method
I1loEnv: :end to clean up the memory allocated for the environment and algorithm.

env.end() ;

Complete Program: transport.cpp

You can see the complete program online in the standard distribution of ILOG CPLEX at
youCPLEXinstallation/examples/src/transport .cpp. TOrunthisexample, you
need alicense for ILOG CPLEX.

You will also find Transport .java in yourCPLEXinstallation/examples/src/. If
your installation includes the .NET API of ILOG CPLEX, then you will also find the
C#.NET implementation of this example in Transport .cs and the VB.NET
implementation in Transport . vb.

ILOG CPLEX 10.0 — USER’'S MANUAL 303

304 ILOG CPLEX 10.0 — USER’'S MANUAL

17

Logical Constraints in Optimization

This chapter shows you how to represent logical constraintsin ILOG CPLEX with Concert
Technology. Concert Technology can automatically translate logical constraintsinto their
transformed equivalent that the discrete (that is, MIP) or continuous (L P) optimizers of
ILOG CPLEX can process efficiently in the C++, Java, or .NET APIs.

In the Callable Library, indicator constraints provide a similar facility. For more about that
idea, see Using Indicator Constraints on page 311 in this manual.

In this chapter, you will learn:

[What Are Logical Constraints? on page 306

[What Can Be Extracted from a Model with Logical Constraints? on page 306
[Which Nonlinear Expressions Can Be Extracted? on page 308

[Dogical Constraints for Counting on page 309

[logical Constraints as Binary Variables on page 309

[How Are Logical Constraints Extracted? on page 309

ILOG CPLEX 10.0 — USER’'S MANUAL 305

What Are Logical Constraints?

For ILOG CPLEX, alogical constraint combines linear constraints by means of logical
operators, such aslogical-and, logical-or, negation (that is, not), conditional statements (that
is, if ... then ...) to express complex relations between linear constraints. ILOG CPLEX can
also handle certain logical expressions appearing within alinear constraint. One such logical
expression isthe minimum of a set of variables. Another such logical expression isthe
absolute value of avariable. There’'s more about logical expressionsin Which Nonlinear
Expressions Can Be Extracted? on page 308.

What Can Be Extracted from a Model with Logical Constraints?

306

Much the same logical constraints are available in these APIs of ILOG CPLEX.
[Dogical Constraintsin the C++ API on page 306
[Dogical Constraintsin the Java API on page 307
[Dogical Constraintsin the .NET API on page 307

For similar facilitiesin the Callable Library, see Using Indicator Constraints on page 311.

Logical Constraints in the C++ API

In C++ applications, the class 11oCplex can extract modeling objects to solve awide
variety of MIPs, asyou seein Solving the Model on page 46, summarized in Table 1.1 on
page 47. In fact, the C++ class T1oCplex can extract logical constraints aswell as some
logical expressions. Thelogical constraintsthat 11ocplex can extract are these:

[1loaAnd

[dloOr

[T1loNot

[1loIfThen

[A1loDiff

[3= that is, the equivalence relation

Among those extractable objects, I1o0And I100r, I1loNot, and I1oDiff can aso be
represented in your application by means of the overloaded C++ operators:

1| (for 1100r)
[ds (for 110and)

1 (for I1oNot)

ILOG CPLEX 10.0 — UsSER’'S MANUAL

1= that is, the exclusive-or relation (for T1oDiff)

All those extractable objects accept as their arguments other linear constraints or logical
constraints, so you can combine linear constraints with logical constraintsin complicated
expressions in your application.

For exampl e, to express the idea that two jobs with starting times x1 and x2 and with
duration d1 and d2 must not overlap, you can either use overloaded C++ operators, like this:

model.add((x1 »>= x2 + d2) || (x2 »>= x1 + d1));

or you can express the same idea, like this:
I1o0r or(env)
or.add(x1 >= x2 + d2);

or.add(x2 >= x1 + dl);
model .add (or) ;

Since I1oCplex can also extract logical constraints embedded in other logica constraints,
you can aso write logical constraints like this:

IloIfThen(env, (x >= y && X >= z), IloNot(x <= 300 || y >= 700))

where x, v, and z are variables in your application.

Logical Constraints in the Java API

Of course, because the Java programming language does not support the overloading of
operators as C++ does, overloaded logical operators are not supported in the Java API of
Concert Technology. However, the Java class I11oCplexModeler offerslogica modeling
facilities through methods, such as:

[dloCplexModeler.and
[1loCplexModeler.or
[AloCplexModeler.not
[dloCplexModeler.ifThen

Moreover, like their C++ counterparts, those extractable Java objects accept as their
arguments other linear constraints or logical constraints, so you can combine linear
constraints with logical constraints in complicated expressions in your Java application.

Logical Constraints in the .NET API

Similarly, the NET API of Concert Technology supportslogical constraints, though not
operator overloading. The .NET class cplex offersthese overloaded logical methods:

[dplex.And
[dplex.Or

ILOG CPLEX 10.0 — USER’'S MANUAL 307

[dplex.Not
[dplex.IfThen

Again, those extractable .NET objects accept other linear constraints or logical constraints as
their arguments, thus making it possible for you to combine linear constraints with logical
constraints in expressions in your .NET applications.

Which Nonlinear Expressions Can Be Extracted?

308

Some expressions are easily recognized as nonlinear, for example, afunction such as

x? +y? < 1. However, other nonlinearities are less obvious, such as absolute value asa
function. Inavery real sense, MIPisaclass of nonlinearly constrained problems becausethe
integrality restriction destroys the property of convexity which any linear constraints
otherwise might possess. Because of that characteristic, certain (although not all)
nonlinearities are capable of being converted to a MIP formulation, and thus can be solved
by ILOG CPLEX. Infact, T11oCplex can extract the following nonlinear expressionsin a
C++ application:

[11oMin the minimum of an array of numeric expressions or over a numeric expression
and aconstant in C++

[J1oMax the maximum of an array of numeric expressions or over a numeric expression
and aconstant in C++

[11loabs the absolute value of a numeric expression

[dloriecewiseLinear the piecewise linear combination of a numeric expression,
A linear constraint can appear asaterm in alogical constraint.

For example, given these variables and arrays:

IloIntVarArray x(env, 5, 0, 1000);

IloNumVar y(env, -1000, 5000) ;

IloNumVar z(env, -1000, 1000) ;

IloCplex in a C++ application recognizes the following constraint as valid and extractsiit:

IloMin(x) >= IloAbs(y)

In fact, ranges containing logical expressions can, in turn, appear in logical constraints. For
example, the following constraint is valid and extractable by T1ocplex:

IloIfThen (env, (IloAbs(y) <= 100), (z <= 300));

It isimportant to note here that only linear constraints can appear as arguments of logical
congtraints extracted by ILOG CPLEX. That is, quadratic constraints are not handled in
logical constraints. Similarly, quadratic terms can not appear as arguments of logical
eXpNSQOHSSUChaSIloMin,IloMaX,IloAbs,andIloPiecewiseLinear

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Logical Constraints for Counting

In many casesit is even unnecessary to allocate binary variables explicitly in order to gain
the benefit of linear constraints within logical expressions. For example, optimizing how
many items appear in asolution is often an issue in practical problems. Questions of
counting (how many?) can be represented formally as cardinality constraints.

Suppose that your application includes three variables, each representing a quantity of one
of three products, and assume further that a good sol ution to the problem means that the
quantity of at least two of the three products must be greater than 20. Then you can represent
that ideain your application, like this:

IloNumVarArray x(env, 3, 0, 1000);
model.add ((x[0] >= 20) + (x[1] >= 20) + (x[2] >= 20) >= 2);

Logical Constraints as Binary Variables

Linear or logical constraints can appear as termsin numeric expressions. A linear constraint
appearing as aterm in a numeric expression behaves like abinary value. For example, given
x and y as variables, you can write the following lines to get the truth valueof x >y ina
binary value:

IloIntVar b(env, 0, 1);
model.add (b == (x >= y));

It isimportant to note here that only linear constraints can appear as arguments of logical
congtraints extracted by 11ocplex. That is, quadratic constraints are not handled in logical
congtraints. Similarly, quadratic terms cannot appear as arguments of logical expressions
such asIloMin, IloMax, IloAbs, and IloPiecewiseLinear.

How Are Logical Constraints Extracted?

Logical constraints are transformed automatically into equivalent linear formulations when
they are extracted by an ILOG CPLEX algorithm. This transformation involves automatic
creation by ILOG CPLEX of new variables and constraints. The transformation entails
indicators as discussed in Using Indicator Constraints on page 311.

ILOG CPLEX 10.0 — USER’'S MANUAL 309

310 ILOG CPLEX 10.0 — USER’'S MANUAL

18

Using Indicator Constraints

This chapter introduces indicator constraints.

[What Is an Indicator Constraint? on page 311

[HExample: fixnet.c on page 312

[Indicator Constraints in the Interactive Optimizer on page 312
[What Are Indicator Variables? on page 313

[Restrictions on Indicator Constraints on page 313

[Best Practices with Indicator Constraints on page 313

What Is an Indicator Constraint?

Anindicator constraint is away for a user of the Callable Library (C API) to express
relationships among variables by identifying a binary variable to control whether or not a
specified linear constraint is active. Thisfeature is also available in the Interactive
Optimizer, as explained in Indicator Constraintsin the Interactive Optimizer on page 312.

Formulations using indicator constraints can be more numerically robust and accurate than
conventional formulations involving so-called Big M data. Big M formulations use artificial
datato turn on or turn off enforcement of a constraint. Big M formulations often exhibit
trickle flow, and sometimes they behave in unstable ways.

ILOG CPLEX 10.0 — USER’'S MANUAL 311

In Concert Technology applications, ILOG CPLEX automatically usesindicator constraints
for you when it encounters a constraint within an expression and when it encounters
expressions which can be linearized, including the following:

[1loAnd Or Cplex.And

[11o0r Or Cplex.Or

[11loNot Of Cplex.Not

[1loIfThen Or Cplex.IfThen
[using aconstraint as abinary variable

In Callable Library applications, you can invoke the routine cpxaddindcontr yourself to
introduce indictor constraints in your model. To remove an indicator constraint that you
have added, use the routine cPxdelindconstr.

Example: fixnet.c

For an example of indicator constraints in use, see fixnet . c among the examples
distributed with the product. This example contrasts amodel of a fixed-charge problem
using indicator constraints with aBig M model of the same problem. That contrast shows
how artificial datalead to an answer that is different from the result that the formulator of the

model intended.

Indicator Constraints in the Interactive Optimizer

312

In the Interactive Optimizer, you can include indicator constraints among the usual linear
congtraintsin LP-file format. You can also use the commands enter and add with indicator
congtraints. For example, you could declare y as a binary variable and enter the following:

constrO0l: y = 0 -> x1 + X2 + x3 =0

This formulation of an indicator constraint is recommended instead of the following Big M
formulation:

constr0l: x1 + x2 + X3 - le+9 y <= 0 // not recommended
That Big M formulation relies on the x values summing to less than the Big M value (in this
case, one billion). Such an assumption may cause numeric instability or undesirable

solutions in certain circumstances, whereas a model with the indicator constraint, by
contrast, introduces no new assumptions about upper bounds.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

What Are Indicator Variables?

The binary variable introduced in an indicator constraint is known as an indicator variable.
Usually, an indicator variable will also appear in the objective function or in other
constraints. For example, in £ixnet . c, the indicator variables £ appear in the objective
function to represent the cost of building an arc. In fact, an indicator variable introduced in
one indicator constraint may appear again in another, subsequent indicator constraint.

Restrictions on Indicator Constraints

There are afew restrictions regarding indicator constraints:

[_The constraint must be linear; a quadratic constraint is not allowed to have an indicator
constraint.

A lazy constraint cannot have an indicator constraint.
A user-defined cut cannot have an indicator constraint.

[Only z=0 (zero) or z=1 (one) are allowed for the indicator variable because the indicator
constraint implies that the indicator variableis binary.

ILOG CPLEX does not impose any arbitrary limit on the number of indicator constraints or
indicator variables that you introduce, but there may be practical limits due to resources
available on your platform.

Best Practices with Indicator Constraints
The following points summarize best practices with indicator constraintsin Callable Library
applications:
[Wseindicator constraints when Big M vauesin the formulation cannot be reduced.
Do not use indicator constraintsif Big M can be avoided.

[Ibo not use indicator constraintsif Big M is eliminated by preprocessing. Check the
presolved model for Big M.

[_If valid upper bounds on continuous variables are avail able, use them. Bounds strengthen
LP relaxations. Bounds are used in aMIP for fixing and so forth.

ILOG CPLEX 10.0 — USER’'S MANUAL 313

314 ILOG CPLEX 10.0 — USER’'S MANUAL

19

Using Logical Constraints:
Food Manufacture 2

Chapter 17, Logical Constraints in Optimization, introduced features of ILOG CPLEX that
transform parts of your problem automatically for you. This chapter shows you some of
those featuresin usein a C++ application. The chapter is based on the formulation by H.P.
Williams of a standard industrial problem in food manufacturing. The aim of the problem is
to blend a number of oils cost effectively in monthly batches. In this form of the problem,
formulated by Williams as food manufacturing 2 in his book Model Building in
Mathematical Programming, the number of ingredientsin ablend must be limited, and extra
conditions are added to govern which oils can be blended. This chapter covers these topics:

[Describing the Problem on page 316
[Representing the Data on page 316

[Developing the Model on page 319

[Wsing Logical Constraints on page 321
[3olving the Problem on page 321

[Ending the Program on page 322

ILOG CPLEX 10.0 — USER’'S MANUAL 315

Describing the Problem

The problem is to plan the blending of five kinds of oil, organized in two categories (two
kinds of vegetable oils and three kinds of non vegetable oils) into batches of blended
products over six months.

Some of the oil is already availablein storage. Thereisaninitial stock of oil of 500 tons of
each raw type when planning begins. An equal stock should exist in storage at the end of the
plan. Up to 1000 tons of each type of raw oil can be stored each month for later use. The
price for storage of raw oilsis 5 monetary units per ton. Refined oil cannot be stored. The
blended product cannot be stored either.

Therest of the dil (that is, any not available in storage) must be bought in quantities to meet
the blending requirements. The price of each kind of oil varies over the six-month period.

The two categories of oil cannot be refined on the same production line. Thereisalimit on
how much oil of each category (vegetable or non vegetable) can be refined in agiven month:

. Not more than 200 tons of vegetable oil can be refined per month.

. Not more than 250 tons of non vegetable oil can be refined per month.
There are constraints on the blending of ails:

. The product cannot blend more than three oils.

- When agiven type of oil is blended into the product, at least 20 tons of that type must
be used.

. If either vegetable oil 1 (v1) or vegetable il 2 (v2) is blended in the product, then
non vegetable oil 3 (03) must also be blended in that product.

Thefinal product (refined and blended) sells for aknown price: 150 monetary units per ton.

The aim of the six-month plan isto minimize production and storage costs while
maximizing profit.

Representing the Data

316

To represent the problem accurately, there are several questionsto consider:
[What Is Known? on page 317

[What Is Unknown? on page 317

[What Are the Constraints? on page 318

[What Is the Objective? on page 319

ILOG CPLEX 10.0 — UsSER’'S MANUAL

What Is Known?

In this particular example, the planning period is six months, and there are five kinds of oil
to be blended. Those details are represented as constants, like this:

const IloInt nbMonths = 6;
const IloInt nbProducts 5;

The five kinds of oil (vegetable and non vegetable) are represented by an enumeration, like
this:

typedef enum { v1, v2, ol, o2, o3 } Product;

The varying price of the five kinds of il over the six-month planning period is represented
in anumeric matrix, like this:

NumMatrix cost (env, nbMonths) ;

cost [0] =I1loNumArray (env, nbProducts, 110.0, 120.0, 130.0, 110.0, 115.0);
cost [1]=IloNumArray (env, nbProducts, 130.0, 130.0, 110.0, 90.0, 115.0);
cost [2] =I1loNumArray (env, nbProducts, 110.0, 140.0, 130.0, 100.0, 95.0);
cost [3]=IloNumArray (env, nbProducts, 120.0, 110.0, 120.0, 120.0, 125.0);
cost [4] =I1loNumArray (env, nbProducts, 100.0, 120.0, 150.0, 110.0, 105.0);
cost [5]=I1loNumArray (env, nbProducts, 90.0, 100.0, 140.0, 80.0, 135.0);

That matrix could equally well be filled by dataread from afile in alarge-scale application.

What Is Unknown?

The variables of the problem can be represented in arrays.
. How much blended, refined oil to produce per month?
. How much raw oil to use per month?
. How much raw oil to buy per month?

. How much raw il to store per month?
like this:

IloNumVarArray produce (env, nbMonths, 0, IloInfinity);
NumVarMatrix use (env, nbMonths) ;

NumVarMatrix buy (env, nbMonths) ;

NumVarMatrix store (env, nbMonths) ;

IloInt i, p;

for (i = 0; i < nbMonths; i++) {

use [i] = IloNumVarArray (env, nbProducts, 0, IloInfinity);
buy [1i] = IloNumVarArray (env, nbProducts, 0, IloInfinity);
store[i] = IloNumVarArray (env, nbProducts, 0, 1000) ;

}
In those lines, the type NumvarMatrix is defined as:

typedef IloArray<IloNumVarArray> NumVarMatrix;

ILOG CPLEX 10.0 — USER’'S MANUAL 317

318

Notice that how much to use and buy isinitially unknown, and thus has an infinite upper
bound, whereas the amount of oil that can be stored is limited, as you know from the
description of the problem. Consequently, one of the constraints is expressed here as the
upper bound of 1000 on the amount of ail by type that can be stored per month.

What Are the Constraints?

Asyou know from Describing the Problem on page 316, there are avariety of constraintsin
this problem.

For each type of ail, there must be 500 tonsin storage at the end of the plan. That idea can be
expressed like this:

for (p = 0; p < nbProducts; p++) {
store [nbMonths-1] [p] . setBounds (500, 500) ;

1
The constraints on production in each month can all be expressed as statementsin afor-loop:
- Not more than 200 tons of vegetable oil can be refined.

model .add (use[i] [v1l] + usel[i] [v2] <= 200);

. Not more than 250 tons of non-vegetable oil can be refined.

model .add (use[i] [01l] + usel[i] [02] + use[i] [03] <= 250);

. A blend cannot use more than three oils; or equivalently, of the five oils, two cannot
be used in agiven blend.

model.add ((use[i] [v1l] == 0) +
(use[i] [v2] == 0) +
(use[i] [01] == 0) +
(use[i] [02] == 0) +
(use[i] [03] == 0) >= 2);

. Blends composed of vegetable oil 1 (v1) or vegetable oil 2 (v2) must also include non
vegetable oil 3 (03).

model.add (IloIfThen (env, (usel[i] [v1] »= 20) || (useli] [v2] >= 20),
use [1] [03] >= 20));

. Theconstraint that if an oil isused at all in ablend, at least 20 tons of it must be used
isexpressed like this:
for (p = 0; p < nbProducts; p++)

model.add((use[i]l [p] == 0) || (uselil [p] >= 20));

l Note: Alternatively, you could use semi-continuous variables.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

. Thefact that alimited amount of raw oil can be stored for later use is expressed like

this:
if (1 == 0) {
for (IloInt p = 0; p < nbProducts; p++)
model.add (500 + buyl[i] [p] == uselil [p] + storelil [pl);
else {

for (IloInt p = 0; p < nbProducts; p++)
model.add (store[i-1] [p] + buyl[i] [p] ==
use [i] [p] + storeli] [p]);

What Is the Objective?

On amonthly basis, the profit can be represented as the sale price per ton (150) multiplied
by the amount produced minus the cost of production and storage, like this, where profit
isdefined as I1oExpr profit (env) ;:

profit += 150 * produce[i] - IloScalProd(cost[i],
buy[i]) - 5 * IloSum(storel[i]);

Developing the Model

First, create the model, like this:

IloModel model (env) ;

ILOG CPLEX 10.0 — USER’'S MANUAL 319

Then use afor-loop to add the constraints for each month (from What Are the Constraints?
on page 318), like this:

IloExpr profit (env) ;

for (i = 0; i < nbMonths; i++) {
model.add (use[i] [v1l] + usel[i] [v2] <= 200);
model.add (use[i] [01l] + use[i] [02] + use[i] [03] <= 250);
model.add (3 * producel[i] <=

8.8 * use[i] [vl] + 6.1 * usel[i] [v2] +
2 * use([i] [01] + 4.2 * use[i] [02] + 5 * usel[i] [03]);
model.add (8.8 * usel[i] [v1l] + 6.1 * usel[i] [v2] +
2 * use[i] [01l] + 4.2 * use[i] [02] + 5 * usel[i] [03]
<= 6 * produce[i]);
model.add (produce [i1] == IloSum(usel[i]));

if (1 == 0) {
for (IloInt p = 0; p < nbProducts; p++)

model.add (500 + buy[i] [p] == usel[il [p] + storelil] [pl);
1
else {
for (IloInt p = 0; p < nbProducts; p++)
model.add (store[i-1] [p] + buyli] [p] == useli] [p] + storelil [p]);
1

profit += 150 * produce[i]
- IloScalProd(cost[i], buyl[il)
- 5 * TloSum(storel[i]);

model.add ((use[i] [v1l] == 0) + (usel[i] [v2] == 0) + (useli] [01l] == 0) +
(use[i] [02] == 0) + (usel[i] [03] == 0) >= 2);
for (p = 0; p < nbProducts; p++)
model.add ((use[i] [p] == 0) || (uselil [p] >= 20));
model.add (IloIfThen (env, (usel[i] [vl] >= 20) || (usel[i] [v2] >= 20),

use[i] [03] >= 20));

}
To consolidate the monthly objectives, add the overall objective to the model, like this:

model.add (IloMaximize (env, profit));

320 ILOG CPLEX 10.0 — USER’'S MANUAL

Using Logical Constraints

You have aready seen how to represent the logical constraints of this problem in What Are
the Constraints? on page 318. However, they deserve a second glance becausethey illustrate
an important point about logical constraints and automatic transformation in ILOG CPLEX.

// Logical constraints
// The food cannot use more than 3 oils
// (or at least two oils must not be used)
model.add ((use[i] [v1l] == 0) + (usel[i] [v2] == 0) + (useli] [0ol] == 0) +
(use[i] [02] == 0) + (usel[i] [03] == 0) >= 2);
// When an oil is used, the quantity must be at least 20 tons
for (p = 0; p < nbProducts; p++)

model.add ((use[i] [p] == 0) || (uselil [p] >= 20));
// If products vl or v2 are used, then product o3 is also used
model.add (IloIfThen (env, (usel[i] [vl1] >= 20) || (useli] [v2] >= 20),

use[i] [03] >= 20));

Consider, for example, the constraint that the blended product cannot use more than three
oilsin abatch. Given that constraint, many programmers might naturally write the following

statement (or something similar) in C++:
model . add 0)
0)
0)
0)
0)

That statement expresses the same constraint without changing the set of solutionsto the
problem. However, the formul ations are different and can lead to different running times and
different amounts of memory used for the search tree. In other words, given alogical
English expression, there may be more than one logical constraint for expressing it, and the
different logical constraints may perform differently in terms of computing time and
memory.

Logical Constraints in Optimization on page 305 introduced overloaded logical operators
that you can use to combine linear, semi-continuous, or piecewise linear constraintsin
ILOG CPLEX. In this example, notice the overloaded logical operators ==, >=, | | that
appear in these logical constraints.

Solving the Problem

The following statement solves the problem to optimality:

if (cplex.solve()) {

ILOG CPLEX 10.0 — USER’'S MANUAL 321

These lines (the action of the if-statement) display the solution:

cout << " Maximum profit = " << cplex.getObjValue() << endl;
for (IloInt i = 0; i < nbMonths; i++) {

IloInt p;

cout << " Month " << i << " " << endl;

cout << " . buy "

for (p = 0; p < nbProducts; p++) {
cout << cplex.getValue (buy[i] [p]) << "\t ";
}

cout << endl;
cout << " . use ",
for (p = 0; p < nbProducts; p++) {
cout << cplex.getValue (use([i] [p]) << "\t ";
}

cout << endl;
cout << " . store ";
for (p = 0; p < nbProducts; p++) {
cout << cplex.getValue (store[i] [p]) << "\t ";
}

cout << endl;

}

else {
cout << " No solution found" << endl;

Ending the Program

Like other C++ applications using ILOG CPLEX with Concert Technology, this one ends
with a call to free the memory used by the environment.

env.end() ;

322 ILOG CPLEX 10.0 — USER’'S MANUAL

20

Early Tardy Scheduling

This chapter shows you one way of using ILOG CPLEX to solve a scheduling problem. In

it, you will see how to uselogical constraints, piecewise linear functions, and aggressive
MIP emphasis.

[Describing the Problem on page 324

[Wnderstanding the Data File on page 324

[Reading the Data on page 325

[Creating Variables on page 325

[Jating Precedence Constraints on page 326

[Jating Resource Constraints on page 326

[Representing the Piecewise Linear Cost Function on page 326
[Transforming the Problem on page 327

[—Jolving the Problem on page 328

This chapter walks through the C++ implementation. You can compare the Java
implementation of the same model, using logical constraints, piecewise linear functions, and

aggressive MIPemphasisinEtsp . java, and the CANET implementationinEtsp . cs, and
the VB.NET implementation in Etsp . vb aswell.

ILOG CPLEX 10.0 — USER’'S MANUAL 323

Describing the Problem

The problem is to schedule a number of jobs over agroup of resources. In this context, ajob
isaset of activities that must be carried out, one after another. Each resource can process
only one single activity at atime.

For each job, there is adue date, that is, theideal date to finish thisjob by finishing the last
activity of thisjob. If thejob isfinished earlier than the due date, there will be a cost
proportional to the earliness. Symmetrically, if the job isfinished later than the due date,
there will be a cost proportiona to the tardiness.

As“justintime” inventory management becomes more and more important, problems like
this occur more frequently in industrial settings.

Understanding the Data File

324

The datafor this problem are available online with your installation of the product in thefile
yourCPLEXhome/examples/data/etsp.dat.

The data of this example consists of arrays and arrays of arrays (that is, matrices).

Onearray of arrays represents the resources required for each activity of ajob. For example,
jobo entails eight activities, and those eight activities require the following ordered list of
resources:

1, 3, 4,1, 2, 4, 2, 4

A second array of arrays represents the duration required for each activity of ajob. For
jobo, the following ordered list represents the duration of each activity:

41, 32, 72, 65, 53, 35, 53, 2

In other words, jobo requires resourcel for aduration of 41 time units; then jobo
reguires resource3 for 32 time units, and so forth.

Thereis also an array representing the due date of each job. That is, array [1] specifiesthe
due date of jobi.

To represent the penalty for the early completion of each job, there is an array of penalties.

Likewise, to represent the penalty for late completion of each job, there isan array of
penalities for tardiness.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Reading the Data

Thefirst part of this application reads data from afile and fills matrices:

I1o0Env env;

IntMatrix activityOnAResource (env) ;
NumMatrix duration (env) ;
IloNumArray jobDueDate (env) ;
IloNumArray jobEarlinessCost (env) ;
IloNumArray jobTardinessCost (env) ;

>> activityOnAResource;
>> duration;

>> jobDueDate;

>> jobEarlinessCost;

>> jobTardinessCost;

Hh Hh Hh Fh Hh

IloInt nbJob
IloInt nbResource

jobDueDate.getSize () ;
activityOnAResource.getSize() ;

Each line in the datafile corresponds to an array in the matrix and thus represents all the
information about activities for agiven job.
For each job, other arrays contain further information from the datafile:

. jobbDueDate containsthe due date for each job;

. jobEarlinessCost containsthe penalty for being too early for each job;

. jobTardinessCost contains the penalty for being too late for each job.

The matrix activityOnAResource contains the sets of activities that must be scheduled
on the same resource. This information will be used to state resource constraints.

Creating Variables

The unknowns of the problem are the starting dates of the various activities. To represent
these dates with Concert Technology modeling objects, the application creates a matrix of
numeric variables (that is, instances of 11oNumvar) with bounds between 0 and Horizon,
where Horizon is the maximum starting date for an activity that does not exclude
interesting solutions of the problem. In this example, it is set arbitrarily at 10000. The type
NumvVarMatrix isdefined astypedef IloArray<IloNumVarArray> NumVarMatrix;

NumVarMatrix s (env, nbJob) ;
for(j = 0; j < nbJdob; j++){
s[j] = IloNumVarArray (env, nbResource, 0.0, Horizon) ;

}

ILOG CPLEX 10.0 — USER’'S MANUAL 325

Stating Precedence Constraints

In each job, activities must be processed one after the other. This order is enforced by the
precedence constraints, which look like this:

for(j = 0; j < nbJdob; j++){
for(i = 1; 1 < nbResource; i++){
model.add(s[j] [i] >= s[j][i-1] + duration[j][i-11);
}
}

Stating Resource Constraints

Each resource can process one activity at atime. To avoid having two (or more) activities
that share the same resource overlap with each other, digjunctive constraints are added to the
model. Digjunctive constraints look like this:

sl >= s2 + d2 or s2 >= sl + dl

where s isthe starting date of an activity and 4 isits duration.

If n activities need to be processed on the same resource then about (n*n) /2 digunctions
need to be stated and added to the model, like this:

for(i = 0; i < nbResource; i++) {
IloInt end = nbJdob - 1;
for(j = 0; j < end; j++){
IloInt a = activityOnAResource [i] [j];
for(IloInt k = j + 1; k < nbJob; k++) {
IloInt b = activityOnAResource [i] [k];
model.add(s[j] [a]l] >= s[k] [b] + duration[k] [b]
[

s k] [b] >= s[j][a]l] + duration[j] [al);

Representing the Piecewise Linear Cost Function

The earliness-tardiness cost function is the sum of piecewise linear functions having two
segments, as you see in Figure 20.1. The function takes as an argument the completion date
of the last activity of ajob (in other words, the starting date plus the duration). In that
two-segment function, the slope of the first segment is (-1) times the earliness cost, and the
slope of the second segment isthe tardiness cost. Moreover, at the due date, the cost is zero.

326 ILOG CPLEX 10.0 — USER’'S MANUAL

Consequently, the function can be represented as a piecewise linear function with one
breakpoint and two slopes, like this:

IloInt last = nbResource - 1;

IloExpr costSum(env) ;

for(j = 0; j < nbJob; j++) {

costSum += IloPiecewiseLinear (s[j] [last] + duration[j] [last],
IloNumArray (env, 1, jobDueDatel[j]),

IloNumArray (env, 2, -jobEarlinessCost[j], jobTardinessCost[j]),
jobDueDate [j], 0);

model.add (IloMinimize (env, costSum)) ;

Cost

A

p TiMme
Job due date

Figure20.1 Earlinessand Tardiness as Piecewise Linear Cost Function

Transforming the Problem

When ILOG CPLEX extracts disjunctive constraints and piecewise linear functions, it
transforms them to produce a MIP with linear constraints and possibly SOS constraints over

integer or continuous variables. The tightness of the transformation depends on the bounds
set on the variables.

In this example, the Horizon is set to 10000, but if you have information about your
problem that indicates that agood or even optimal solution exists with atighter horizon (say,

2000 instead) then the linear formulation of disjunctions will be tighter with that tighter
horizon.

That kind of tightening often leads to a better lower bound at the root node and to a
reduction of the solving time.

ILOG CPLEX 10.0 — USER’'S MANUAL 327

Solving the Problem

An emphasis on finding hidden feasible solutions has proven particularly effective for this
problem so this example makes that selection by setting the MI PEmphasis parameter to 4.

You can see the entire example online in the standard distribution of ILOG CPLEX at
yourCPLEXinstallation/examples/src/etsp.cpp. |mplementations of the same
model, using the same features of ILOG CPLEX, are available asEtsp.java, Etsp.cs,
and Etsp.vb aswell.

328 ILOG CPLEX 10.0 — USER’'S MANUAL

21

Using Column Generation:
a Cutting Stock Example

This chapter uses an example of cutting stock to demonstrate the technique of column
generation in Concert Technology. In it, you will learn:

[how to use classes of ILOG CPLEX for column generation in column-wise modeling;
—how to modify amodel and re-optimize;

[_how to change the type of avariablewith I1oConversion;

[how to use more than one mode!;

[_how to use more than one algorithm (instances of 11oCplex, for example).

This chapter walks through an example in C++, cutstock.cpp. You will aso find
CutStock.java iN yourCPLEXinstallation/examples/src/. If your installation
includesthe .NET API of ILOG CPLEX, then you will aso find the C#.NET

implementation of this examplein cutstock.cs and the VB.NET implementation in
CutStock.vb.

ILOG CPLEX 10.0 — USER’'S MANUAL 329

What Is Column Generation?

In colloquial terms, column generation isaway of beginning with asmall, manageable part
of aproblem (specificaly, afew of the variables), solving that part, analyzing that partial
solution to determine the next part of the problem (specifically, one or more variables) to
add to the model, and then resolving the enlarged model. Column generation repeats that
process until it achieves a satisfactory solution to the whole of the problem.

In formal terms, column generation is away of solving alinear programming problem that
adds columns (corresponding to constrained variables) during the pricing phase of the
simplex method of solving the problem. In gross terms, generating a column in the primal
simplex formulation of alinear programming problem corresponds to adding a constraint in
its dual formulation. In the dual formulation of a given linear programming problem, you
might think of column generation as a cutting plane method.

In that context, many researchers have observed that column generation is avery powerful
technique for solving awide range of industrial problemsto optimality or to near optimality.
Ford and Fulkerson, for example, suggested column generation in the context of a
multi-commaodity network flow problem as early as 1958 in the journal of Management
Science. By 1960, Dantzig and Wolfe had adapted it to linear programming problems with a
decomposabl e structure. Gilmore and Gomory then demonstrated its effectivenessin a
cutting stock problem. More recently, vehicle routing, crew scheduling, and other
integer-constrained problems have motivated further research into column generation.

Column generation rests on the fact that in the simplex method, the solver does not need
access to all the variables of the problem simultaneoudly. In fact, a solver can begin work
with only the basis (a particul ar subset of the constrained variables) and then use reduced
cost to determine which other variables to access as needed.

Column-Wise Models in Concert Technology

330

Concert Technology offersfacilities for exploiting column generation. In particular, you can
design the model of your problem (one or more instances of the class 11oMode1) in terms of
columns (instances of T1oNumvVar, I1oNumVarArray, I1loNumColumn, OF
IloNumColumnArray). For example, instances of I1oNumColumn represent columns, and
yOu can use operator () intheclasses 11o0bjective and I1oRange to createtermsin
column expressions. In practice, the column serves as a place holder for avariablein other
extractable objects (such as a range constraint or an objective) when your application needs
to declare or use those other extractable objects before it can actually know the value of a
variable appearing in them.

Furthermore, an instance of 11oCplex provides away to solve the master linear problem,
while other Concert Technology algorithms (that is, instances of I11o0Solver, of I1oCplex

ILOG CPLEX 10.0 — UsSER’'S MANUAL

itself, or of other subclasses of 110a1gorithm, for example) lend themselves to other parts
of the problem by determining which variablesto consider next (and thus which columns to
generate).

In the Reference Manual of the C++ API, the concept Column-Wise Modeling provides
more detail about this topic and offers simple examples of its use.

Describing the Problem

The cutting stock problem in this chapter is sometimes known in math programming terms
as a knapsack problem with reduced cost in the objective function.

Generally, a cutting stock problem begins with a supply of rolls of material of fixed length
(the stock). Strips are cut from theserolls. All the strips cut from one roll are known together
as apattern. The point of this exampleisto use asfew rolls of stock as possible to satisfy
some specified demand of strips. By convention, it is assumed that only one pattern islaid
out across the stock; consequently, only one dimension—the width—of each roll of stock is
important.

OEPRNGY))))

Figure21.1 Two different patternsfromaroll of stock

Even with that simplifying assumption, the fact that there can be so many different patterns
makes a naive model of this problem (where a user declares one variable for every possible
pattern) impractical. Such a model introduces too many symmetries. Fortunately, for any
given customer order, alimited number of patterns will suffice, so many of the possible
patterns can be disregarded, and the application can focus on finding the relevant ones.

Hereisaconventional statement of a cutting stock problem in terms of the unknown X;, the
number of times that pattern j will be used, and A;;, the number of items i of each pattern j
needed to satisfy demand d;:

Minimize ZX
J
p
subjecttoZA. X _withX_, >0
1377 J

17

ILOG CPLEX 10.0 — USER’'S MANUAL 331

Solving thismodel with all columns present from the beginning is practically impossible. In
fact, even with only 10 types of itemswith a size roughly 1/10 of the width of the roll, there
would exist roughly 10*10 kinds of patterns, and hence that many decision variables. Such a
formulation might not even fit in memory on areasonably large computer. Moreover, most
of those patterns would obviously not be interesting in a solution. These considerations
make column generation an interesting approach for this problem.

To solve acutting stock problem by column generation, start with a subproblem. Choose one
pattern, lay it out on the stock, and cut as many items as possible, subject to the constraints
of demand for that item and the width of the stock. This procedure will surely work in that it
produces some answer (afeasible solution) to the problem, but it will not necessarily
produce a satisfactory answer in thisway since it probably usestoo many rolls.

To move closer to a satisfactory solution, the application can then generate other columns.
That is, other decision variables (other X;) will be chosen to add to the model. Those
decision variables are chosen on the basis of their favorable reduced cost with the help of a
subproblem. This subproblem is defined to identify the coefficients of a new column of the
maser problem with minimal reduced cost. With ; as the vector of the dual variables of the
current solution of the master problem, the subproblem is defined like this:

Minimize 1 — ZTI:iAi
1

. , , <
subject to WlAl <W
i
where W is the width of aroll of stock and the entries A; are the modeling variables of the
subproblem. Their solution values will be the coefficients of the new column to be added to

the master model if a solution with a negative objective function is found for the
subproblem. Consequently, the variables A; must be nonnegative integers.

Representing the Data

332

Asusual in a Concert Technology application, an environment, an instance of I1oEnv, is
created first to organize the data and build the model of the problem.

The data defining this problem includes the width of aroll of stock.Thisvalueisread from a
file and represented by a numeric value, rol1width. The widths of the ordered strips are
also read from afile and put into an array of humeric values, size. Finally, the number of
rolls ordered of each width isread from afile and put into an array of humeric values,
amount.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Developing the Model: Building and Modifying

In this problem, an initial model cutopt is built first to represent the master model. Later,
through its modifications, another model patGen isbuilt to generate the new columns. That
iS, patGen represents the subproblem.

Thefirst model cutopt, aninstance of 11oModel, isdeclared like this:

IloModel cutOpt (env);

Asamodel for this problem isbuilt, there will be opportunitiesto demonstrate to you how to
modify amodel by adding extractable objects, adding columns, changing coefficientsin an
objective function, and changing the type of avariable. When you modify amodel by means
of the methods of extractable objects, Concert Technology notifies the algorithms (instances
of subclassesof 11oAalgorithm, SuchasIloCplex OF I1loSolver) about the modification.
(For more about that idea, see the concept of Notification in the Reference Manual of the
C++ APL)

When 11oCplex, for example, is notified about a change in an extractable object that it has
extracted, it maintains as much of the current solution information asit can accurately and
reasonably. Other parts of the ILOG CPLEX User’s Manual offer more detail about how the
algorithm responds to modifications in the model.

Adding Extractable Objects: Both Ways

In a Concert Technology application, there are two ways of adding extractable objectsto a
model: by means of atemplate function (110add) or by means of a method of the model
(I1oModel: : add). In this example, you see both ways.

Using a Template to Add Objects

When an objective is added to the model, the application needs to keep a handle to the
objectiveRo11sUsed becauseit is needed when the application generates columns. For that
purpose, the application relies on the template function 110add, like this:

IloObjective RollsUsed = IloAdd(cutOpt, IloMinimize (env)) ;

Apart from the fact that it preserves type information, that single line is equivalent to these
lines:

IloObjective RollsUsed = IloMinimize (env) ;
cutOpt .add (RollsUsed) ;

ILOG CPLEX 10.0 — USER’'S MANUAL 333

334

Likewise, the application adds an array of constraints to the model. These constraints are
needed later in column generation aswell, so the application again uses 11o0add again to add
thearray Fi11 to the model.

IloRangeArray Fill = IloAdd (cutOpt,
IloRangeArray (env, amount, IloInfinity));

That statement creates amount . get Size range constraints. Constraint Fi11 [i] hasa
lower bound of amount [i] and an upper bound of T1oInfinity.

Using a Method to Add Objects

Itisalso possible to add objects to your model by means of the method 11oModel : : add.
This example uses that approach for the submodel in thisline:

patGen.add(IloScalProd(size, Use) <= rollwWidth) ;

Adding Columns to a Model
Creating a new column to add to amodel in Concert Technology is a two-step process:
1. Create acolumn expression defining the new column.

2. Create avariable using that column expression and add the variable to the model.

For example, in this problem, Ro11sUsed isan instance of T100bjective. The statement
RollsUsed (1) createsatermin acolumn expression defining how to add a new variable
asalinear term with a coefficient of 1 (one) to the expression Ro11sUsed.

The terms of a column expression are connected to one another by the overloaded
operator +.

The master model isinitialized with one variable for each size. Each such variable
represents the pattern of cutting aroll into as many strips of that size as possible. These
variables are stored as they are created in the array cut by the following loop:

IloInt nWdth = size.getSize();
for (j = 0; j < nWdth; j++)
Cut.add (IloNumVar (RollsUsed (1) + Fill(1l) (int (rollwWidth / sizel[jl))));

Conseguently, the variable cut [§]1 will have an objective coefficient of 1 (one) and only
one other nonzero coefficient (rol1width/size [§]) for constraint Fi11 [§]. Later, inthe
column generation loop, new variableswill be added. Those variables will have coefficients
defined by the solution vectors of the subproblem stored in the array newpatt.

According to that two-step procedure for adding a column to amodel, the following lines
create the column with coefficient 1 (one) for the objective Ro11suUsed and with coefficient

ILOG CPLEX 10.0 — UsSER’'S MANUAL

newPatt [1] for constraint Fi11 [1]; they also create the new variable with bounds at
0 (zero) and at MAXCUT.

IloNumColumn col = RollsUsed(1);

for (IloInt i = 0; i < Fill.getSize(); ++1i)
col += Fill[i] (newPatt[i]) ;

IloNumVar var (col, 0, MAXCUT) ;

(However, those lines do not appear in the example at hand.) Concert Technology offers a
shortcut in the operator () for an array of range constraints. Those lines of code can be
condensed into the following line:

IloNumVar var (RollsUsed(1l) + Fill (newPatt), 0, MAXCUT) ;

In other words, Fill (newPatt) returnsthe column expression that the loop would create.
You will see asimilar shortcut in the example.

Changing the Type of a Variable

After the column-generation phase terminates, an integer solution to the master problem
must be found. To do so, the type of the variables must be changed from continuous to
integer.

With Concert Technology, in order to change the type of avariable in amodel, you actually
create an extractable object (an instance of I1oConversion) and add that object to the
model.

In the example, when the application needs to change the elements of cut (an array of
numeric variables) from their default type of TLOFLOAT to integer (type ILOINT), it creates
an instance of I1oConversion for the array cut, and adds the conversion to the model,
cutopt, likethis:

cutOpt.add (IloConversion (env, Cut, ILOINT)) ;

Cut Optimization Model
Hereisasummary of the initial model cutopt:
IloModel cutOpt (env) ;
IloObjective RollsUsed = IloAdd(cutOpt, IloMinimize (env)) ;
IloRangeArray Fill = IloAdd(cutOpt,
IloRangeArray (env, amount, IloInfinity));
IloNumVarArray Cut (env) ;
IloInt nWdth = size.getSize();

for (j = 0; j < nWdth; j++)
Cut.add (IloNumVar (RollsUsed (1) + Fill[j] (int (rollwWidth / sizeljl))));

ILOG CPLEX 10.0 — USER’'S MANUAL 335

Pattern Generator Model

The submodel of the cutting stock problem is represented by the model patGen in this
example. This pattern generator patGen (in contrast to cutopt) is defined by the integer
variablesin the array use. That array appearsin the only constraint added to patGen: a
scalar product making sure that the patterns used do not exceed the width of rolls. The
application also adds a rudimentary objective function to patcen. This objectiveinitialy
consists of only the constant 1 (one). The rest of the objective function depends on the
solution found with the initial model cutopt. The application will build that objective
function as that information is computed. Here, in short, ispatGen:

IloModel patGen (env) ;
IloObjective ReducedCost = IloAdd(patGen, IloMinimize (env, 1)) ;

IloNumVarArray Use (env, nWdth, 0, IloInfinity, ILOINT) ;
patGen.add(IloScalProd(size, Use) <= rollwidth) ;

Changing the Objective Function

After the dual solution vector of the master model is available, the objective function of the
subproblem is adjusted by a call to the method 11o0bjective: : setLinearCoefs, like
this:

ReducedCost.setLinearCoefs (Use, price);

Solving the Problem: Using More than One Algorithm

This example does not solve the problem to optimality. It only generates a good feasible
solution. It does so by first solving a continuous relaxation of the column-generation
problem. In other words, the application drops the requirement for integrality of the
variables while the columns are generated. After all columns have been generated for the
continuous relaxation, the application keeps the variables generated so far, changes their
type to integer, and solves the resulting integer problem.

Asyou’ve seen, this example manages two models of the problem, cutopt and patGen.
Likewise, it uses two algorithms (that is, two instances of T1oCplex) to solve them.

Here's how to create the first algorithm cutsolver and extract the initial model cutopt:

IloCplex cutSolver (cutOpt) ;

And here is how to create the second algorithm and extract the model patGen:

IloCplex patSolver (patGen) ;

336 ILOG CPLEX 10.0 — USER’'S MANUAL

The heart of the example is here, in the column generation and optimization over current
patterns:

IloNumArray price(env, nWdth) ;
IloNumArray newPatt (env, nWdth) ;

for (;;)
/// OPTIMIZE OVER CURRENT PATTERNS ///

cutSolver.solve() ;
reportl (cutSolver, Cut, Fill);

/// FIND AND ADD A NEW PATTERN ///

for (1 = 0; 1 < nWdth; i++)
price[i] = -cutSolver.getDual (Fill[i]) ;
ReducedCost .setLinearCoefs (Use, price);

patSolver.solve() ;
report2 (patSolver, Use, ReducedCost) ;

if (patSolver.getValue (ReducedCost) > -RC_EPS) break;

patSolver.getValues (newPatt, Use);
Cut.add(IloNumVar (RollsUsed(l) + Fill (newPatt)));

}

cutOpt .add (IloConversion(env, Cut, ILOINT)) ;
cutSolver.solve() ;

Those lines solve the current subproblem cutopt by calling cutSolver.solve. Thenthey
copy the values of the negative dual solution into the array price. They use that array to set
objective coefficients in the model patGen. Then they solve the right pattern generation
problem.

If the objective value of the subproblem is nonnegative within the tolerance rc_EPs, then
the application has proved that the current solution of the model cutopt isoptimal within
the given optimality tolerance (Rc_EPS). Otherwise, the application copies the solution of
the current pattern generation problem into the array newpatt and uses that new pattern to
build the next column to add to the model cutopt. Then it repeats the procedure.

Ending the Program

Asin other C++ Concert Technology applications, this program endswith a call to
IloEnv: :end to de-allocate the models and algorithms once they are no longer in use.

env.end () ;

ILOG CPLEX 10.0 — USER’'S MANUAL 337

Complete Program

You can see the entire program online in the standard distribution of ILOG CPLEX at
yourCPLEXinstallation/examples/src/cutstock. cpp.

You will alsofind cutStock.java in yourCPLEXinstallation/examples/src/. If
your installation includes the .NET API of ILOG CPLEX, then you will also find the
C#.NET implementation of thisexamplein cutstock. cs and the VB.NET implementation
in cutStock.vb.

338 ILOG CPLEX 10.0 — USER’'S MANUAL

Part V

Infeasibility and Unboundedness

The topics discussed in Continuous Optimization on page 155 and Discrete Optimization on
page 239 often contained the implicit assumption that a bounded feasible solution to your
model actually exists. This part of the manual discusses what steps to try when the outcome
of an optmization is adeclaration that your model is either:

. infeasible; that is, no solution exists that satisfies all the constraints, bounds, and
integrality restrictions;

or

. unbounded; that is, the objective function can be made arbitrarily large; amore careful
definition of unbounded is provided in What |s Unboundedness? on page 344.

Infeasibility and unboundedness are closely related topics in optimization theory, and
therefore certain of the concepts for one will have direct relation to the other. This part
contains:

[Preprocessing and Feasibility on page 341

[Managing Unboundedness on page 343

[Diagnosing Infeasibility by Refining Conflicts on page 347
[Repairing Infeasibilities with FeasOpt on page 365

Asyou know, ILOG CPLEX can provide solution information about the models that it
optimizes. For infeasible outcomes, it reports values that you can analyze to determine what

inyour problem formulation caused this result. In certain situations, you can then alter your
problem formulation or change ILOG CPLEX parameters to achieve a satisfactory solution.

Infeasibility can arise from various causes, and it is not possible to automate procedures to
deal with those causes entirely without input or intervention from the user. For example, ina
shipment model, infeasibility could be caused by insufficient supply, or by an error in
demand, and it islikely that the optimizer will tell the user only that the mismatch exists.
The formulator of the model has to make the ultimate judgment of what the actual error is.
However, there are ways to try to narrow down the investigation or even provide some
degree of automatic repair.

ILOG CPLEX providestoolsto help you analyze the source of the infeasibility in a model.
Those toolsincludethe conflict refiner for detecting minimal sets of mutually contradictory
bounds and constraints, and FeasOpt for repairing infeasibilities.

22

Preprocessing and Feasibility

ILOG CPLEX preprocessing may declare amodel infeasible before the selected
optimization algorithm begins. This early declaration saves considerable execution timein
most cases. When this declaration is the outcome of preprocessing, it isimportant to
understand that there are two classes of reductions performed by the preprocessor.

Reductionsthat are independent of the objective function are called primal reductions; those
that are independent of the righthand side (RHS) of the constraints are called dual
reductions. Preprocessing operates on the assumption that the model being solved is
expected by the user to be feasible and that afinite optimal solution exists. If this assumption
isfalse, then themodel is either infeasible or no bounded optimal solutions exist; that is, itis
unbounded. Since primal reductions are independent of the objective function, they cannot
detect unboundedness, they can detect only infeasibility. Similarly, dual reductions can
detect only unboundedness.

Thus, to aid analysis of an infeasible or unbounded declaration by the preprocessor, a
parameter is provided that the user can set, so that the optimization can be rerun to make
surethat the results reported by the preprocessor can beinterpreted. If amodel isdeclared by
the preprocessor to be infeasible or unbounded and the user believes that it might be
infeasible, the parameter Reduce can be set to 1 by the user, and the preprocessor will only
perform primal reductions. If the preprocessor still finds inconsistency in the model, it will
be declared by the preprocessor to be infeasible, instead of infeasible or unbounded.
Similarly, setting the parameter to 2 meansthat if the preprocessor detects unboundednessin
the model, it will be declared unambiguously to be unbounded.

ILOG CPLEX 10.0 — USER’'S MANUAL 341

To control the types of reductions performed by the presolver, set the Reduce parameter to
one of the following values:

« 0=no primal and dual reductions
. 1=only primal reductions
. 2=only dua reductions

. 3 =both primal and dual reductions (default)

These settings of the Reduce parameter are intended for diagnostic use, as turning off
reductions will usually have anegative impact on performance of the optimization
algorithmsin the normal (feasible and bounded) case.

342 ILOG CPLEX 10.0 — USER’'S MANUAL

23

Managing Unboundedness

This chapter discusses the tactics you can use to diagnose the cause of an unbounded
outcome in the optimization of your model. It also suggests ways to avoid an unbounded
outcome.

[What Is Unboundedness? on page 344
[—Avoiding Unboundedness on page 344
[_Diagnosing Unboundedness on page 345

ILOG CPLEX 10.0 — USER’'S MANUAL 343

What Is Unboundedness?

Any class of model, continuous or discrete, linear or quadratic, hasthe potential toresultina
solution status of unbounded. An unbounded discrete model must have a continuous
relaxation that is also unbounded. Therefore, the discussion here will assume that you will
first relax any discrete elements, and thus you are dealing with an unbounded continuous
optimization problem, when trying to diagnose the cause.

Note: The reverse of that observation that an unbounded discrete model necessarily having
an unbounded continuous relaxation is not necessarily the case: a discrete optimization
model may have an unbounded continuous relaxation and yet have a bounded optimum.

A declaration of unboundedness means that ILOG CPLEX has determined that the model
has an unbounded ray. That is, given any feasible solution x with objective z, a multiple of
the unbounded ray can be added to x to give afeasible solution with objective z-1 (or z+1 for
maximization models). Thus, if afeasible solution exists, then the optimal objectiveis
unbounded.

When amodel is declared unbounded, ILOG CPLEX has not necessarily concluded that a
feasible solution exists. Users can call methods or routines to determine whether
ILOG CPLEX has aso concluded that the model has a feasible solution.

I Concert Technology, call one of these methods:

e isDualFeasible

e isPrimalFeasible
. try/catch the exception
[1In the Callable Library, call the routine cPxsolninfo.

Avoiding Unboundedness

344

Unboundedness can be viewed as an under-constrained condition; such an outcome can be
from a modeler forgetting to include one or more constraints in the model. Therefore
carefully checking that your problem formulation is completeisagood first step in
diagnosing unboundedness.

The default variable type in CPLEX has alower bound of O (zero) and an upper bound of
infinity. If you declare avariable to be of type Free, itslower bound is negative infinity
instead of 0 (zero). A model can not be unbounded unless one or more of the variables has
either of theseinfinite bounds. Therefore, one straightforward tactic in avoiding
unboundednessisto assign finite boundsto every variable in your model; if no variable can
go on an unbounded ray to infinity, then your model can not be unbounded.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Other forms of avoiding under-constrained conditions, such as adding a constraint that
limits the sum of all variables, are also possible.

If an unbounded solution is not possible in the physical system you are modeling, then
adding finite lower and upper bounds or adding other constraints may represent something
realistic about the system that is worth expressing in the model anyway. However, great care
should be taken to assign meaningful bounds, in cases where it is not possible to be certain
what the actual bounds should be. If you happen to select bounds that are tighter than an
optimal solution would obtain, then you can get a solution of worse objective function value
than you want. On the other hand, picking extremely large numbers for bounds (just to be
safe) carries somerisk, too: on afinite-precision computer, even abound of one billion may
introduce numeric instability and cause the optimizer to solve lessrapidly or not to converge
to asolution at all, or may result in solutions that satisfy tolerances but contain small
infeasibilities.

Diagnosing Unboundedness

You may be able to diagnose the cause of unboundedness by examining the output from
the optimizer that made the determination. For example, if the presolve step at the beginning
of optimization made a series of reductions and then stopped with a message like this:

Primal unbounded due to dual bounds, variable 'x1'.

it makes sense to look at your formulation, paying particular attention to variable x1 and its
interactions. Perhaps x1 never intersects |less-than-or-equal-to constraints with a positive
coefficient (or, greater-than-or-equal-to constraints with a negative coefficient), and by
inspection you can see that nothing prevents x1 from going to infinity.

Similarly, the primal simplex optimizer may terminate with a message like this:
Diverging variable = x2

In such acase, you should focus attention on x2. (The dual simplex and barrier optmizers
work differently than primal; they do not determine unboundedness in this way.)
Unfortunately, the variable which is reported in one of these ways may or may not be a
direct cause of the unboundedness, because of the many algebraic manipulations performed
by the optimizer along the way.

An approach to diagnosis that is related to the technique discussed in Avoiding
Unboundedness on page 344 isto tempor arily assign finite boundsto all variables. By
solving the modified model and determining which variables have solution values at these
artificial bounds, you may be able to trace the cause through the constraints involving those
variables.

Since an unbounded outcome means that an unbounded ray has been determined to exist,
one approach to diagnosisisto display thisray. In Concert Technology, use the method

ILOG CPLEX 10.0 — USER’'S MANUAL 345

346

getRay; in the Callable Library use the advanced routine cpxgetray. The relationship of
the variablesin this ray may give you guidance as to the cause of unboundedness.

If you are familiar with LP theory, then you might consider transfor ming your model to the
associated dual formulation. This transformation can be accomplished, for example, by
writing out the model in DUA format and then reading it back in. (Seethe ILOG CPLEX
Reference Manual for File Formats for adescription of DUA as afile format.) The dual
model of an unbounded model will be infeasible. And that means that you can use the
conflict refiner to reduce the infeasible model to aminimal conflict. (See Diagnosing
Infeasibility by Refining Conflicts on page 347 for more about the conflict refiner.) Itis
possible that the smaller model will alow you to identify the source of the (dual)
infeasibility more easily than the full model alows.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

24

Diagnosing Infeasibility by
Refining Conflicts

This chapter tells you about the conflict refiner, afeature of ILOG CPLEX for diagnosing
the cause of infeasibility in a model, whether continuous or discrete, whether linear or
quadratic.

[What Isa Conflict? on page 347

[What a Conflict Is Not on page 348

—How to Invoke the Conflict Refiner on page 349

—How a Conflict Differs froman 1S on page 349

[Meet the Conflict Refiner in the Interactive Optimizer on page 350
[Wsing the Conflict Refiner in an Application on page 359

What Is a Conflict?
A conflictisaset of mutually contradictory constraints and bounds within amodel. Given an

infeasible model, ILOG CPLEX can identify conflicting constraints and bounds within it.
ILOG CPLEX refines an infeasible model by examining elements that can be removed from

ILOG CPLEX 10.0 — USER’'S MANUAL 347

the conflict to arrive at aminimal conflict. A conflict smaller than the full model may make
it easier for the user to analyze the source of infeasibilities in the original model.

If the model happens to contain multiple independent causes of infeasibility, it may be
necessary for the user to repair one cause and then repeat the process with a further
refinement.

What a Conflict Is Not

Information about the necessary magnitude of change to data values, in order to gain
feasibility, is not available from a conflict. The algorithms for detecting and refining
conflicts do their work by including or removing a constraint or bound in trial solutions, not
by varying the data of those entities. For that kind of insight, or for an approach to automatic
repair of infeasibility, the FeasOpt feature, discussed in Repairing Infeasibilities with
FeasOpt on page 365, is more appropriate.

ILOG CPLEX refines conflicts only among the constraints and bounds in your model. It
disregardsthe objective function whileit isrefining a conflict. In particular, if you have set a
MIP cutoff value with the idea that the cutoff value will render your model infeasible, and
then you apply the conflict refiner, you will not achieve the effect you expect. In such acase,
you should add one or more explicit constraints to enforce the restriction you have in mind.
In other words, add constraints rather than attempt to enforce a restriction through these
parameters:

. CutLo Or cutUp in Concert Technology (not recommended to enforce infeasibility)

. CPX_PARAM CUTLO Of CPX_ PARAM CUTUP inthe Callable Library (not
recommended to enforce infeasibility)

. mip tolerance lowercutoff Of uppercutoff inthe Interactive Optimizer (not
recommended to enforce infeasibility)

348 ILOG CPLEX 10.0 — USER’'S MANUAL

How to Invoke the Conflict Refiner

Table 24.1 summarizes the methods and routines that invoke the conflict refiner, depending
on the component or API that you choose.

Table24.1 Conflict Refiner

APl or Component Invoke Conflict Refiner Access Results Save Results

Concert Technology for C++ Users |IloCplex: :refineConflict |getConflict writeConflict

Concert Technology for Java Users | IloCplex.refineConflict |getConflict writeConflict

Concert Technology for .NET Users | Cplex.RefineConflict GetConflict WriteConflict

Callable Library CPXrefineconflict CPXgetconflict CPXclpwrite
CPXrefineconflictext CPXgetconflictext

Interactive Optimizer conflict display conflict all|write file.clp

The following sections explain more about these methods and routines.

How a Conflict Differs from an IIS

In some ways a conflict resembles an irreducibly inconsistent set (11S). Detection of an 11S
among the constraints of amodel is a standard methodol ogy in the published literature; an
IIS finder haslong been available as atool within ILOG CPLEX. Both tools (conflict refiner
and 11S finder) attempt to identify an infeasible subproblem of aprovably infeasible model.

However, a conflict ismore general than an 11S. The l1Sfinder is applicable only to
continuous L P models, whereas the conflict refiner is capable of doing its work on any type
of problem, including mixed integer models or models containing quadratic elements.

Also, you can specify one or more groups of constraints for a conflict; agroup will either be
present together in the conflict, or else will not be part of it at al.

You can aso assign numeric preference to a constraint or to groups of constraints. In the
case of an infeasible model that has more than one possible conflict, the preferences you
assign will guide the tool toward detecting the conflict you want. Preferences allow you to
specify aspects of the model that may otherwise be difficult to encode.

Whilethe conflict refiner usually will deliver asmaller set of constraintsto consider than the
IS finder will, the methods are different enough that the reverse can sometimes be true. The
fact that the I1S finder implements a standard methodology may weigh toward itsusein
some situations. Otherwise, the conflict refiner can be thought of as usually doing

ILOG CPLEX 10.0 — USER’'S MANUAL 349

everything the I1S finder can, and often more. In fact, you might think of the conflict refiner
as an extension and generalization of the I1S finder.

Meet the Conflict Refiner in the Interactive Optimizer

350

You can get acquainted with the conflict refiner in the Interactive Optimizer. Certain features
of the conflict refiner, namely, preferences and groups, are available only through an
application of the Callable Library or Concert Technology. Those additional features are
introduced in Using the Conflict Refiner in an Application on page 359.

A Model for the Conflict Refiner

Here's asimplified resource allocation problem to use as amodel in the Interactive
Optimizer. Either you can create afile containing these lines and read the file into the
Interactive Optimizer by means of this command:

read filename

or you can usethe enter command, followed by a name for the problem, followed by these
lines:

Minimize
obj: cost
Subject To
cl: - cost + 80 x1 + 60 x2 + 55 x3 + 30 x4 + 25 x5 + 80 x6 + 60 x7 + 35 x8
+ 80 x9 + 55 x10 =0
c2: x1 + x2 + 0.8 x3 + 0.6 x4 + 0.4 x5 >= 2.1
c3: x6 + 0.9 x7 + 0.5 x8 >= 1.2
c4: X9 + 0.9 x10 >= 0.8
ch: 0.2 X2 + x3 + 0.5 x4 + 0.5 x5 + 0.2 X7 + 0.5 x8 + x10 - service =0

c6: x1 + x6 + x9 >=1

c7: x1 + X2 4+ X3 4+ X6 + X7 + X9 >= 2
c8: X2 + x3 4+ x4 + x5 <=0

c9: x4 + x5 + x8 <=1

cl0: x1 + x10 <=1
Bounds

service >= 3.2
Binaries

xl x2 x3 x4 x5 x6 x7 x8 x9 x10
End

This simple model, for example, might represent a project-staffing problem. In that case, the
ten binary variables could represent employees who could be assigned to duty.

Thefirst constraint defines the cost function. In this example, the objective isto minimize
the cost of salaries. The next three constraints (c2, ¢3, c4) represent three nonoverlapping
skills that the employees must cover to varying degrees of ability. The fifth constraint
represents some additional quality metric (perhaps hard to measure) that most or al of the

ILOG CPLEX 10.0 — UsSER’'S MANUAL

employees can contribute to. It is called customer service in this example. That variable has
alower bound to make sure of a certain predefined minimum level of 3.2.

The remaining constraints represent various work rulesthat reflect either policy that must be
followed or practical guidance based on experience with thiswork force. Constraint 6, for
example, dictatesthat at | east one person with managerial authority be present. Constraint c7
requires at least two senior personnel be present. Constraint c8 indicates that several people
are scheduled for off-site training during this period. Constraint c9 recognizes that three
individual s are not productive together. Constraint c10 prevents two employees who are
married to each other from working in this group in the same period, since one is a manager.

Optimizing the Example
If you apply the optimize command to this example, you will see these results:

Row 'c8' infeasible, all entries at implied bounds.

Presolve time = 0.00 sec.

MIP -- Integer infeasible.

Current MIP best bound is infinite.

Solution time = 0.00 sec. Iterations = 0 Nodes = 0

Interpreting the Results and Detecting Conflict

The declaration of infeasibility comesfrom presolve. In fact, presolve has already performed
various reductions by the time it detects the unresolvable infeasibility in constraint 8. This
information by itself is unlikely to provide any useful insights about the source of the
infeasibility, so try the conflict refiner, by entering this command:

conflict
Then you will see results like these:

Refine conflict on 14 members...
Iteration Max Members Min Members

1 11 0

2 9 0

3 7 0

4 2 0

5 2 1

6 2 2
Minimal conflict: 2 linear constraint (s)

0 lower bound(s)
0 upper bound(s)
Conflict computation time = 0.00 sec. Iterations = 6

Thefirst line of output mentions 14 members; thistotal represents constraints, lower bounds,
and upper bounds that may be part of the conflict. There are ten constraints in this model;
there are two continuous variables with lower and upper bounds that represent the other four
membersto be considered. Because binary variables are not reasonabl e candidates for bound
analysis, the Interactive Optimizer treats the bounds of only the variables cost and

ILOG CPLEX 10.0 — USER’'S MANUAL 351

352

service aspotential members of the conflict. If you want all bounds to be candidates, you
could instead declare the binary variables to be general integer variables with bounds of
[0,1]. (Making that changein this model would likely result in the conflict refiner suggesting
that one of the binary variables should take a negative value.) On some models, allowing so
much latitude in the bounds may cause the conflict refiner to take far longer to arrive at a
minimal conflict.

Displaying a Conflict

Asyou can see in the log displayed on the screen, the conflict refiner works to narrow the
choices until it arrives at a conflict containing only two members. Since the conflict is small
in this simplified example, you can seeit in its entirety by entering this command:

display conflict all

Minimize
obj:
Subject To
c2: X1 + x2 + 0.8 x3 + 0.6 x4 + 0.4 x5 >= 2.1
c8: X2 + X3 + x4 + x5 <=0
Bounds
0 <= x1
0 <= x2
0 <= x3
0 <= x4
0 <= x5
Binaries
x1l x2 x3 x4 x5

ASVAY

A A
o
PR R RR

A

In alarger conflict, you can selectively display constraints or bounds on variables by using
these commands to specify arange of rows or columns:

display conflict constraints
display conflict variables

You can also write the entire conflict to afilein LP-format to browse later by using the
command (where mode 1name is the name you gave the problem):

write modelname.clp

Interpreting Conflict

In those results, you can see that ¢8, the constraint mentioned by presolve, isindeed a
fundamental part of theinfeasibility, asit directly conflicts with one of the skill constraints.
In this example, with so many people away at training, the skill set in c2 cannot be covered.
Perhaps it would be up to the judgment of the modeler or management to decide whether to
relax the skill constraint or to reduce the number of people who will be away at training
during this period, but something must be done for this model to have afeasible solution.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Deleting a Constraint

For the sake of explanation, assume that a decision is made to cancel the training in this
period. To implement that decision, try entering this command:

change delete constraint c8

Now re-optimize. Unfortunately, even removing c8 does not make it possible to reach an
optimum, as you can see from these results of optimization:

Constraints 'c5' and 'c9' are inconsistent.

Presolve time = 0.00 sec.

MIP -- Integer infeasible.

Current MIP best bound is infinite.

Solution time = 0.00 sec. Iterations = 0 Nodes = 0

Perhaps presolve has identified a source of infeasibility, but if you run the conflict
command again, you will see these results:

Refine conflict on 13 members...
Iteration Max Members Min Members

1 12 0
2 9 0
3 6 0
4 4 0
5 3 0
6 3 1
7 3 2
8 3 3
Minimal conflict: 2 linear constraint (s)
1 lower bound(s)
0 upper bound(s)
Conflict computation time = 0.00 sec. Iterations = 8

Now view the entire conflict with this command:

display conflict all

Minimize
obj:

Subject To
ch: 0.2 X2 + X3 + 0.5 x4 + 0.5 x5 + 0.2 x7 + 0.5 x8 + x10 - service = 0
c x4 + x5 + x8 <=1

sum_eq: 0.2 x2 + X3 + 0.5 x4 + 0.5 X5 + 0.2 x7 + 0.5 X8 + x10 - service = 0
Bounds

0 <= x2 <=1
0 <=x3 <=1
0 <= x4 <=1
0 <= x5 <=1
0 <= x7 <=1
0 <= x8 <=1
0 <= x10 <=1

service >= 3.2
Binaries
x2 x3 x4 x5 x7 x8 x10

ILOG CPLEX 10.0 — USER’'S MANUAL 353

354

Understanding a Conflict Report

The constraints mentioned by presolve are part of the minimal conflict detected by the
conflict refiner. The additional information provided by this conflict isthat the lower bound
on service quality could also be considered for modification to achieve feasibility: with only
one among employees 4, 5, and 8 permitted, any of whom contribute 0.5 to the quality
metric, the lower bound on service can not be achieved. Unlike abinary variable, whereit
would make little sense to adjust either of its boundsto achieve feasibility, the bounds on a
continuous variable like service may be worth scrutiny.

The other information this Conflict providesis that no change of the upper bound on
service, currently infinity, could aid toward feasibility; perhaps that is already obvious,
but even afinite upper bound would not be part of this conflict (aslong asit islarger than the
lower bound of 3.2).

Summing Equality Constraints

Note the additional constraint provided in this conflict: sum_eq. It isasum of al the
equality constraintsin the conflict. In this case, there is only one such constraint; sometimes
when there are more, an imbalance will become quickly apparent when positive and
negative terms cancel.

Changing a Bound

Again, for the sake of the example, assume that it is decided after consultation with
management to repair theinfeasibility by reducing the minimum onthe service metric, on
the groundsthat it is a somewhat arbitrary metric anyway. A minimal conflict does not
directly tell you the magnitude of change needed, but in this case it can be quickly
determined by examination of the minimal conflict that a new lower bound of 2.9 could be
achievable; select 2.8, to be safe. Modify the model by entering this command:

change bound service lower 2.8
and re-optimize. Now at last the model delivers an optimum:

Tried aggregator 1 time.

MIP Presolve eliminated 9 rows and 12 columns.
MIP Presolve modified 16 coefficients.

All rows and columns eliminated.

Presolve time = 0.00 sec.
Integer optimal solution: Objective = 3.3500000000e+02
Solution time = 0.00 sec. Iterations = 0 Nodes = 0

Displaying the solution indicates that employees { 2,3,5,6,7,10} are used in the optimal
solution.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Adding a Constraint

A natural question iswhy so many employees are needed. L ook for an answer by adding a
congtraint limiting employees to five or fewer, like this:

add

x1+x2+x3+x4+xX5+X6+x7+x8+x9+x10 <= 5
end

optimize

Asyou might expect, the output from the optimizer indicates the current solution is
incompatible with this new constraint, and indeed no solution to this what-if scenario exists
at al:

Warning: MIP start values are infeasible.
Retaining MIP start values for possible repair.
Row 'cll' infeasible, all entries at implied bounds.

Presolve time = 0.00 sec.

MIP -- Integer infeasible.

Current MIP best bound is infinite.

Solution time = 0.00 sec. Iterations = 0 Nodes = 0

Constraint c11, flagged by presolve, isthe newly added constraint, not revealing very much.
To learn more about why c11 causes trouble, run conflict again, and view the minimal
conflict with the following command again:
display conflict all
You will seethe following conflict:
Minimize
obj:
Subject To
c2: x1 + x2 + 0.8 x3 + 0.6 x4 + 0.4 x5 >= 2.1
c3: x6 + 0.9 x7 + 0.5 x8 >= 1.2
c4: X9 + 0.9 x10 >= 0.8

cll: X1 + X2 + X3 + x4 + X5 + X6 + X7 + x8 + X9 + xX10 <=5
(omitting the listing of binary variables' bounds)

The constraints in conflict with this new limitation are all of the skill requirements. When
viewed in thislight, the inconsistency is easy to spot: one employeeis obviously needed for
constraint c4, two are needed for ¢3, and asimple calculation reveals that three are needed
for c2. Since there is no overlap in the skill sets, five employees are too few.

Unless management or the formulator of the model iswilling to compromise about the
skills, (for example, to relax the righthand side of any of these constraints), constraint c11
needs to be taken out again, since it is unrealistic to get by with only five employees:

change delete constraint cll

This change results in amodel with an optimal cost of 335, using six employees.

ILOG CPLEX 10.0 — USER’'S MANUAL 355

356

Changing Bounds on Cost

No better cost is possible in this formulation. Still, you may wonder, "Why not?' To try yet
another scenario, instead of limiting the number of employees, try focusing on the cost by
changing the upper bound of the cost to 330, like this:

change bound cost upper 330

optimize

conflict

display conflict all

This series of commands again renders the model infeasible and shows a minimal conflict:

Subject To

cl: - cost + 80 x1 + 60 x2 + 55 x3 + 30 x4 + 25 x5 + 80 x6 + 60 x7
+ 35 x8 + 80 x9 + 55 x10 =0

c2: x1l + x2 + 0.8 x3 + 0.6 x4 + 0.4 x5 >= 2.1

c3: x6 + 0.9 x7 + 0.5 x8 >= 1.2

c5: 0.2 x2 + x3 + 0.5 x4 + 0.5 x5 + 0.2 x7 + 0.5 x8 + x10 - service
=0

c9: x4 + x5 + x8 <=1

Bounds

-Inf <= cost <= 330
service >= 2.9

The upper bound on cost is, of course, expected to be in the conflict, so relaxing it would
merely put the scenario back the way it was. The constraint ¢1 defines cost, so unlessthere
is some unexpected latitude in setting salaries, no relief will be found there. Constraints ¢c2
and c3 represent two skill requirements, previously judged beyond negotiation, and
constraint c5 represents service quality, already compromised abit. That rough analysis
leaves 9, the requirement not to use three particular employees together.

Relaxing a Constraint

How much isit costing to maintain this rule? Consider asking them to work productively
pairwise, if not al three, and relax the upper limit of this constraint, like this:

change rhs c9 2
optimize

The model is now restored to feasibility, and the new optimum has an overall cost of 310, a
tangible improvement of 25 over the previous optimum, using employees{2,3,5,6,8,10} ;
employee 7 has been removed in favor of employee 8. Isthat enough monetary benefit to
offset whatever reasons there were for separating employees 4 and 8? That is not adecision
that can be made here; but at least this model provides some quantitative basis toward
making that decision. Additionally, a check of the service variable shows that its solution
value isback up to 3.2, afurther benefit from relaxing constraint 9. Perhaps this decision
should have been made sooner, the first time constraint ¢9 appeared in a conflict.

The solution of 310 could be investigated further by changing the upper bound of cost tobe
305, for example. The conflict resulting from this change consists of the skills constraint
plus the constraint requiring at least one manager on duty. At this point, the analysis has

ILOG CPLEX 10.0 — UsSER’'S MANUAL

reached a conclusion, unless management or the model formulator wishes to challenge the
policy.

More about the Conflict Refiner

Presolve proved the infeasibility of that simplified example in A Model for the Conflict
Refiner on page 350. However, aminimal conflict can be refined from an infeasible model
regardless of how the infeasibility was found. The infeasibility may have been proven by
presolve, by the continuous optimizers, or by the mixed integer optimizer.

A minimal conflict on anontrivial model can take longer to refine than the associated
optimization algorithm would have taken either to prove the infeasibility or to solve a
similar model instance that wasfeasible. If the user sets aresourcelimit, such asatime limit,
an iteration limit, or node limit, for example, or if a user interrupts the process interactively,
the conflict that is available at that termination will be the best (that is, the most refined) that
was achievable at that point. Even anonminimal conflict may be more useful than the full
model for determining the cause of infeasibility. The status of abound or constraint in such a
nonminimal conflict may be proved, meaning that the conflict refiner had sufficient
resources to prove participation of bound or constraint in the conflict, or the status may be
possible, meaning that the conflict refiner has not yet proven whether the bound or
constraint is necessarily part of aminimal conflict.

If amodel contains more than one cause of infeasibility, then the conflict that is delivered
may not be unique. As you saw in the example, you may repair one infeasibility only to find
that there is another arising. An iterative approach may be necessary.

When the conflict refiner is allowed to run to completion, aconflict will be minimal in the
sense that removal of any constraint or bound will result in afeasible subproblem. However,
even if thereisasingle cause of infeasibility, it isworth realizing that conflicts can often be
derived in more than one way, and one minimal conflict may be smaller (fewer in number of
constraints or bounds) than another. For example, consider this small set of inconsistent
constraints:

X +y +2z>=1
b4

ASVAY

Y

A
| R |
[elNelNeNe)

z
X+ Y + 2z

A

There are multiple minimal conflictsin that small set.

(

1)
X +y + 2z >
X

A

1
A
LI B

Y

N
A
o O O

ILOG CPLEX 10.0 — USER’'S MANUAL 357

2

+ o+ =

(
x z >
x z

1
<=0

Y +
Y +
Removing any one of the constraintsin conflict (1) resultsin feasibility. Likewise, removing

either of the constraints in conflict (2) also results in feasibility. Either representation may
guide you toward a correct analysis of the infeasibilities in the model.

Keep in mind also that a conflict may guide you toward multiple waysto repair a model,
some more reasonabl e than others. For example, if the conflict in amodel using continuous
variables to represent percentages looked like this:

x1l + x2 + X3 >= 4
Bounds
0 <= x1 <
0 <= x2 <
0 <= x3 <

1
1
1

the infeasibility could be repaired by one change, namely, by increasing the upper bound of
x3 to be 2. However, with the way the variables are defined, this modification makesllittle
sense. It ismore likely that the model contains two mistaken constraints as shown.

When the model passed to the conflict refiner is actually feasible, the conflict refiner will
return this message:

Problem is feasible; no conflict available

An attempt to display or access a conflict when none exists, whether because the conflict
refiner has not yet been invoked or because an error occurred, results in this error message:

No conflict exists.

The cause of those messageswill usually be apparent to a user. However, numeric instability
may cause genuine uncertainty for a user. In an unstable model, one of the optimizers may
return avalid conclusion of infeasibility, based on the numeric precision alowed by the
model, and yet when atrivial modification is made, the model status changes, and afeasible
solution now seems attainable. Because one of the conventional indicators of instability can
be this switching back and forth from feasibility to infeasibility, the user should be alert to
this possibility. The conflict refiner will halt and return an error code if an infeasible model
suddenly appears feasible during its analysis, due to this presumption of numeric instability.
The user should turn attention away from infeasibility analysis at that point, and toward the
sections in this manual such as Numeric Difficulties on page 170.

358 ILOG CPLEX 10.0 — USER’'S MANUAL

Using the Conflict Refiner in an Application

Hereis an example using the conflict refiner in the C++ APl of Concert Technology. You
will modify one of the standard examples i 1omipex2 . cpp distributed with the product.
Starting from that example, locate this statement in it:

cplex.solve() ;

ILOG CPLEX 10.0 — USER’'S MANUAL 359

360

Immediately after that statement, insert the following lines to prepare for and invoke the
conflict refiner: Now run this modified version with the model you have seenin A Model for
(cplex.getStatus() == IloAlgorithm::Infeasible) ||

(cplex.getStatus() == IloAlgorithm::InfeasibleOrUnbounded)) {
cout << endl << "No solution - starting Conflict refinement" << endl;

IloConstraintArray infeas (env) ;
IloNumArray preferences (env) ;

infeas.add(rng) ;
infeas.add(sosl); infeas.add(sos2);
if (lazy.getSize() || cuts.getSize()) {
cout << "Lazy Constraints and User Cuts ignored" << endl;
}
for (IloInt i = 0; i<var.getSize(); i++) {
if (var[i] .getType() != IloNumVar::Bool) {
infeas.add (IloBound(var[i], IloBound::Lower)) ;
infeas.add (IloBound(var[i], IloBound: :Upper)) ;
1
}

for (IloInt i = 0; i<infeas.getSize(); i++) {
preferences.add(1.0); // user may wish to assign unique preferences

}

if (cplex.refineConflict (infeas, preferences)) {
IloCplex::ConflictStatusArray conflict = cplex.getConflict (infeas) ;
env.getImpl () ->useDetailedDisplay (IloTrue) ;
cout << "Conflict :" << endl;
for (IloInt i = 0; i<infeas.getSize(); i++) {
if (conflict[i] == IloCplex::ConflictMember)
cout << "Proved : " << infeas[i] << endl;
if (conflict[i] == IloCplex::ConflictPossibleMember)
cout << "Possible: " << infeas[i] << endl;
1
}
else
cout << "Conflict could not be refined" << endl;
cout << endl;

ILOG CPLEX 10.0 — UsSER’'S MANUAL

the Conflict Refiner on page 350. You will seeresults like these:
No solution - starting Conflict refinement
Refine conflict on 14 members...

Iteration Max Members Min Members

1 11
9

e 01D W N
NN WL
NP OOoOoOoOo

Conflict
Proved : c2(2.1 <= (x1 + x2 + 0.8 * x3 + 0.6 * x4 + 0.4 * x5))
Proved : c8((x2 + X3 + x4 + x5) <= 0)

What Belongs in an Application to Refine Conflict

There are afew remarks to make about that modification:

[lazy constraints must not be present in a conflict.

[Wser-defined cuts (also known as user cuts) must not be present in a conflict.

These lines check for lazy constraints and user-defined cuts.

if (lazy.getSize() || cuts.getSize()) {
cout << "Lazy Constraints and User Cuts ignored" << endl;
}

Fince it makes little sense to modify the bounds of binary (0-1) variables, this example
does not include them in a conflict. This line eliminates binary variables from
consideration:

if (var[i] .getType() != IloNumVar::Bool) ({

Eliminating binary variables from consideration produces behavior consistent with
behavior of the Interactive Optimizer. Doing so is optional. If you prefer for the conflict
refiner to work on the bounds of your binary variables as well, omit thistest, bearing in
mind that it may take much longer to refine your model to aminimal conflict in that case.

[_The method useDetailedpisplay isincluded to improve readability of the conflict
when it is displayed.

Conflict Application vs Interactive Optimizer

This modified example also demonstrates a few features that are available only in the
Callable Library and Concert Technology, not in the Interactive Optimizer:

[Preferences in the Conflict Refiner on page 362

ILOG CPLEX 10.0 — USER’'S MANUAL 361

362

[Groups in the Conflict Refiner on page 362

Preferences in the Conflict Refiner

You can assign preference to members of a conflict. In most cases there is no advantage to
assigning unique preferences, but if you know something about your model that suggests
assigning an ordering to certain members, you can do so.

. A preference of -1 means that the member is to be absolutely excluded from the
conflict

. A preference of 0 (zero) means that the member is always to be included, and

. Preferences of positive value represent an ordering by which the conflict refiner will
give preference to the members. A group with ahigher preferenceismorelikely to be
included in the conflict. Preferences can thus help guide the refinement process
toward amore desirable minimal conflict.

Groups in the Conflict Refiner

You can organize constraints and bounds into one or more groupsin a conflict. A group isa
set of constraints or bounds that must be considered together; that is, if one member of a
group is determined by the conflict refiner to be anecessary in aminimal conflict, then the
entire group will be part of the conflict.

For example, in the resource alocation problem from A Model for the Conflict Refiner on
page 350, management might consider the three skill requirements (c2, c3, c4) as
inseparable. Adjusting the datain any one of them should require a careful re-evaluation of
all three. To achieve that effect in the modified version of ilomipex2 . cpp, replace this
line:

infeas.add (rng) ;

by the following lines to declare a group of the constraints expressing skill requirements:

7

infeas.add(rng[0])
IloAnd skills (env) ;
skills.add(rng[1]) ;

21)

)

7

skills.add (rngl

skills.add(rng([3]) ;

infeas.add(skills) ;

for (IloInt i = 4; i<rng.getSize(); i++)
infeas.add(rng[il) ;

}

(This particular modification is specific to this simplified resource allocation model and thus
would not make sense in some other infeasible model you might run with the modified
ilomipex2.cpp application.)

After that modification, the cost constraint and the constraints indexed 4 through 10 are
treated individually (that is, normally) as before. The three constraints indexed 1 through

ILOG CPLEX 10.0 — UsSER’'S MANUAL

three are combined into askills constraint through the 110and operator, and added to the
infeasible set.

Individual preferences are not assigned to any of these membersin this example, but you
could assign preferences if they express your knowledge of the problem.

After this modification to group the skill constraints, aminimal conflict is reported like this,
with the skill constraints grouped inseparably:

Conflict :

Proved : IloAnd and36 = {

c2(2.1 <= ((x1 + X2 + 0.8 * x3 + 0.6 * x4 + 0.4 * x5))
c3(1.2 <= (x6 + 0.9 * X7 + 0.5 * x8))

c4(0.8 <= (x9 + 0.9 * x10)) }

Proved : c8((x2 + X3 + x4 + x5) <= 0)

ILOG CPLEX 10.0 — USER’'S MANUAL 363

364 ILOG CPLEX 10.0 — USER’'S MANUAL

25

Repairing Infeasibilities with FeasOpt

This chapter tells you about FeasOpt, afeature for repairing infeasibility in a model.
FeasOpt attempts to repair an infeasibility by modifying the model according to preferences
set by the user. This chapter covers these topics:

[What Is FeasOpt? on page 365
[Invoking FeasOpt on page 366

[Fpecifying Preferences on page 367
[Example: FeasOpt in Concert Technology on page 367

What Is FeasOpt?

FeasOpt accepts an infeasible model and selectively relaxes the bounds and constraintsin a
way that minimizes a weighted penalty function that you define. FeasOpt supports all types
of infeasible models. In essence, FeasOpt is another optimization algorithm (anal ogous to
phase | of the simplex agorithm). It tries to suggest the least change that would achieve
feasibility. FeasOpt does not actually modify your model. Instead, it suggests a set of bounds
and constraint ranges and produces the solution that would result from these relaxations.
Your application can query this solution. It can also report these values directly, or it can
apply these new values to your model, or you can run FeasOpt again with different weights
perhaps to find a more acceptabl e relaxation.

ILOG CPLEX 10.0 — USER’'S MANUAL 365

Theinfeasibility on which FeasOpt works must be present explicitly in your model among
its constraints and bounds. In particular, if you have set aMIP cutoff value with the idea that
the cutoff value will render your model infeasible, and then you apply FeasOpt, you will not
achieve the effect you expect. In such a case, you should add one or more explicit constraints
to enforce the restriction you have in mind. In other words, add constraints rather than
attempt to enforce arestriction through these parameters:

. CutLo Or cutUp in Concert Technology (not recommended to enforce infeasibility)

. CPX PARAM CUTLO Of CPX PARAM CUTUP in the Callable Library (not
recommended to enforce infeasibility)

. mip tolerance lowercutoff Of uppercutoff inthe Interactive Optimizer (not
recommended to enforce infeasibility)

Invoking FeasOpt

Depending on the interface you are using, you invoke FeasOpt in one of the ways listed in
Table 25.1.

Table25.1 FeasOpt

APl or Component FeasOpt

Concert Technology for C++ users IloCplex: :feasOpt

Concert Technology for Java users IloCplex.feasOpt

Concert Technology for .NET users Cplex.FeasOpt

Callable Library CPXfeasopt and CPXfeasoptext

Interactive Optimizer feasopt { variables | constraints | all }

In the various Concert Technology APIs, you have a choice of three implementations of
FeasOpt, specifying that you want to allow changes to the bounds on variables, to the ranges
on constraints, or to both.

In the Callable Library, you can allow changes without distinguishing bounds on variables
from ranges over constraints.

In each of the APIs, there is an additional argument where you specify whether you want
merely afeasible solution suggested by the bounds and ranges that FeasOpt identifies, or an
optimized solution that uses these bounds and ranges.

366 ILOG CPLEX 10.0 — USER’'S MANUAL

Specifying Preferences

You specify the bounds or ranges that FeasOpt may consider for modification by assigning
positive preferences for each. A negative or zero preference means that the associated bound
or rangeis not to be modified. One way to construct aweighted penalty function from these
preferencesislike this: Z v,/p; wherey;istheviolationand p; isthe preference.

Thus, the larger the preference, the more likely it will be that a given bound or range will be
modified. However, it is not necessary to specify a unique preference for each bound or
range. Infact, it is conventional to use only the values 0 (zero) and 1 (one) except when your
knowledge of the problem suggests assigning explicit preferences.

Example: FeasOpt in Concert Technology

The following examples show you how to use FeasOpt. These fragments of code are written
in Concert Technology for C++ users, but the same principles apply to the other APIs as
well. The examples begin with amodel similar to one that you have seen repeatedly in this
manual.

I1oEnv env;

try {
IloModel model (env) ;
IloNumVarArray x(env) ;
IloRangeArray con(env) ;
IloNumArray vals (env) ;
IloNumArray infeas (env) ;

x.add (IloNumVar (env, 0.0, 40.0));
x.add (IloNumVar (env)) ;

x.add (IloNumvar (env)) ;

model.add (IloMaximize (env, x[0] + 2 * x[1] + 3 * x[2]));

con.add(- x[0] + x[1] + x[2] <= 20);
con.add (x[0] - 3 * x[1] + x[2] <= 30);
con.add (x[0] + x[1] + x[2] >= 150);

model .add (con) ;

If you extract that model and solve it, by means of the following lines, you find that it is
infeasible.

IloCplex cplex(model) ;

cplex.exportModel ("toto.1lp") ;

cplex.solve () ;

if (cplex.getStatus() == IloAlgorithm::Infeasible ||
cplex.getStatus () == IloAlgorithm::InfeasibleOrUnbounded) {
env.out () << endl << "*** Model is infeasible ***" << endl << endl;

ILOG CPLEX 10.0 — USER’'S MANUAL 367

368

Now the following lines invoke FeasOpt to locate a feasible solution:
// begin feasOpt analysis

cplex.setOut (env.getNullStream()) ;
IloNumArray lb(env) ;
IloNumArray ub (env) ;

// first feasOpt call

env.out () << endl << "*** First feasOpt call ***" << endl;
env.out () << "*** Consider all constraints ***" << endl;
int rows = con.getSize() ;

1lb.add(rows, 1.0);

ub.add (rows, 1.0);

if (cplex.feasOpt(con, 1lb, ub)) {
env.out () << endl;
cplex.getInfeasibilities (infeas, con) ;
env.out () << "*** Suggested bound changes = " << infeas << endl;
env.out () << "*** Feasible objective value would be = "
<< cplex.getObjvalue() << endl;

env.out () << "Solution status = " << cplex.getStatus() << endl;
env.out () << "Solution obj value = " << cplex.getObjValue() << endl;
cplex.getValues (vals, x);

env.out () << "Values = " << vals << endl;

env.out () << endl;

1

else {

env.out () << "*** Could not repair the infeasibility" << endl;

throw (-1);

}

The code first turns off logging to the screen by the optimizers, simply to avoid unnecessary
output. It then allocates arrays 1b and ub, to contain the preferences asinput. The preference
isset to 1.0 for al three constraints in both directions to indicate that any change to a
constraint range will be permitted.

Then FeasOpt is called. If the FeasOpt call succeeds, then several lines of output give the
results. Here is the output:

***x First feasOpt call ***
**x Consider all constraints **x*

*** Suggested bound changes = [50, -0, -0]
*** Feasible objective value would be = 50

Solution status = Infeasible
Solution obj value = 50
Values = [40, 30, 80]

There are severa items of note in this output. First, you see that FeasOpt recommends only
the first constraint to be modified, namely, by increasing its lower bound by 50 units.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

The solution values of [40, 30, 80] would befeasible in the modified form of the
constraint, but not in the original form. This situation isreflected by the fact that the solution
status has not changed from itsvalue of Infeasible. In other words, this change to the
righthand side (RHS) of the constraint is only a suggestion from FeasOpt; the model itself
has not changed, and the proposed solution is still infeasible in it.

To get amore concrete idea, assume that this constraint represents alimit on a supply, and
assume further that increasing the supply to 70 is not practical. Now rerun FeasOpt, not
allowing this constraint to be modified, like this:

// second feasOpt call

env.out () << endl << "*** Second feasOpt call ***" << endl;
env.out () << "*** Consider all but first constraint ***" << endl;

1b[0]=ub[0]=0.0;

if (cplex.feasOpt (con, 1lb, ub)) {
env.out () << endl;
cplex.getInfeasibilities (infeas, con) ;
env.out () << "*** Suggested bound changes = " << infeas << endl;
env.out () << "*** Feasible objective value would be = "
<< cplex.getObjValue() << endl;
env.out () << "Solution status = " << cplex.getStatus() << endl;
env.out () << "Solution obj value = " << cplex.getObjValue() << endl;
cplex.getValues (vals, x);
env.out () << "Values = " << vals << endl;
env.out () << endl;
else {
env.out () << "*** Could not repair the infeasibility" << endl;
throw (-1);

}

Those lines disallow any changes to the first constraint by setting 1b [0] =ub [0] =0. 0.
FeasOpt runs again, and here are the results of this second run:

x* Second feasOpt call *

*** Consider all but first constraint ***
**x Suggested bound changes = [-0, -0, -50]
*** Feasible objective value would be = 50
Solution status Infeasible

Solution obj value 50

Values [40, 17.5, 42.5]

Notice that the projected maximal objective value is quite different from the first time, asare
the optimal values of the three variables. This solution was completely unaffected by the
previous call to FeasOpt. This solution also isinfeasible with respect to the original model,
asyou would expect. (If it had been feasible, you would not have needed FeasOpt in the first
place.) The negative suggested bound change of the third constraint means that FeasOpt

ILOG CPLEX 10.0 — USER’'S MANUAL 369

suggests decreasing the upper bound of the third constraint by 50 units, tranforming this
congtraint:

X[0] + Xx[1] +x[2] >=150

into

X[0] + X[1] +x[2] >= 100

That second call changed the range of a constraint. Now consider changes to the bounds.

// third feasOpt call

env.out () << endl << "*** Third feasOpt call ***" << endl;
env.out () << "*** Consider all bounds ***" << endl;
// re-use preferences - they happen to be right dimension

1b[0]=ub[0]=1.0;
1b[1]=ub[1]=1.0;
1b[2]=ub[2]=1.0;

if (cplex.feasOpt(x, 1lb, ub)) {
env.out () << endl;
cplex.getInfeasibilities (infeas, x) ;
env.out () << "*** Suggested bound changes = " << infeas << endl;
env.out () << "*** Feasible objective value would be = "
<< cplex.getObjVvalue() << endl;

env.out () << "Solution status = " << cplex.getStatus() << endl;
env.out () << "Solution obj value = " << cplex.getObjValue ()<< endl;
cplex.getValues (vals, x);
env.out () << "Values = " << vals << endl;
env.out () << endl;
else {
env.out () << "*** Could not repair the infeasibility" << endl;
throw (-1);

}

In those lines, al six bounds (lower and upper bounds of three variables) are considered for
possible modification because a preference of 1.0 is set for each of them. Here is the result:

**x Third feasOpt call **x=*
*** Consider all bounds ***

*** Suggested bound changes = [25, 0, 0]
**x Feasible objective value would be = 25

Solution status = Infeasible
Solution obj value = 25
Values = [65, 30, 55]

Those results suggest modifying only one bound, the upper bound on the first variable. And
just as you might expect, the solution value for that first variable is exactly at its upper

370 ILOG CPLEX 10.0 — USER’'S MANUAL

bound; there is no incentive in the weighted penalty function to set the bound any higher
than it hasto be to achieve feasibility.

Now assume for some reason it is undesirable to let this variable have its bound modified.
Thefinal call to FeasOpt changes the preference to achieve this effect, like this:

// fourth feasOpt call

env.out () << endl << "*** Fourth feasOpt call ***" << endl;
env.out () << "*** Consider all bounds except first ***" << endl;
1b[0]=ub[0]=0.0;

if (cplex.feasOpt(x, 1b, ub)) {
env.out () << endl;
cplex.getInfeasibilities (infeas,x) ;
env.out () << "*** Suggested bound changes = " << infeas << endl;
env.out () << "*** Feasible objective value would be = "

<< cplex.getObjvalue () << endl;

env.out () << "Solution status = " << cplex.getStatus() << endl;
env.out () << "Solution obj value = " << cplex.getObjValue() << endl;
cplex.getValues (vals, x);
env.out () << "Values

" << vals << endl;

env.out () << endl;

}

else {
env.out () << "*** Could not repair the infeasibility" << endl;
throw (-1);

Then after the fourth call of FeasOpt, the output to the screen looks like this:

*** Fourth feasOpt call ***

x Consider all bounds except first *
*%** Could not repair the infeasibility
Unknown exception caught

Thisisacorrect outcome, and a more nearly complete application should catch this
exception and handle it appropriately. FeasOpt istelling the user here that no modification to
the model is possible under this set of preferences: only the bounds on the last two variables
are permitted to change according to the preferences expressed by the user, and they are
aready at [0, +inf], SO the upper bound can not increase, and no negative value for the
lower bounds would ever improve the feasibility of this model. Not every infeasibility can
be repaired, and an application calling FeasOpt will usually need to take this possibility into
account.

ILOG CPLEX 10.0 — USER’'S MANUAL 371

372 ILOG CPLEX 10.0 — USER’'S MANUAL

Part VI

Advanced Programming Techniques

Best IP
value pp

B =10 1
oy z Best IP [0]
4 solution 5

Integral

Mawimize x+ ¥+ 2z
Infeasible)
Subjectte Tx +Zy+ 3z =356

oby=112 [%] Sx Ay + Tz =42
4.6

2x+ 3y + 52228

x, ¥,z 0, integer

zxizra=3
) on-r @
2
4

0
obi=11 |1
4
onj. = Ohj. =

incumbent incumbent

This part documents advanced programming techniques for users of ILOG CPLEX. It shows
you how to apply query routines to gather information while ILOG CPLEX isworking. It
demonstrates how to redirect the search with goals or callbacks. This part also covers user-
defined constraints and pools of lazy constraints. It documents the advanced MIP control
interface and the advanced aspects of preprocessing: presolve and aggregation. It also
introduces special considerations about parallel programming with ILOG CPLEX. This part
of the manual assumes that you are already familiar with earlier parts of the manual. It
contains:

[Wsing Query Routines in the Callable Library on page 375
[Wser-Cut and Lazy-Constraint Pools on page 379

[Wsing Goals on page 387

[Wsing Callbacks on page 403

[Goals and Callbacks: a Comparison on page 421

[Advanced Presolve Routines on page 423

[—Advanced MIP Control Interface on page 433

[Parallel Optimizers on page 441

26

Using Query Routines in the
Callable Library

This chapter tells you how to use the Callable Library query routines. In Concert
Technology (for C++, Java, and .NET users), query methods such as getName use objects
that can be referenced directly. Thus this chapter concentrates on the Callable Library
routines only. However, equivalent Concert Technology examples are also provided in the
distribution. This chapter includes these sections:

[Wsing Surplus Arguments for Array Allocations on page 375;
[—Example: Using Query Routines Ipex7.c on page 377.

Using Surplus Arguments for Array Allocations

Most of the ILOG CPLEX query routinesin the Callable Library require your application to
allocate memory for one or more arrays that will contain the results of the query. In many
cases, your application—the calling program—does not know the size of these arraysin
advance. For example, in acall to cpxgetcols requesting the matrix datafor arange of
columns, your application needs to pass the arrays cmat ind and cmatval for

ILOG CPLEX to populate with matrix coefficients and row indices. However, unless your
application has carefully kept track of the number of nonzeros in each column throughout

ILOG CPLEX 10.0 — USER’'S MANUAL 375

the problem specification and, if applicable, throughout its modification, the actual length of
these arrays remains unknown.

Fortunately, the ILOG CPLEX query routinesin the Callable Library contain a surplus p
argument that, when used in conjunction with the array length arguments, enables you first
to call the query routine to determine the length of the required array. Then, when the length
is known, your application can properly allocate these arrays. Afterwards, your application
makes a second call to the query routine with the correct array lengths to obtain the
regquested data.

For example, consider a program that needsto call cpxgetcols to access arange of
columns. Hereisthe list of arguments for cpPxgetcols.

CPXgetcols (CPXENVptr env,
CPXLPptr 1lp,
int *nzcnt_p,
int *cmatbeg,
int *cmatind,
double *cmatval,
int cmatspace,
int *surplus_p,
int begin,
int end) ;

The arrays cmatind and cmatval require one element for each nonzero matrix coefficient
in the requested range of columns. The required length of these arrays, specified in
cmatspace, remains unknown at the time of the query. Your application—the calling
program—can determine the length of these arrays by first calling cpxgetcols withavalue
of o for cmatspace. Thiscall will return an error status of CPXERR NEGATIVE SURPLUS
indicating ashortfall of the array length specified in cmatspace (inthiscase, 0); it will also
return the actual number of matrix nonzerosin the requested range of columns.
Ccpxgetcols deposits this shortfall as a negative number in the integer pointed to by
surplus_p. Your application can then negate this shortfall and allocate the arrays cmat ind
and cmatval sufficiently long to contain all the requested matrix elements.

The following sample of codeillustrates this procedure. Thefirst call to cPxgetcols passes
avalue of o (zero) for cmatspace in order to obtain the shortfall in cmatsz. The sample

376 ILOG CPLEX 10.0 — USER’'S MANUAL

then uses the shortfall to allocate the arrays cmatind and cmatval properly; thenit calls
CPxgetcols again to obtain the actual matrix coefficients and row indices.

status = CPXgetcols (env, lp, &nzcnt, cmatbeg, NULL, NULL,
0, &cmatsz, 0, numcols - 1);
if (status != CPXERR_NEGATIVE_SURPLUS) {
if (status != 0) {
CPXmsg (cpxerror,
"CPXgetcols for surplus failed, status = %d\n", status);
goto TERMINATE;
1
CPXmsg (cpxwarning,
"All columns in range [%d, %d] are empty.\n",
0, (numcols - 1));

}

cmatsz = -cmatsz;

cmatind = (int *) malloc ((unsigned) (1 + cmatsz)*sizeof (int)) ;
cmatval = (double *) malloc ((unsigned) (1 + cmatsz)*sizeof (double)) ;
if (cmatind == NULL || cmatval == NULL) {

CPXmsg (cpxerror, "CPXgetcol mallocs failed\n");
status = 1;
goto TERMINATE;

}

status = CPXgetcols (env, lp, &nzcnt, cmatbeg, cmatind, cmatval,
cmatsz, &surplus, 0, numcols - 1);
if (status) {
CPXmsg (cpxerror, "CPXgetcols failed, status = %d\n", status);
goto TERMINATE;

}

That sample code (or your application) does not need to determine the length of the array
cmatbeg. The array cmatbeg has one element for each column in the requested range.
Since thislength is known ahead of time, your application does not need to call a query
routine to calculateit. More generally, query routines use surplus argumentsin thisway only
for the length of any array required to store problem data of unknown length. Problem data
in this category include nonzero matrix entries, row and column names, other problem data
names, special ordered sets (SOS), priority orders, and MIP start information.

Example: Using Query Routines lpex7.c

Thisexample usesthe ILOG CPLEX Callable Library query routine cPxgetcolname to get
the column names from a problem object. To do so, it applies the programming pattern just
outlined in Using Surplus Arguments for Array Allocations on page 375. It derives from the
example 1pex2 . c from the ILOG CPLEX Getting Sarted manual. This query-routine
example differs from that simpler example in several ways:

[The example calls cPxgetcolname twice after optimization: the first call determines
how much space to allocate to hold the names; the second call gets the names and stores
theminthearrayscur colname and cur_colnamestore.

ILOG CPLEX 10.0 — USER’'S MANUAL 377

378

[When the example prints its answer, it uses the names as stored in cur_colname. If no
names exist there, the exampl e creates generic names.

This example assumes that the current problem has been read from afile by
Cpxreadcopyprob. You can adapt the example to use other ILOG CPLEX query routines
to get information about any problem read from afile.

The complete program 1pex7 . c appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

217

User-Cut and Lazy-Constraint Pools

In contrast to the cutsthat ILOG CPLEX may automatically add while solving a problem,
user cuts are those cuts that a user defines based on information already implied about the
problem by the constraints; user cuts may not be strictly necessary to the problem, but they
tighten the model. L azy constraints are constraints that the user knows are unlikely to be
violated, and in consequence, the user wants them applied lazily, that is, only as necessary or
not before needed. User cuts can be grouped together in a pool of user cuts. Likewise, lazy
constraints can also be grouped into apool of lazy constriants. This chapter covers those
topics.

[What Are Pools of User Cuts or Lazy Constraints? on page 380
[Adding User Cuts and Lazy Constraints on page 382
[Deleting User Cuts and Lazy Constraints on page 385

Important: Only linear constraints may be included in a pool of user cuts or lazy
constraints. Neither user cuts nor lazy constraints may contain quadratic terms.

ILOG CPLEX 10.0 — USER’'S MANUAL 379

/“ - N
A . 2
y 'o' \

-
-
l‘ - \

¢ -

L4 -

., -

-

-

-

. Objective
cutting planes

)Xoptimum}f N
".'LP relaxation

. _ - ‘
feasible solutions @

Figure27.1 Cutsinatypical MIP

What Are Pools of User Cuts or Lazy Constraints?

Sometimes, for aMIP formulation, a user may aready know alarge set of helpful cutting
planes (user cuts), or can identify agroup of constraintsthat are unlikely to be violated (lazy
constraints). Simply including these cuts or constraints in the original formulation could

make the L P subproblem of a MIP optimization very large or too expensive to solve.
Instead, these situations can be handled in one of these ways:

[through the cut callback described in Advanced MIP Control Interface on page 433, or

Dy setting up cut pools before MIP optimization begins, as explained in Adding User
Cuts and Lazy Constraints on page 382.

The principle in common between these two pools allows the optimization algorithm to
perform its computations on a smaller model than it otherwise might, in the hope of
delivering faster run times. In either case (whether in the case of pools of user cuts or pools
of lazy constraints), the model starts out small, and then potentially grows as members of the

pools are added to the model. Both kinds of pool may be used together in solving aMIP
model, although that would be an unusual circumstance.

380 ILOG CPLEX 10.0 — USER’'S MANUAL

However, there is an important distinction between these two concepts.

Cuts may resemble ordinary constraints, but are conventionally defined to mean those which
can change the feasibl e space of the continuous relaxation but do not rule out any feasible
integer solution that the rest of the model permits. A collection of cuts, therefore, involves
an element of freedom: whether or not to apply them, individually or collectively, during the
optimization of a MIP model; the formulation of the model remains correct whether or not
the cuts are included. This degree of freedom meansthat if valid and necessary constraints
are mis-identified by the user and passed to ILOG CPLEX as user cuts, unpredictable and
possibly incorrect results could occur.

By contrast, lazy constraints represent simply one portion of the constraint set, and the
model would beincomplete (and possibly would deliver incorrect answers) in their absence.
ILOG CPLEX always makes sure that lazy constraints are satisfied before producing any
solution to aMIP model. Needed lazy constraints are also kept in effect after the MIP
optimization terminates, for example, when you change the problem type to fixed-integer
and re-optimize with a continuous optimizer.

Another important difference between pools of user cuts and pools of lazy constraintsliesin
the timing by which these pools are applied. ILOG CPLEX may check user cuts for
violation and apply them at any stage of the optimization. Conversely, it does not guarantee
to check them at the time an integer-feasible solution candidate has been identified. Lazy
congtraints are only (and aways) checked when an integer-feasible solution candidate has
been identified, and of course, any of these constraints that turn out to be violated will then
be applied to the full model.

Another way of comparing these two types of pool isto note that the user designates
congtraints as lazy in the strong hope and expectation that they will not need to be applied,
thus saving computation time by their absence from the working problem. In practice, itis
relatively costly (for avariety of reasons) to apply alazy constraint after aviolation is
identified, and so the user should err on the side of caution when deciding whether a
constraint should be marked as lazy. In contrast, user cuts may be more liberally added to a
model because ILOG CPLEX isnot obligated to use any of them and can apply itsown rules
to govern their efficient use.

Certain restrictions apply to these poolsif you are using the Callable Library. (Concert
Technology will automatically handle these ILOG CPLEX parameter settings for you.) If
either of these conditionsis violated, the error CPXERR PRESOLVE_BAD PARAM Will be
issued when the MIP optimizer is called.

[When auser cut pool is present, the parameter CPXx_PARAM PRELINEAR (PreLinear in
Concert Technology) must be set to zero.

[When alazy constraint pool is present, the parameter cPx_PARAM REDUCE (Reduce in
Concert Technology) must be set to either O (zero) or 1 (one), in order that dual
reductions not be performed by presolve during preprocessing.

ILOG CPLEX 10.0 — USER’'S MANUAL 381

Adding User Cuts and Lazy Constraints

382

You may add user cuts or lazy constraints through routines or methods in the Component
Librariesor viaLP, SAV, or MPSfiles, as explained in the following sections.

[Wsing Component Libraries on page 382

[Wsing the Interactive Optimizer on page 382
[Reading and Writing LP Files on page 382
[Reading and Writing SAV Files on page 384
[Reading and Wrtiting MPS Files on page 384

Using Component Libraries
The following facilities will add user defined cuts to a user cut pool.
[The CPLEX Callable Library routine cPxaddusercuts
[The Concert Technology methods:
. IloCplex::addUsercCuts inthe C++ API
. IloCplex.addUsercuts intheJavaAPI
. Cplex.Addusercuts inthe NET API
The following facilities will add lazy constraints to alazy constraint pool.
[The CPLEX Callable Library routineis cPxaddlazyconstraints.
[_The Concert Technology methods
. IloCplex::addLazyConstraints inthe C++ APl
. IloCplex.addLazyConstraints intheJavaAPI

. Cplex.AddLazyConstraints inthe .NET AP

Using the Interactive Optimizer

User cuts and lazy constraints will appear when the command display problem all s
issued in the Interactive Optimizer. User cuts and lazy constraints can also be added to an
existing problem with the ada command of the I nteractive Optimizer.

Reading and Writing LP Files

User cuts and lazy constraints may also be specified in LP-format files, and so may be read:
[With the Interactive Optimizer read command

ILOG CPLEX 10.0 — UsSER’'S MANUAL

[_Through the routine cPxreadcopyprob of the Callable Library
[_Through the methods of Concert Technology:

. IloCplex::importModel oOf the C++ API

. IloCplex.importModel oOf the Java API

. Cplex.ImportModel of the NET API

When CPLEX writes LP-format files, user cuts and lazy constraints added through their
respective add routines or read from LP format fileswill be included in the output files
along with their names (if any).

General Syntax

The general syntax rulesfor LP format given in the reference manual ILOG CPLEX File
Formats apply to user cuts and lazy constraints.

[_The user cuts section or sections must be preceded by the keywords user cuTs.

[Thelazy constraints section or sections must be preceded by the keywords
LAZY CONSTRAINTS.

These sections, and the ordinary constraints section preceded by the keywords

SUBJECT TO, Can appear in any order and can be present multiple times, aslong asthey are
placed after the objective function section and before any of the keywords BounDSs,
GENERALS, BINARIES, SEMI-CONTINUOUS Or END.

Example
Hereis an example of an LP file containing ordinary constraints and lazy constraints.

Maximize

obj: 12 x1 + 5 x2 + 15 x3 + 10 x4
Subject To

cl: 5 x1 + x2 + 9 x3 + 12 x4 <= 15
Lazy Constraints

11: 2 x1 + 3 x2 + 4 x3 + x4 <= 10
12: 3 x1 + 2 X2 + 4 x3 + 10 x4 <= 8
Bounds

0 <= x1
0 <= x2
0 <= x3
0 <= x4
Generals
x1l x2 x3 x4
End

AN AN A

o onon
(SR RO Ry

A

ILOG CPLEX stores user cuts and lazy constraints in memory separately from ordinary
congtraints.

ILOG CPLEX 10.0 — USER’'S MANUAL 383

Reading and Writing SAV Files
User cuts and lazy constraints may also be specified SAV-format files, and so may be read:
[With the Interactive Optimizer read command
[_Through the routine cPxreadcopyprob of the Callable Library
[_Through the methods of Concert Technology:
. IloCplex::importModel of the C++ API
« IloCplex.importModel of the Java AP
. Cplex.ImportModel of the NET API

When CPLEX writes SAV format files, user cuts and lazy constraints added through their

respective add routines or read from SAV format files will be included in the output files
aong with their names (if any).

Reading and Wrtiting MPS Files

ILOG CPLEX extends the MPS file format with additional optional sections to accomodate
user defined cuts and lazy constraints. The usual routines of the Callable Library and
methods of Concert Technology to read and write MPS files also read and write these

optional sections. These additional sections follow the rRows section of an MPSfilein this
order:

[ROwWS
[TSERCUTS
[TAZYCONS

The syntax of these additional sections conforms to the syntax of the rows section with this
exception: the type R cannot appear in USERCUTS nor in LAZYCONS. For details about the
format of the ROWS section in the MPS file format, see the ILOG CPLEX File Format
Reference Manual, especially these sections:

[ROWS Section on page 16
[Wser Defined Cutsin MPSFiles on page 28
[Nlazy Constraints in MPS Files on page 29

384 ILOG CPLEX 10.0 — USER’'S MANUAL

Hereis an example of an MPS file extended to include lazy constraints.

NAME extra.mps
ROWS
N obj
L c2
L c3
LAZYCONS
L c1
COLUMNS
MARKO000O 'MARKER' 'INTORG'
x1 obj -12
x1 c2 2
x1 c3 3
x1 cl 5
X2 obj -5
x2 c2 3
x2 c3 2
x2 cl 1
X3 obj -15
x3 c2 4
x3 c3 4
x3 cl 9
x4 obj -10
x4 c2 1
x4 c3 10
x4 cl 12
MARKOO001 'MARKER' 'INTEND'
RHS
rhs c2 10
rhs c3 8
rhs cl 15
BOUNDS
UP bnd x1 5
UP bnd X2 5
UP bnd x3 5
UP bnd x4 5
ENDATA

Deleting User Cuts and Lazy Constraints

The user cut and lazy constraint pools are cleared by calling the routines
Chxfreeusercuts and CPXfreelazyconstraints. Clearing the poolswill not change
the MIP solution.

The Concert Technology routines are T1oCplex: :clearUserCuts and
IloCplex: :clearLazyConstraints.

Clearing a pool meansthat the user cuts and lazy constraintsin the pool will be removed and
will not be applied the next time MIP optimization is called, and that the solution to the MIP
(if one exists) is still available. Although any existing solution is still feasible, it may no
longer be optimal because of this change in the constraints.

ILOG CPLEX 10.0 — USER’'S MANUAL 385

386 ILOG CPLEX 10.0 — USER’'S MANUAL

28

Using Goals

This chapter explores goals and their role in abranch & cut search. In it, you will learn

about:

[Branch & Cut with Goals on page 388

[The Goal Sack on page 392

[Memory Management and Goals on page 393
[Cuts and Goals on page 394

[Injecting Heuristic Solutions on page 396
[_Controlling Goal-Defined Search on page 397
[Jearch Limits on page 401

I Note: Goals are implemented by I10Cplex::Goal, not [loGoal asin other ILOG products.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

387

Branch & Cut with Goals

388

Goalsallow you to take control of the branch & cut search procedure used by ILOG CPLEX
to solve MIP problems. To help you understand how to use goals with ILOG CPLEX, this
section reviews how this procedure works.

The branch & cut search procedure manages a search tree consisting of nodes. Every node
represents a subproblem to be solved, and the root node of the tree represents the entire
problem. Nodes are called active if they have not yet been processed.

Thetreeisfirst initialized to contain the root node as the only active node. T1oCplex
processes active nodes from the tree until either no more active nodes are available or some
limit has been reached. Once a node has been processed, it is no longer active.

When processing anode, T1oCplex starts by solving the continuous relaxation of its
subproblem—that is, the subproblem without integrality constraints. If the solution violates
any cuts, 11oCplex adds them to the node problem and re-solves. Thisisiterated until no
more violated cuts are found by 11oCplex. If a any point the relaxation becomes
infeasible, the nodeis pruned, that is, it is removed from the tree.

To solve the node problem, 11ocplex checks whether the solution satisfies the integrality
congtraints. If so, and if its objective value is better than that of the current incumbent, the
solution of the node problem is used as the new incumbent. Otherwise, I1oCplex splitsthe
node problem into one or two smaller subproblems, typically by branching on avariable that
violatesitsintegrality condition. These subproblems are added to the tree as active nodes
and the current node is deactivated.

The primary use of goalsisto take control of these last steps, namely the integer-feasibility
test and the creation of subproblems. However, as discussed later, goals also allow you to
add local and global cuts.

Note: The discussion of the details of using goals will be presented mainly in terms of the
C++ API. The Java and .NET APIs follow the same design and are thus equivalent at this
level of discussion. In cases where a difference between these APIs needs to be observed,
the point will be raised. Where the difference is only in syntax, the other syntax will be
mentioned in parentheses following the C++ syntax.

In C++, goals are implemented in objects of type 11oCplex: : GoalI (having handle class
IloCplex: :Goal). In Java, goals are implemented in objects of type I1oCplex.Goal
(and there are no handle classes). In .NET, goals areimplemented by the classcplex.Goal.
Themethod I1oCplex: :Goall: :execute (IloCplex.Goal.execute)iswherethe
control isimplemented. This method is called by 11ocplex after anode relaxation has been
solved and al cuts have been added. Invoking the method execute of agoal is often
referred to as executing a goal. When the method execute isexecuted, other methods of the

ILOG CPLEX 10.0 — UsSER’'S MANUAL

class11oCplex: :GoallI (IloCplex.Goal Of Cplex.Goal) can be caled to query
information about the current node problem and the solution of its relaxation.

Typically, the implementation of the method execute will perform the following steps:

1. Check feasibility. An interesting possibility hereisthat the feasibility check may include
more than verifying integrality of the solution. This allows you to enforce constraints
that could not reasonably be expressed using linear constraints through cuts or
branching. In other words, this allows you to use goals in away that makes them part of
the model to be solved. Such auseis common in Constraint Programming, but it is less
frequently used in Mathematical Programming.

2. Optionaly find local or global cutsto be added. Local cutswill be respected only for the
subtree below the current node, whereas global cuts will be enforced for all nodes from
then on.

3. Optionaly construct a solution and passit to T1oCplex.

4. Instruct 11oCplex how to proceed. Instructing 11oCplex how to proceed is done
through the return value of the method execute, which is another goal. 11oCplex
simply continues by executing this goal.

IloCplex provides aselection of special goalsthat can be used to specify how to proceed:

[Themethod T1oCplex: :Goall: :0rGoal (IloCplex.or OF Cplex.Or) returnsa
goal that creates subnodes of the current node. This function takes at least 2 and up to 6
goals as parameters. For each of its parameters, the or goal will create a subnodein such
away that when processing that subnode, the corresponding goal will be executed. Once
the goal has been executed, the current node isimmediately deactivated.

[Themethod T1oCplex: :Goall: :AndGoal (IloCplex.and Of Cplex.And) aso
takes goals as parameters. It returns agoal that will cause 11oCplex to execute the goals
passed as parametersin the order of the parameters.

[Themethod 11oCplex: :Goall::FailGoal (IloCplex.failGoal Or
Cplex.FailGoal) creates agoal that causes I1oCplex to prune the current node. In
other words, it discontinues the search at the node where the goal is executed. T1oCplex
will continue with another active node from the tree, if available.

[Class I1oCplex: :Goal has constructors that take an instance of T1oRange Or an
instance of I1oRangeArray (IloRange []) as parameters. When one of these
constructorsis used, alocal cut goal is created. Local cut goalsadd local cutsto the node
where they are executed. To create local cut goals with the Java API, use the method
IloCplex.constraintGoal or if more convenient, one of the methods
IloCplex.leGoal, IloCplex.geGoal Or IloCplex.eqGoal. Inthe .NET API, use
the methods cplex.ConstraintGoal, Cplex.EqGoal, Cplex.LeGoal, Or
CplexGeGoal.

ILOG CPLEX 10.0 — USER’'S MANUAL 389

390

[TheO (null) goal, or empty goal, that is, an I1oCplex: : Goal handle object with O
implementation pointer can also be returned by the method
IloCplex: :Goall: :execute. INnmMost casesthiswill instruct T11ocplex totake over
control of the branch & cut search with its built-in strategies.

Since I1oCplex: :Goall: :0rGoal (IloCplex.or Of Cplex.Or) and

IloCplex: :Goall: :AndGoal (IloCplex.and O Cplex.And) take other goalsas
parameters, goals can be combined into aggregate goals. In fact, thisis how goasare
typically used for specifying a branching strategy. A typical return goal of a user-written
execute method for C++ looks like this:

return AndGoal (OrGoal (var <= IloFloor(val), var >= IloFloor(val)+1l), this);

and for Java, it lookslike this:

return cplex.and(cplex.or (cplex.leGoal (var, Math.floor (val)),
cplex.geGoal (var, Math.floor(val)+1l)), this);

and for C#.NET, it looks like this:

return cplex.And (
cplex.Or (cplex.GeGoal (_vars[bestj], System.Math.Floor (x[bestj])+1),
cplex.LeGoal (_vars[bestj], System.Math.Floor (x[bestjl))),

this) ;

For the C++ case, note that since this statement would be called from the execute method
of asubclass of 11oCplex: :GoalT, the full method name I1oCplex: :GoallI: :0rGoal
can be abbreviated to 0rGoal (and likewise AndGoal).

This return statement returns an and goal that first executes the or goal and then the current
goal itself specified by the this parameter. When the or goal is executed next, it will create
two subnodes. In the first subnode, the first local cut goal representing var <[val |
(where | val | denotesthe floor of val) will be executed, thus adding the constraint

var <|val | for the subtree of this node. Similarly, the second subnode will be created,
and when executing its constraint goal the constraint var > | val |+ 1 will be added for the
subtree. this isthen executed on each of the nodes that have just been created; the same
goal isused for both subtrees. Further details on how goals are processed will be discussed
later.

Consider the following example to clarify the discussions of goals. Thisexampleisavailable
asilogoalexl.cpp inthe examples/src subdirectory of your ILOG CPLEX
distribution. The equivaent Javaimplementation can be found as GoalEx1.java inthe
same location. The C#NET versionisin Goalex1.cs andthe VB.NET versionisin
Goalexl.vb.

This example shows how to implement and use a goal for controlling the branch strategy
used by T1ocplex. Asdiscussed, goas are implemented as subclasses of the class
IloCplex: :Goall (IloCplex.Goal Of Cplex.Goal). The C++ implementation of that
exampl e uses the macro

ILOG CPLEX 10.0 — UsSER’'S MANUAL

ILOCPLEXGOAL1 (MyBranchGoal, IloNumVarArray, vars)

instead. This macro defines two things, class MyBranchGoalI and the function

IloCplex: :Goal MyBranchGoal (IloEnv env, IloNumVarArray vars) ;

The classMyBranchGoalI isdefined asasubclass of class I1oCplex: :Goall
(IloCplex.Goal OF Cplex.Goal) and has aprivate member I1oNumvVarArray vars.
The function MyBranchGoal creates an instance of classMyBranchGoall, initializesthe
member vars to the parameter vars passed to the function, and returns ahandle to the new
goal object. The curly brackets"{ ... }" following the macro enclose the implementation of
the method MyBranchGoalI: :execute containing the actual code of the goal.

The use of the macro is very convenient as the amount of user code is equivalent to the
amount for defining a function, but with adlightly unusual syntax. 11oCplex provides
seven such macros that can be used for defining goals with 0 to 6 private members. If more
than 6 members are needed, T1oCplex: :Goall (IloCplex.Goal Of Cplex.Goal) must
be subclassed by hand.

Since the Java programming language does not provide macros, a subclass of
IloCplex.Goal must always beimplemented by hand. In this example, thisclassis called
MyBranchGoal and there is no helper function for creating an instance of that class (as the
macro does in the case of C++).

The goal isthen used for solving the extracted node by calling:

cplex.solve (MyBranchGoal (env, var));

for C++, or for Java

cplex.solve (new MyBranchGoal (var)) ;

instead of the usual cplex.solve. Therest of themain function contains nothing new and
will not be discussed any further.

In the implementation of the goal, or more precisely its method execute, starts by declaring
and initializing some arrays. These arrays are then used by methods of class

IloCplex: :Goall (IloCplex.Goal OF Cplex.Goal) to query information about the
node subproblem and the solution of itsrelaxation. The method getvalues isused to query
the solution values for the variablesin vars, method getobjCoefs isused to query the
linear objective function coefficients for these variables, and method getFeasibilities
is used to query feasibility statuses for them. The feasibility status of a variable indicates
whether T1ocplex considersthe current solution value of the variable to be integer feasible
or not. I1oCplex: :Goall (IloCplex.Goal Of Cplex.Goal) provides awealth of other
query methods. For details, see the ILOG CPLEX Reference Manuals.

Once you have gathered information about the variables, their objective coefficients, and
their current feasibility statuses, compute the index of an integer infeasible variable in vars

ILOG CPLEX 10.0 — USER’'S MANUAL 391

that has the largest objective coefficients among the variables with largest integer
infeasibility. That index is recorded in variable best 3.

Then create anew goal handle object res. By default, thisisinitialized to an empty goal.
However, if an integer infeasible variable was found among those in vars, then variable
bestj Will be> o and anonempty goal will be assigned to res:

res = AndGoal (OrGoal (vars [bestj] >= IloFloor (x[bestjl)+1,
vars [bestj] <= IloFloor (x[bestjl)),
this) ;

This goal createstwo branches, onefor vars[bestj]<|x[bestj]] andonefor
vars[bestj]>|x[bestij]]+1 and continues branching in both subtrees with the same
goa this. Finaly, call method end for all temporary arrays and return goal res.

Since Java objects are garbage collected, there is no need for the variable res. Instead,
depending on the availability of an integer infeasible variable, thenu11 goal is returned or
the returned goal is created in the return statement itself:

return cplex.and(cplex.or (cplex.geGoal (_vars [bestjl,
Math.floor (x[bestjl))+1,
cplex.leGoal (_vars[bestj],
Math.floor (x[bestjl))),
this) ;

The Goal Stack

392

To better understand how goals are executed, consider the concept of the goal stack. Every
node has its own goal stack. When calling cplex.solve (goal), the goal stack of the root
node is simply initialized with goal and then callsthe regular cplex. solve method.

When I1oCplex processes anode, it popsthefirst goal from the node's goal stack and calls
method execute. If anonempty goal isreturned, it is simply pushed back on the stack.
IloCplex keeps doing thisuntil the node becomes inactive or the node's goal stack
becomes empty. When the node stack is empty, T1oCplex continueswith its built-in search
strategy for the subtree rooted at this node.

Inlight of the goal stack, here are the different types of goals:

1. Asalready discussed, the or goal creates child nodes. 11oCplex firstinitializes the goal
stack of every child node with a copy of the remaining goal stack of the current node.
Then it pushes the goal passed as the parameter to the or goal on the goal stack of the
corresponding node. Finally, the current node is deactivated, and 11oCplex continues
search by picking a new active node from the tree to process.

2. Theand goal simply pushesthe goals passed as parameters onto the goal stack in reverse
order. Thus, when popping the goals from the stack for execution, they will be executed
in the same order as they were passed as parameters to method and goal.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

3. Whenarail goa executes, the current node is simply deactivated, and T1oCplex
continues on ancther active node from the tree. In other words, I1ocCplex discontinues
its search below the current node.

4. When alocal cut goal is executed, its constraints are added to the node problem as local
cuts and the relaxation is re-solved.

5. Anempty goa cannot be executed. Thus, empty goals are not pushed on the goal stack.
If the goal stack is empty, I1oCplex continues with the built-in branching strategy.

With this understanding, consider further what really goes on when a goal returns

return AndGoal (OrGoal (var <= IloFloor(val), var >= IloFloor(val)+1l), this);

The and goal is pushed onto the current node's goal stack, only to be immediately popped
back off of it. When it is executed, it will push this onthe goal stack and then the or goal.
Thus, the or goal isthe next goal that 11oCplex pops and executes. The or goal creates
two subnodes, and initializes their goal stacks with copies of the goal stack of the current
node. At this point both subnodes will have this on top of their goal stacks. Next, the or
goal will pushalocal cut goal for var <[val | (where | val] denotesthefloor of val) on
the goal stack of the first subnode. Similarly, it pushesalocal cut goal for var> | val |+1 On
the goal stack of the second subnode. Finally, the current nodeis deactivated and 11oCplex
continues its search with a new active node from the tree.

When 11oCplex processes one of the subnodes that have been created by the or godl, it
will pop and execute the first goal from the node's goal stack. Asyou just saw, thiswill be a
local cut goal. Thus 11oCplex adds the constraint to the node problem and re-solves the
relaxation. Next, this will be popped from the goal stack and executed. This meansthat the
same search strategy as implemented in the original goal is applied at that node.

Memory Management and Goals

Javaand .NET use garbage collection to handle all memory management issues. Thusthe
following applies only to the C++ library. Javaor .NET users may safely skip ahead to Cuts
and Goals on page 394.

To conserve memory, T1oCplex only stores active nodes of the tree and deletes nodes as
soon as they become inactive. When deleting nodes, I1ocplex aso deletesthe goal stacks
associated with them, including all goalsthey may still contain. In other words, 11oCplex
takes over memory management for goals.

It does so by keeping track of how many references to every goal arein use. As soon asthis
number drops to zero (0), the goal is automatically deleted. Thistechnique is known as
reference counting.

I1loCplex implements reference counting in the handle class I11oCplex: : Goal. Every
IloCplex: :GoallI Object maintains a count of how many I11oCplex: :Goal handle

ILOG CPLEX 10.0 — USER’'S MANUAL 393

objects refer to it. The assignment operator, the constructors, and the destructor of class
IloCplex: :Goal areimplemented in such away asto keep the reference count up-to-date.
This means that users should always access goals through handle objects, rather than
keeping their own pointers to implementation objects.

Other than that, nothing special needs to be observed when dealing with goals. In particular,
goals don't have end methods like other handle classesin ILOG Concert Technology.
Instead, T1oCplex goal objects are automatically deleted when no more references to them
exist.

Local cut goals contain I1oRange objects. Sincethe 11orange object isonly applied when
the goal is executed, method end must not be called for arange constraint from which a
local cut god is built. The goal will take over memory management for the constraints and
call method end when the goal itself is destroyed. Also, an I1oRange object can only be
used in exactly onelocal cut goal. Similarly, method end must not be called for
IloRangeArray oObjectsthat are passed to local cut goals. Also such arrays must not
contain duplicate elements.

Going back to example i1logoalex1 .cpp, you see that the method end is called for the
temporary arrays x, ob3j, and feas at the end of the execute method. Though abit hidden,
two I1oRange constraints are constructed for the goal, corresponding to the parameters of
theor goal. T1oCplex takes over memory management for these two constraints as soon as
they are enclosed in agoal. This takeover happens via the implicit constructor

IloCplex: :Goal: :Goal (IloRange rng) thatiscalled when the range constraints are
passed as parametersto the or goal.

In summary, the user isresponsible for calling end on al ILOG Concert Technology objects
created in agoal, except when they have been passed as parameters to a new goal.

Also, user code in the execute method is not alowed to modify existing ILOG Concert
Technology objectsin any way. I1oCplex uses an optimized memory management system
within goalsfor dealing with temporary objects. However, this memory management system
cannot be mixed with the default memory management system used by ILOG Concert
Technology. Thus, for example, itisillegal to add an element to array vars in the example,
since this array has been created outside of the goal.

Cuts and Goals

394

Goals can also be used to add global cuts. Whereas local cuts are respected only in a subtree,
global cuts are added to the entire problem and are therefore respected at every node after
they have been added.

Global cuts can be added similarly to local cuts by using aglobal cut goal. A global cut goal
is created with the method I1oCplex: :Goall: :GlobalCutGoal
(IloCplex.globalCutGoal OF Cplex.GlobalCutGoal). This method takes an instance

ILOG CPLEX 10.0 — UsSER’'S MANUAL

of T1oRange Or T1oRangeArray (I1oRange[]) asitsparameter and returns agoal.
When the goal executes, it adds the constraints as global cuts to the problem.

Example i1logoalex2 . cpp showstheuse of I1oCplex: :GoalI: :GlobalCutGoal for
solving the noswot MILP model. Thisisarelatively small model from the MIPLIB 3.0 test
s, consisting of only 128 variables. Nonetheless, it is very hard to solve without adding
special cuts.

Although it is now solvable directly, the computation timeisin the order of several hourson
state-of-the-art computers. However, cuts can be derived, and the addition of these cuts
makes the problem solvable in amatter of minutes or seconds. These cuts are:

x21 - x22 <= 0
x22 - x23 <= 0
x23 - x24 <= 0

2.08*x11 + 2.98*x21 + 3.47*x31 + 2.24*x41 + 2.08*x51 +
0.25*wll + 0.25*w21 + 0.25*w31 + 0.25*w4l + 0.25*w51 <= 20.25
2.08*x12 + 2.98*x22 + 3.47*x32 + 2.24*x42 + 2.08*x52 +
0.25*wl2 + 0.25*w22 + 0.25*w32 + 0.25*w42 + 0.25*w52 <= 20.25
2.08*x13 + 2.98*x23 + 3.47*X33 + 2.24*x43 + 2.08*x53 +
0.25*wl3 + 0.25*w23 + 0.25*w33 + 0.25*w43 + 0.25*w53 <= 20.25
2.08*x14 + 2.98*x24 + 3.47*xX34 + 2.24*x44 + 2.08*x54 +
0.25*wl4 + 0.25*w24 + 0.25*w34 + 0.25*w44 + 0.25*w54 <= 20.25
2.08*x15 + 2.98*x25 + 3.47*xX35 + 2.24*x45 + 2.08*x55 +
0.25*wl5 + 0.25*w25 + 0.25*w35 + 0.25*w45 + 0.25*w55 <= 16.25

These cuts have been derived after interpreting the problem as a resource all ocation model
on five machines with scheduling, horizon constraints, and transaction times. The first three
cuts break symmetries among the machines, while the others capture minimum bounds on
transaction costs.

Of course the best way to solve the noswot model with these cutsisto simply add them to
the model before calling the optimizer. However, for demonstration purposes here, the cuts
are added by means of agoal. The source code of this example can be found in the
examples/src directory of the ILOG CPLEX distribution. The equivalent Java
implementation appears as GoalEx2 . java in the samelocation. Likewise, thereis also the
C#NET versionin Goalex2.cs and the VB.NET version in Goalex2 .vb.

The goal cutGoal inthat example receivesalist of "lessthan" constraints to use as global
cuts and atolerance value eps. The constraints are passed to the goal asan array of 1hs
expressions and an array of corresponding rhs values. Both are initialized in function
makeCuts.

The goal cutGoal checkswhether any of the constraints passed to it are violated by more
than the tolerance value. It adds violated constraints as global cuts. Other than that, it
follows the branching strategy I11ocplex would use on itsown.

The goal starts out by checking if the solution of the continuous rel axation of the current
node subproblem isinteger feasible. Thisis done by calling method isIntegerFeasible.
If the current solution isinteger feasible, a candidate for a new incumbent has been found
and the goal returns the empty goal to instruct I1oCplex to continue on its own.

ILOG CPLEX 10.0 — USER’'S MANUAL 395

Otherwise, the goal checksif any of the constraints passed to it are violated. It computes the
value of every 1hs expression for current solution by calling getvalue (1hs[i]). The
result is compared against the corresponding rhs value rhs [1] . If aviolation of more than
eps is detected, the constraint is added as a global cut and the rhs value will be set to
IloInfinity toavoid checking it again unnecessarily.

Theglobal cut goal for 1hs [1]1 < rhs[i] iscreated by calling method clobalcutGoal. It
is then combined with goal goal using method andcoal, so that the new global cut goal
will be executed first. The resulting goal is stored again in variable goal. Before adding any
global cut goals, variable goal isinitialized as

IloCplex::Goal goal = AndGoal (BranchAsCplexGoal (getEnv()), this);

for C++, or for Java

cplex.and (cplex.branchAsCplex (), this);

The method BranchasCplexGoal (getEnv) ((cplex.branchAsCplex) createsagoa
that branches in the same way as the built-in branch procedure. By adding this goal, the
current goal will be executed for the entire subtree.

Thusthe goal returned by cutGoal will add all currently violated constraints as global cuts
one by one. Then it will branch in the way 11ocplex would branch without any goals and
execute the cutGoal again in the child nodes.

Injecting Heuristic Solutions

396

At any time in the execution of agoal, you may find that, for example, by slightly

mani pulating the current node subproblem solution, you may construct a solution to your
model. Such solutions are called heuristic solutions, and a procedure that generates them is
called aheuristic.

Heuristic solutions can be injected into the branch & cut search by creating a solution goal
with the method T1oCplex: :GoallI: :SolutionGoal (I1loCplex.solutionGoal OF
Cplex.SolutionGoal). Such agoal can be returned typicaly asasubgoal of an And goal
much like global cut goals.

When I1loCplex executesasolution goal, it does not immediately use the specified solution
as apotential new incumbent. The reason is that with goals, part of the model may be
specified viaglobal cuts or through specialized branching strategies. Thus the solution needs
first to be tested for feasibility with respect to the entire model, including any part of the
model specified through goals.

To test whether an injected solutionis feasible, 11oCplex first creates a subnode of the
current node. This subnode will of course inherit the goal stack from its parent. In addition

ILOG CPLEX 10.0 — UsSER’'S MANUAL

the solution goal will push local cuts onto the stack of the subnode such that all variables are
fixed to the values of the injected solution.

By processing this subnode as the next node, 11oCplex makes sure that the solution is
feasible with respect to al goals, or is otherwise discarded. Goalsthat have been executed so
far are either reflected as global cuts or by the local cutsthat are active at the current node.
Thus, if the relaxation remains feasible after the variabl e fixings have been added, the
feasibility of these goalsis certain.

If at that point the goal stack is not empty, the goals on the goal stack need to be checked for
feasibility aswell. Thus by continuing to execute the goals from the goal stack, T1oCplex
will either prove feasibility of the solution with respect to the remaining goals or, in case the
relaxation becomes infeasible, determineit to be really infeasible and discard the solution.
Therest of the branch & cut search remains unaffected by all of this.

The benefit of this approach isthat your heuristic need not be aware of the entire model
including al its parts that might be implemented viagoals. Your heuristic can still safely be
used, as I1oCplex Will make sure of feasibility for the entire model. However, there are
some performance considerations to observe. If parts of the model specified with goals are
dominant, heuristic solutions you generate might need to be rejected so frequently that you
do not get enough payoff for the work of running the heuristic. Also, your heuristic should
account for the global and local cuts that have been added at the node where you run your
heuristic so that a solution candidate is not rejected right away and the work wasted.

Controlling Goal-Defined Search

So far, you have seen how to control the branching and cut generation of 11oCplex

branch & cut search. The remaining missing piece is the node selection strategy. The node
selection strategy determines which of the active nodes in the tree T1ocplex chooses when
it selects the next node for processing. I1oCplex has several built-in node selection
strategies, selected through the parameter Nodesel.

When using goal-controlled search, node evaluators are used to override the built-in node
selection strategy. The processis as follows. You combine a goal with a node eval uator by
calingthemethod T1oCplex: :Goal: :Apply (IloCplex.apply Of Cplex.Apply). This
method returns anew goal that implements the same search strategy as the goal passed as
the parameter, but adds the node eval uator to every node in the subtree defined by the goal.
Consequently, nodes may have alist of evaluators attached to them.

When node evaluators are used, nodes are selected like this:
. IloCplex startsto choose the node with the built-in strategy as afirst candidate.

. Then I1loCplex loopsover al remaining active nodes and considers choosing them
instead.

ILOG CPLEX 10.0 — USER’'S MANUAL 397

398

. If anode hasthe same evaluator attached to it asthe current candidate, the evaluator is
asked if this node should take precedence over the current candidate. If the responseis
positive, the node under investigation becomes the new candidate and the test against
other nodes continues.

If anode has multiple evaluators attached, they are consulted in the order the evaluators
have been applied. This occurs as follows:

. If thefirst evaluator prefers one node over the other, the preferred nodeis used as
candidate and the next node is considered.

. If thefirst evaluator does not give preference to one node over the other, the second
evaluator is considered, and so on.

Thus, by adding multiple evaluators, you can build composite node selection strategies
where later evaluators are used for breaking tiesin previous ones.

Node evaluators are implemented as subclasses of class I11oCplex: :NodeEvaluatorI.
Class I1oCplex: :NodeEvaluator isthe handle class for node evaluators. In Java, node
evaluators are implemented in objects of type I1oCplex.NodeEvaluator (and there are
no handle classes). Like goals, node evaluators use reference counting for memory
management. As aresult, you should always use the handl e objects when dealing with node
evaluators, and there is no method end to be called.

Node evaluators use a two-step process to decide whether one node should take precedence
over another. First, the evaluator computes a value for every node to which it is attached.
Thisis done by calling the method in C++:

IloNum IloCplex::NodeEvaluatorI::evaluate () ;

and in Java, by calling method:

double IloCplex.NodeEvaluator.evaluate() ;

and in C#.NET:

double Cplex.NodeEvaluator.Evaluate () ;

This method must be implemented by users who write their own node evaluators. In the
method evaluate, the protected methods of the class 11oCplex: :NodeEvaluatorI
(IloCplex.NodeEvaluator Of Cplex.NodeEvaluator) can be called to query
information about the node being evaluated. The method evaluate must compute and
return an evaluation (that is, avalue) that isused later on, in the second step, to compare two
nodes and select one of them. The evaluate method iscalled only once for every node, and
theresult is cached and reused whenever the node is compared against another node with the
evaluator.

The second step consists of comparing the current candidate to another node. This only
happens for evaluators that are shared by the current candidate and the other node. By

ILOG CPLEX 10.0 — UsSER’'S MANUAL

default, the candidate is replaced by the other nodeiif its evaluation value is smaller than that
of the candidate. This behavior can be altered by overwriting the method

IloBool IloCplex::NodeEvaluatorI::subsume (IloNum candval, IloNum nodeVal) ;

or, in the case of Java:

boolean IloCplex.NodeEvaluator.subsume (double candVal, double nodevVal) ;

or, in the case of C#.NET:

bool Cplex.NodeEvaluator.Subsume (double evalNode, double evalCurrent) ;

IloCplex callsthis method of an evaluator attached to the current candidate if the node
being compared al so has the same evaluator attached. The first parameter candval isthe
evaluation value the evaluator has previously computed for the current candidate, and
nodeval isthe evaluation value the evaluator has previously computed for the node being
tested. If this method returns T1oTrue (true), the candidate is replaced. Otherwise the
method is called again with reversed parameters. If it still returns I11oFalse (false), both
nodes are tied with respect to that evaluator, and the next evaluator they share is consulted.
Otherwise, the current candidate is kept and tested against the next node.

There are two more virtual methods defined for node eval uators that should be considered
when implementing your own node evaluator. The method init iscalled right before
evaluate iscaled for thefirst time, thus allowing you to initiaize internal data of the
evaluator. When this happens, the evaluator has been initialized to the first node to be
evaluated, thus information about this node can be queried by calling the methods of class
IloCplex: :NodeEvaluatorI (I loCplex. NodeEvaluator).

Finaly, in C++, the method

IloCplex: :NodeEvaluatorI* IloCplex::NodeEvaluatorI::duplicateEvaluator();

must be implemented by the user to return a copy of the invoking node evaluator object.
This method is called by 11oCplex to create copies of the evaluator for parallel
branch & cut search.

The example i1logoalex3 . cpp shows how to use node evaluators to implement a node
selection strategy that chooses the deepest active node in the tree among those nodes with a
maximal sum of integer infeasibilities. The example i logoalex3 . cpp can be found in the
examples/src directory of your distribution. The equivalent Javaimplementation can be
found in thefile Goalex3.java a the same location. Likewise, the CENET exampleis
availablein Goalex3.cs.

Asthisexampleis an extension of the example i 1ogoalex1 . cpp, thisexposition of it
concentrates only on their differences. Also, the example is discussed only in terms of the
C++ implementation; the Javaimplementation has identical structure and design and differs
only in syntax, as does the .NET as well.

ILOG CPLEX 10.0 — USER’'S MANUAL 399

400

Thefirst is the definition of class DepthEvaluatorI asasubclass of

IloCplex: :NodeEvaluatorI. It implement the methods evaluate and
duplicateEvaluator. The method evaluate simply returnsthe negative depth value
queried for the current node by calling method getDepth. Since 11oCplex by default
chooses nodes with the lowest evaluation value, this evaluator will favor nodes deep in the
tree. The method duplicateEvaluator sSimply returns acopy of the invoking object by
calling the (default) copy constructor. Along with the class, the function bepthEvaluator
is also defined to create an instance of class DepthEvaluatorI and returnsahandletoit.

Similarly, the class 11sumEvaluatorI and function II1sumEvaluator are aso defined.
The evaluate method returns the negation of the sum of integer infeasibilities of the node
being evaluated. This number is obtained by calling method get InfeasibilitySum.
Thus, this evaluator favors nodes with larger sums of integer infeasibilities.

This exampl e uses the same search strategy as i 1ogoalex1 . cpp, implemented in goal
MyBranchGoal. However, it appliesfirst the I11sumEvaluator to select nodes with high
integer infeasibility sum, to choose between nodes with the same integer infeasibility sum it
appliesthe bepthEvaluator. Applying the II1sumEvaluator isdone with

IloCplex::Goal iiSumGoal = IloCplex::Apply(cplex,
MyBranchGoal (env, var),
IISumEvaluator()) ;

The goal created by calling MyBranchGoal is merged with the evaluator created by calling
IISumEvaluator into anew goa iisumGoal. Similarly, the iisumGoal ismerged with
the node evaluator created by calling DepthEvaluator into anew goal depthGoal:

IloCplex::Goal depthGoal = IloCplex::Apply(cplex,
iiSumGoal,
DepthEvaluator()) ;

Thus, depthGoal represents agoal implementing the branching strategy defined by
MyBranchGoal, but using I1SumEvaluator asaprimary node selection strategy and
DepthEvaluator asasecondary node selection strategy for breaking ties. Thisgoal is
finally used for the branch & cut search by passing it to the so1ve method.

Node evaluators are only active while the search is controlled by goals. That is, if the goal
stack becomes empty at anode and T11oCplex continues searching with its built-in search
strategy, that search is no longer controlled by any node evaluator. In order to maintain
control over the node selection strategy while using the 11ocplex branch strategy, you can
use the goal returned by method I1oCplex: :GoallI: :BranchAsCplexGoal
(IloCplex.branchAsCplex). A goa that follows the branching performed by the built-in
strategy of T1oCplex can be easily implemented as:

ILOCPLEXGOALO (DefaultSearchGoal) ({
if (!isIntegerFeasible())
return AndGoal (BranchAsCplexGoal (getEnv()), this);
return 0;

}

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Notice the test for integer feasibility. Without that test, the application would create an
endless loop because when an integer feasible solution has been found, Branchascplex
goal does not change the node at al, and this would continue to be executed indefinitely.

Search Limits

Aswith node evaluators, it is possible to apply search limits to the branch & cut search
controlled by goals. Search limits allow you to limit the search in certain subtrees; that is,
they allow you to discontinue processing nodes when some condition applies. Search limits
areimplemented in subclasses of class T1oCplex: : SearchLimitI
(IloCplex.SearchLimit Of Cplex.SearchLimit), and the procedure for implementing
and using them is very similar to that for node evaluators. See the reference manuals for
more details about implementing and using search limits.

ILOG CPLEX 10.0 — USER’'S MANUAL 401

402 ILOG CPLEX 10.0 — USER’'S MANUAL

29

Using Callbacks

This chapter introduces callbacks. Callbacks allow you to monitor closely and to guide the
behavior of ILOG CPLEX optimizers. In particular, ILOG CPLEX callbacks allow user
caode to be executed regularly during an optimization. To use callbacks with ILOG CPLEX,
you must first write the callback function, and then passit to ILOG CPLEX. There are two
types of callbacks: diagnostic callbacks and control callbacks. You will find additional
information about callbacksin this manual in Advanced MIP Control Interface on page 433.
This chapter includes information about:

[_Diagnostic Callbacks on page 404

[Implementing Callbacks in ILOG CPLEX with Concert Technology on page 404
[HExample: Deriving the Smplex Callback ilolpex4.cpp on page 408

[Implementing Callbacks in the Callable Library on page 410

[Interaction Between Callbacks and ILOG CPLEX Parallel Optimizers on page 412
[Example: Using Callbacks Ipex4.c on page 412

[_Control Callbacks for [loCplex on page 413

[_HExample: Controlling Cuts iloadmipex5.cpp on page 414

ILOG CPLEX 10.0 — USER’'S MANUAL 403

Notes: The callback class hierarchy for Java and .NET is exactly the same as the hierarchy
for C++, but the class names differ, in that thereisno 1 at the end.

For example, the Java implementation class corresponding to the C++ class

IloCplex: :ContinuousCallbackI iSIloCplex.ContinuousCallback.

The names of callback classesin .NET correspond very closely to those in the Java API.
However, the name of a .NET class does not begin with Ilo. Furthermore, the names of
.NET methods are capitalized (that is, they begin with an uppercase character) according
to .NET conventions.

For example, the corresponding callback classin .NET is Cplex.ContinuousCallback.

Diagnostic Callbacks

Diagnostic callbacks allow you to monitor an ongoing optimization, and optionally to abort
it. These callbacks are distinguished by the place where they are called during an
optimization. There are nine such places where diagnostic callbacks are called:

[_The presolve callback is called regularly during presolve.

[_The crossover callback is called regularly during crossover from a barrier solutionto a
simplex basis.

[_The network callback is called regularly during the network simplex agorithm.

[_The barrier callback is called at each iteration during the barrier algorithm.

[The simplex callback is called at each iteration during the simplex algorithm.

[_The MIP callback is called at each node during the branch & cut search.

[_The probing callback is called regularly during probing.

[Thefractional cut callback is called regularly during the generation of fractional cuts.
[_Thedigjunctive cut callback is called regularly during the generation of disjunctive cuts.

Implementing Callbacks in ILOG CPLEX with Concert Technology

404

Callbacks are accessed viathe I11oCplex: : Callback handle classin the C++
implementation of T1oCplex. It pointsto an implementation object of a subclass of
IloCplex: :CallbackI. InJavaand .NET, thereis no handle class and a programmer
deals only with implementation classes which are subclasses of 11oCplex.Callback. One

ILOG CPLEX 10.0 — UsSER’'S MANUAL

such implementation class is provided for each type of callback. The implementation class
provides the functions that can be used for the particular callback as protected methods.

To reflect the fact that some callbacks share part of their protected API, the callback classes
are organized in a class hierarchy, as documented in the reference manuals of the APIs. For
example, the class hierarchy of C++ callbacks is visible when you select Treein the
reference manual of that API. Likewise, the class and interface hierarchy of Java callbacksis
visible when you select Tree in the reference manual of the Java API. Similarly, you can see
the class and interface hierarchy of .NET callbacks in that reference manual.

This hierarchy means that, for example, al functions available for the MIP callback are also
available for the probing, fractional cut, and digunctive cut callbacks. In particular, the
function to abort the current optimization is provided by the class 11oCplex: : CallbackI
(IloCplex.Callback in Javaand Cplex.Callback in .NET) and isthus availableto all
callbacks.

There are two ways of implementing callbacks for T11ocplex: amore complex way that
exposes all the C++ implementation details, and asimplified way that uses macrosto handle
the C++ technicalities. Since Javaand .NET do not provide macros, only the more complex
way isavailable for Javaor .NET users. This section first explains the more complex way
and discusses the underlying design. To implement your C or C++ callback quickly without
details about the internal design, proceed directly to Writing Callbacks with Macros on
page 406.

Writing Callback Classes by Hand

To implement your own callback for I1oCplex, first select the callback class corresponding
to the callback you want implemented. From it derive your own implementation class and
overwrite the virtual method main. Thisiswhere you implement the callback actions, using
the protected methods of the callback class from which you derived your callback or one of
its base classes.

Next write afunction that creates a new object of your implementation class using the
environment operator new and returning it asan IloCplex: : Callback handle object.
Here is an example implementation of such a function:

IloCplex: :Callback MyCallback(IloEnv env, IloInt num) {
return (new (env) MyCallbackI (num)) ;
1

It isnot customary to write such afunction for Javanor for .NET, but new is called explicitly
for creating a callback object when needed. After an implementation object of your callback
is created (either with the constructor function in C++ or by directly calling the new operator
for Javaor .NET), useit with 11oCplex by calling cplex.use with the callback object as
an argument. In C++, to remove a callback that is being used by a cplex object, call
callback.end ontheIloCplex: : Callback handlecallback. In Javaor .NET, thereisno
way of removing individual callbacksfrom your 11oCplex or Cplex object. Instead, you

ILOG CPLEX 10.0 — USER’'S MANUAL 405

can remove all callbacks by calling cplex.clearcallbacks. Since Javaand .NET use
garbage collection for memory management, there is nothing equivalent to the end method
for callbacksin the Javaor .NET API.

One object of a callback implementation class can be used with only one 11ocplex object
at atime. Thus, when you use a callback with more than one cplex object, a copy of the
implementation object is created every time cplex. use iscaled except for thefirst time. In
C++, the method T11oCplex: :use returns a handle to the callback object that has actually
been installed to enable calling end oniit.

To construct the copies of the callback objectsin C++, class T1oCplex: : CallbackI
defines another pure virtual method:

virtual IloCplex::CallbackI*
IloCplex::CallbackI::duplicateCallback() const = 0;

which must be implemented for your callback class. This method will be called to create the
copies needed for using a callback on different cplex objects or on one cplex object with a
parallel optimizer.

In most cases you can avoid writing callback classes by hand, using supplied macros that
make the process as easy as implementing a function. You must implement a callback by
hand only if the callback managesinternal data not passed as arguments, or if the callback
reguires eight or more arguments.

Writing Callbacks with Macros

Thisis how to implement a callback using macros. Since macros are not supported in Java
nor in .NET, this technique will only apply to C++ applications.

Start by determining which callback you want to implement and how many argumentsto
passto the callback function. These two pieces of information determine the macro you need
to use.

For example, to implement a simplex callback with one argument, the macrois
ILOSIMPLEXCALLBACK1. Generally, for every callback type xxx and any number of
argumentsn from o to 7, thereisamacro called 1LoxxxCALLBACKn. Table 29.1 lists the
callbacks and the corresponding macros and classes (where n is a placeholder for 0 to 7).

406 ILOG CPLEX 10.0 — USER’'S MANUAL

Table29.1 Callback Macros

Callback Macro Class

presolve ILOPRESOLVECALLBACKn IloCplex: :PresolveCallbackI
continuous ILOCONTINUOUSCALLBACKn IloCplex: :ContinuousCallbackI
simplex ILOSIMPLEXCALLBACKn IloCplex: :SimplexCallbackI

barrier ILOBARRIERCALLBACKnN IloCplex: :BarrierCallbackI
crossover ILOCROSSOVERCALLBACKnN IloCplex: :CrossoverCallbackI
network ILONETWORKCALLBACKn IloCplex: :NetworkCallbackI

MIP ILOMIPCALLBACKnN IloCplex: :MIPCallbackI

probing ILOPROBINGCALLBACKn IloCplex: :ProbingCallbackI
fractional cut | ILOFRACTIONALCUTCALLBACKn |IloCplex::FractionalCutCallbackI
disjunctive cut | ILODISJUNCTIVECUTCALLBACKn | IloCplex: :DisjunctiveCutCallbackI

The protected methods of the corresponding class and its base classes determine the
functions that can be called for implementing your callback. See the ILOG CPLEX
Reference Manual.

Hereis an example of how to implement asimplex callback with the name Mycallback
that takes one argument:

ILOSIMPLEXCALLBACK1 (MyCallback,
if (getNiterations() == num)
}

This callback aborts the simplex agorithm at the iteration indicated by the number num. It
queries the current iteration number by calling the function getNiterations, aprotected
method of the class T1oCplex: : ContinuousCallbackI.

IloInt, num) {
abort () ;

To use this callback with an I1oCplex object cplex, simply call:

IloCplex: :Callback mycallback = cplex.use (MyCallback (env, 10));

The callback that isadded to cplex isreturned by the method use and stored in the variable
mycallback. Thisalowsyou to cal mycallback.endto remove the callback from
cplex. If you do not intend to access your callback (for example, in order to delete it before
ending the environment), you may safely leave out the declaration and initialization of the
variablemycallback.

ILOG CPLEX 10.0 — USER’'S MANUAL 407

Callback Interface

Two callback classes in the hierarchy need extra attention. Thefirst is the base class
IloCplex: :CallbackI (IloCplex.CallbackI). Sincethereisno corresponding
callback in the Callable Library, this class cannot be used for implementing user callbacks.
Instead, its purposeisto provide an interface common to all callback functions. This consists
of the methods getMode1, which returnsthe model that is extracted to the 11oCplex object
that is calling the callback, get Env, which returns the corresponding environment (C++
only), and abort, which aborts the current optimization. Further, methods getNrows and
getNcols alow you to query the number of rows and columns of the current cplex LP
matrix. These methods can be called from all callbacks.

Note: For C++ users, no manipulation of the model or, more precisely, any extracted
modeling object is allowed during the execution of a callback. No modification is allowed
of any array or expression not local to the callback function itself (that is, constructed and
ended init). The only exception is the modification of array elements. For example, x [1]
= 0 would be permissible, whereas x . add (0) would not unless x isa local array of the
callback.

The Continuous Callback

The second special callback classis I1oCplex: : ContinuousCallbackI
(IloCplex.ContinuousCallback). If you create a Continuous callback and use it with
an IloCplex object, it will be used for both the barrier and the simplex callback. In other
words, implementing and using one Continuous callback is equivalent to writing and using
these two callbacks independently.

Example: Deriving the Simplex Callback ilolpex4.cpp

Example i1olpex4 . cpp demonstrates the use of the simplex callback to print logging
information at each iteration. It is amodification of example i1olpex1 . cpp, SO this
discussion concentrates on the differences. The following code:

ILOSIMPLEXCALLBACKO (MyCallback) {
cout << "Iteration " << getNiterations() << ": ";

if (isFeasible())
cout << "Objective = " << getObjValue() << endl;
}
else {
cout << "Infeasibility measure = " << getInfeasibility() << endl;

}
}

408 ILOG CPLEX 10.0 — USER’'S MANUAL

definesthe callback Mycallback without arguments with the code enclosed in the outer { }.
In Java, the same callback is defined like this:

static class MyCallback extends IloCplex.ContinuousCallback {
public void main() throws IloException {

System.out.print ("Iteration " + getNiterations() + ": ");
if (isFeasible())

System.out.println("Objective = " + getObjvalue()) ;
else

System.out.println("Infeasibility measure = "

+ getInfeasibility());

}
}

The callback prints theiteration number. Then, depending on whether the current solution is
feasible or not, it prints the objective value or infeasibility measure. The functions
getNiterations, isFeasible, getObjValue, and getInfeasibility are methods
provided in the callback’s base class T1oCplex: :ContinuousCallbackI
(IloCplex.ContinuousCallback). Seethe ILOG CPLEX Reference Manual for the
complete list of methods provided for each callback class.

Hereis how the macro ILOSIMPLEXCALLBACKO is expanded:

class MyCallbackI : public IloCplex::SimplexCallbackI {
void main() ;
IloCplex::CallbackI* duplicateCallback() const {
return (new (getEnv()) MyCallbackI(*this)) ;
}
}i
IloCplex::Callback MyCallback (IloEnv env) {
return (IloCplex::Callback (new (env) MyCallbackI()));
1
void MyCallbackI::main() {
cout << "Iteration " << getNiterations() << ": ";

if (isFeasible()) {
cout << "Objective = " << getObjValue() << endl;
}
else {
cout << "Infeasibility measure = " << getInfeasibility() << endl;

}
}

The o (zero) in the macro indicates that no arguments are passed to the constructor of the
callback. For callbacks requiring up to 7 arguments, similar macros are defined where the o
isreplaced by the number of arguments, ranging from 1 through 7. For an example using the
cut callback, see Example: Controlling Cutsiloadmipex5.cpp on page 414. If you need more
than 7 arguments, you will need to derive your callback class yourself without the help of a
macro.

After the callback Mycallback isdefined, it can be used with the line:

cplex.use (MyCallback (env)) ;

in C++or

ILOG CPLEX 10.0 — USER’'S MANUAL 409

cplex.use (new MyCallback()) ;

inJava, orin .NET

cplex.Use (new MyCallback()) ;

In the case of C++, function MyCallback creates an instance of the implementation class
MyCallbackI. A handle to thisimplementation object is passed to cplex method use.

If your application defines more than one simplex callback object (possibly with different
subclasses), only the last one passed to ILOG CPLEX with the use method is actually used
during simplex. On the other hand, T1oCplex can handle one callback for each callback
class at the same time. For example, a simplex callback and a MIP callback can be used at
the sametime.

The complete program, ilolpex4 . cpp, appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

Implementing Callbacks in the Callable Library

410

ILOG CPLEX optimization routinesin the Callable Library incorporate a callback facility to
allow your application to transfer control temporarily from ILOG CPLEX to the calling
application. Using callbacks, your application can implement interrupt capability, for
example, or create displays of optimization progress. After control istransferred back to a
function in the calling application, the calling application can retrieve specific information
about the current optimization from the routine cPxgetcallbackinfo. Optionaly, the
calling application can then tell ILOG CPLEX to discontinue optimization.

To implement and use a callback in your application, you must first write the callback
function and then tell ILOG CPLEX about it. For moreinformation about the ILOG CPLEX
Callable Library routines for callbacks, see the ILOG CPLEX Callable Library Reference
Manual. In that reference manual, the group optim.cplex.callable.callbacks gives
you direct access to callback routines.

Setting Callbacks

In the Callable Library, diagnostic callbacks are organized into two groups: LP callbacks
(that is, continuous callbacks) and MIP callbacks (that is, discrete callbacks). For each
group, one callback function can be set by theroutine cpxset1pcallbackfunc and one by
ChXsetmipcallbackfunc. You can distinguish between the actual callbacks by querying
the argument wheref rom passed to the callback function as an argument by ILOG CPLEX.

The continous callback is also called during the solution of problems of type LP, QP, and
QCP.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Callbacks for Continuous and Discrete Problems

ILOG CPLEX will evaluate two user-defined callback functions, one during the solution of
continuous problems and one during the solution of discrete problems. ILOG CPLEX calls
the continuous callback once per iteration during the solution of an LP, QP, or QCP problem
and periodically during the presolve. ILOG CPLEX callsthe discrete callback periodically
during the probing phase of MIP preprocessing, periodically during cut generation, and once
before each subproblem is solved in the branch & cut process.

Every user-defined callback must have these arguments:
[dnv, apointer to the ILOG CPLEX environment;

[dbdata, apointer to ILOG CPLEX interna data structures needed by
CPXgetcallbackinfo,

[herefrom, indicates which optimizer is calling the callback;

[dbhandle, apointer supplied when your application calls cPxset1pcallbackfunc Of
CPxsetmipcallbackfunc (SO that the callback has accessto private user data).

The arguments wherefrom and cbdata should be used only in callsto
CbPXgetcallbackinfo.

Return Values for Callbacks

A user-written callback should return a nonzero value if the user wishes to stop the
optimization and a value of zero otherwise.

For LP, QPR, or QCP problems, if the callback returns a nonzero value, the solution process
will terminate. If the process was not terminated during the presolve process, the status
returned by the function I1oCplex: :getStatus Or the routines cpPxsolution or
Chxgetstat Will be cPx STAT ABORT USER (value 13).

For both LP/QP/QCP and MIP problems, if the LP/QP/QCP callback returns a nonzero
value during presolve preprocessing, the optimizer will return the value
CPXERR PRESLV_ABORT, and no solution information will be available.

For MIP problems, if the callback returns a nonzero value, the solution process will
terminate and the status returned by T1oCplex: :getStatus Of CPXgetstat Will be one
of thevaluesin Table 29.2.

Table29.2 Satus of Nonzero Callbacks for MIPs

Value |[Symbolic constant Meaning
113 CPXMIP_ABORT_ FEAS current solution integer feasible
114 CPXMIP_ ABORT INFEAS no integer feasible solution found

ILOG CPLEX 10.0 — USER’'S MANUAL 411

Interaction Between Callbacks and ILOG CPLEX Parallel Optimizers

When you use callback routines, and invoke the parallel implementation of ILOG CPLEX
optimizers, you need to be aware that the ILOG CPLEX environment passed to the callback
routine corresponds to an individual ILOG CPLEX thread rather than to the origina
environment created. ILOG CPLEX frees this environment when finished with the thread.
This does not affect most uses of the callback function. However, keep in mind that

ILOG CPLEX associates problem objects, parameter settings, and message channels with
the environment that specifiesthem. ILOG CPLEX therefore frees these items when it
removes that environment; if the callback uses routines like cPxcreateprob,
CPXcloneprob, OF CPXgetchannels, those objects remain allocated only aslong asthe
associated environment does. Similarly, setting parameters with routines like
CPxsetintparam affects settings only within the thread. So, applications that access
ILOG CPLEX objectsin the callback should use the original environment you created if
they need to access these objects outside the scope of the callback function.

Example: Using Callbacks Ipex4.c

412

This example shows you how to use callbacks effectively with routines from the

ILOG CPLEX Callable Library. Itisbased on 1pex1 . c, aprogram from the ILOG CPLEX
Getting Sarted manual. This example about callbacks differs from that simpler onein
several ways.

[_To make the output more interesting, this example optimizes a dightly different linear
program.

[ThelLOG CPLEX screen indicator (that is, the parameter cPx PARAM SCRIND) iS not
turned on. Only the callback function produces output. Consequently, this program calls
ChXgeterrorstring to determine any error messages and then prints them. After the
TERMINATE: label, the program uses separate status variables so that if an error occurred
earlier, its error status will not be lost or destroyed by freeing the problem object and
closing the ILOG CPLEX environment. Table 29.3 summarizes those status variables.

Table 29.3 Satus Variablesin 1pex4 .c

Variable Represents status returned by this routine

frstatus CPXfreeprob

clstatus CPXcloseCPLEX

[_The function mycallback at the end of the program is called by the optimizer. This
function tests whether the primal simplex optimizer has been called. If so, then acall to
CpPXgetcallbackinfo getsthe following information:

ILOG CPLEX 10.0 — UsSER’'S MANUAL

. iteration count;

. feasibility indicator;

. sum of infeasihilities (if infeasible);

. objective value (if feasible).

The function then prints these values to indicate progress.

[Before the program calls cpx1popt, the default optimizer from the ILOG CPLEX
Callable Library, it sets the callback function by calling cPxsetlpcallbackfunc. It
unsets the callback immediately after optimization.

This callback function offers amodel for graphic user interfaces that display optimization
progress as well as those GUIs that allow a user to interrupt and stop optimization. If you
want to provide your end-user afacility like that to interrupt and stop optimization, then you
should make mycallback return anonzero value to indicate the end-user interrupt.

The complete program 1pex4 . c appears online in the standard distribution at
yourCPLEXinstallation/examples/src.

Control Callbacks for lloCplex
Control callbacks allow you to control the branch & cut search during the optimization of
MIP problems. The following control callbacks are available for T1oCplex:

[_The node callback allows you to query and optionally overwrite the next node
ILOG CPLEX will process during abranch & cut search.

[_The solve callback allows you to specify and configure the optimizer option to be used
for solving the LP at each individual node.

[The cut callback alows you to add problem-specific cuts at each node.

[The heuristic callback allows you to implement a heuristic that tries to generate a new
incumbent from the solution of the LP relaxation at each node.

[_The branch callback allows you to query and optionally overwrite the way
ILOG CPLEX will branch at each node.

[_The incumbent callback allows you to check and optionally reject incumbents found by
ILOG CPLEX during the search.

These callbacks are implemented as an extension of the diagnostic callback class hierarchy.
This extension is shown below along with the macro names for each of the control callbacks

ILOG CPLEX 10.0 — USER’'S MANUAL 413

(see Diagnostic Callbacks on page 404 for a discussion of how macros and callback
implementation classes relate).

IloCplex::MIPCallbackI ILOMIPCALLBACKn
J|r— -- IloCplex: :NodeCallbackI ILONODECALLBACKn
l——— IloCplex: : IncumbentCallbackI ILOINCUMBENTCALLBACKnN
Jlr— -- IloCplex::ControlCallbackI ILOCONTROLCALLBACKn
J|r— -IloCplex: :BranchCallbackI ILOBRANCHCALLBACKn
l— -IloCplex::CutCallbackI ILOCUTCALLBACKn

+--IloCplex: :HeuristicCallbackI ILOHEURISTICCALLBACKn

+--IloCplex::SolveCallbackI ILOSOLVECALLBACKn

Again, the callback class hierarchy for Javaand for .NET is exactly the same, but the class
names differ, in that thereis no 1 at the end. For example, the corresponding Java
implementation classfor T1oCplex: :BranchCallbackI isdenoted by
IloCplex.BranchCallback. Likewise, in .NET, you will find the corresponding class
Cplex.BranchCallback.

Similar totheclass I1oCplex: :CallbackI (IloCplex.Callback), the class
IloCplex: :ControlCallbackI (IloCplex.ControlCallback) isnot provided for
deriving user callback classes, but instead for defining the common interface for its derived
classes. Thisinterface provides methods for querying information about the current node,
such as current bounds or solution information for the current node. See the class
IloCplex: :ControlCallbackI (IloCplex.ControlCallback) inthelLOG CPLEX
Reference Manual for more information.

Example: Controlling Cuts iloadmipex5.cpp

This example shows how to use the cut callback in the context of solving the noswot model.
Thisisarelatively small model from the MIPLIB 3.0 test-set, consisting only of 128
variables. This model isvery hard to solve by itself. In fact, until the release of

ILOG CPLEX version 6.5, it appeared to be unsolvable even after days of computation.

Whileit is now solvable directly, the computation timeis in the order of several hourson
state-of -the-art computers. However, cuts can be derived, the addition of which make the
problem solvable in a matter of minutes or seconds. These cuts are;

x21 - x22 <= 0
x22 - x23 <= 0

414 ILOG CPLEX 10.0 — USER’'S MANUAL

x23 - x24 <= 0

2.08*x11 + 2.98*x21 + 3.47*x31 + 2.24*x41 + 2.08*x51 +
0.25*wll + 0.25*w21 + 0.25*w31 + 0.25*w4l + 0.25*w51 <= 20.25
2.08*x12 + 2.98*x22 + 3.47*x32 + 2.24*x42 + 2.08*x52 +
0.25*wl2 + 0.25*w22 + 0.25*w32 + 0.25*w42 + 0.25*w52 <= 20.25
2.08*x13 + 2.98*x23 + 3.47*x33 + 2.24*x43 + 2.08*x53 +
0.25*wl3 + 0.25*w23 + 0.25*w33 + 0.25*w43 + 0.25*w53 <= 20.25
2.08*x14 + 2.98*x24 + 3.47*x34 + 2.24*x44 + 2.08*x54 +
0.25*wl4 + 0.25*w24 + 0.25*w34 + 0.25*w44 + 0.25*w54 <= 20.25
2.08*x15 + 2.98*x25 + 3.47*x35 + 2.24*x45 + 2.08*x55 +
0.25*wl5 + 0.25*w25 + 0.25*w35 + 0.25*w45 + 0.25*w55 <= 16.25

These cuts have been derived after interpreting the model as a resource allocation model on
five machines with scheduling, horizon constraints and transaction times. Thefirst three cuts
break symmetries among the machines, while the others capture minimum bounds on
transaction costs. For more information about how these cuts have been found, see MIP
Theory and Practice: Closing the Gap, available online at
http://www.ilog.com/products/optimizati on/tech/researchpapers.cfm#M I PTheory.

Of course the best way to solve the noswot model with these cutsisto simply add the cutsto
the model before calling the optimizer. However, for demonstration purposes, this example
adds the cuts, using a cut callback, only when they are violated at a node. This cut callback
takesalist of cuts asan argument and adds individual cuts whenever they are violated by the
current LP solution. Notice, that adding cuts does not change the extracted model, but
affects only the internal problem representation of the ILOG CPLEX object.

First consider the C++ implementation of the callback. In C++, the callback isimplemented
with the code:

ILOCUTCALLBACK3 (CtCallback, IloExprArray, lhs, IloNumArray, rhs, IloNum, eps) {
IloInt n = lhs.getSize();
for (IloInt i = 0; i < n; ++1i) {
IloNum xrhs = rhs[i];
if (xrhs < IloInfinity && getValue(lhs[i]) > xrhs + eps) {
IloRange cut;
try {
cut = (lhs[i] <= xrhs);
add (cut) .end() ;
rhs[i] = IloInfinity;
1
catch (...) {
cut.end() ;
throw;
1
}
}
}

ThisdefinestheclassctcallbackI asaderived classof I1oCplex: :CutCallbackI and
provides the implementation for itsvirtual methodsmain and duplicateCallback. It also
implements afunction ctcallback that creates aninstance of ctcallbackI and returns
an IloCplex: :Callback handlefor it.

ILOG CPLEX 10.0 — USER’'S MANUAL 415

416

Asindicated by the 3 in the macro name, the constructor of ctcallbackI takesthree
arguments, called 1hs, rhs, and eps. The constructor stores them as private membersto
have direct access to them in the callback function, implemented as method main. Notice
the comma (,) between the type and the argument object in the macro invocation. Hereis
how the macro expands:

class CtCallbackI : public IloCplex::CutCallbackI ({

IloExprArray lhs;
IloNumArray rhs;

IloNum eps;
public:
IloCplex::CallbackI* duplicateCallback() const {
return (new (getEnv()) CtCallbackI(*this)) ;

}

CtCallbackI (IloExprArray xlhs, IloNumArray xrhs, IloNum xeps)
: lhs(xlhs), rhs(xrhs), eps(xeps)

{1

void main() ;

}i

IloCplex::Callback CtCallback (IloEnv env,
IloExprArray lhs,
IloNumArray rhs,
IloNum eps)
return (IloCplex::Callback (new (env) CtCallbackI(lhs, rhs, eps)));

}

void CtCallbackI::main() {

L

where the actual implementation code has been substituted with “ . . .”. Similar macros are
provided for other numbers of arguments ranging from 0 through 7 for al callback classes.

Thefirst argument 1hs isan array of expressions, and the argument rhs is an array of
values. These arguments are the | eft-hand side and right-hand side values of cuts of the form
1hs < rhs to betested for violation and potentially added. The third argument eps givesa
tolerance by which a cut must at least be violated in order to be added to the problem being
solved.

The implementation of this example cut-callback looks for cuts that are violated by the
current LP solution of the node where the callback isinvoked. It loops over the potential
cuts, checking each for violation by querying the value of the 1hs expression with respect to
the current solution. This query calls getvalue with thisexpression as an argument. This

ILOG CPLEX 10.0 — UsSER’'S MANUAL

valueistested for violation of more than the tolerance argument eps with the corresponding
righthand side value.

Tip: A numeric tolerance is always a wise thing to consider when dealing with any
nontrivial model, to avoid certain logical inconsistencies that could otherwise occur dueto
numeric roundoff. Here the standard ILOG CPLEX simplex feasibility tolerance servesthis
purpose, to make sure there is consistency with the way ILOG CPLEX istreating the rest of
the model.

If aviolation is detected, the callback creates an 11o0rRange object to represent the cut:
lhs[i] £ rhs[i].Itisadded tothe LP by calling the method add. Adding a cut to
ILOG CPLEX, unlike extracting a model, only copiesthe cut into the ILOG CPLEX data
structures, without maintaining a notification link between the two. Thus, after acut has
been added, it can be deleted by calling its method end. In fact, it should be deleted, as
otherwise the memory used for the cut could not be reclaimed. For convenience, method
add returnsthe cut that has been added, and thus the application can call end directly on the
returned I1oRange Object.

It isimportant that all resources that have been allocated during a callback are freed again
before leaving the callback--even in the case of an exception. Here exceptions could be
thrown when creating the cut itself or when trying to add it, for example, due to memory
exhaustion. Thus, these operations are enclosed in a try block to catch all exceptions that
may occur. In the case of an exception, the cut is deleted by acall to cut . end and whatever
exception was caught is then rethrown. Rethrowing the exception can be omitted if you want
to continue the optimization without the cut.

After the cut has been added, the application setsthe rhs valueto I1oInfinity to avoid
checking this cut for violation at the next invocation of the callback. Note that it did not
simply remove the i element of arrays rhs and 1hs, because doing so is not supported if
the cut callback isinvoked from aparallel optimizer. However, changing array elementsis
allowed.

Also, for the potential use of the callback in parallel, the variable xrhs makes sure that the
same value is used when checking for violation of the cut as when adding the cut.
Otherwise, another thread may have set the rhs valueto 11oInfinity just between the
two actions, and a useless cut would be added. ILOG CPLEX would actually handle this
correctly, asit handles adding the same cut from different threads.

Thefunction makeCuts generatesthe arrays rhs and 1hs to be passed to the cut callback. It
first declaresthe array of variables to be used for defining the cuts. Since the environment is
not passed to the constructor of that array, an array of O-variable handlesis created. In the
following loop, these variable handles are initialized to the correct variables in the noswot
model which are passed to this function as the argument vars. Theidentification of the
variablesis done by querying variables names. Once all the variables have been assigned,
they are used to create the 1hs expressions and rhs values of the cuts.

ILOG CPLEX 10.0 — USER’'S MANUAL 417

418

The cut callback is created and passed to ILOG CPLEX intheline:

cplex.use (CtCallback (env, lhs, rhs, cplex.getParam(IloCplex::EpRHS))) ;

The function ctcallback constructs an instance of our callback class ctcallbackI and
returnsan IloCplex: : Callback handle object for it. Thisis directly passed to function
cplex.use.

The Javaimplementation of the callback is quite similar:

public static class Callback extends IloCplex.CutCallback {
double eps = 1.0e-6;
IloRange[] cut;
Callback (IloRange[] cuts) { cut = cuts; }

public void main() throws IloException {
int num = cut.length;

for (int i = 0; i < num; ++1i) {
if (cut[i] != null) {
double val = getValue (cut[i] .getExpr()) ;
if (cutl[i] .getLB() > val+eps || val-eps > cutl[i].getUB()) {
add (cut [i]) ;
cut [1i] = null;

}
}
}
}

Instead of receiving expressions and righthand side val ues, the application directly passes an
array of T1oRange constraints to the callback; the constraints are stored in cut. Themain
loops over all cuts and evaluates the constraint expressions at the current solution by calling
getValue (cut [i] .getExpr) . If thisvalue exceeds the constraint bounds by more than
eps, the cut isadded during the search by acall to add (cut [i]) and cut [i] issettonull
to avoid unneccessarily evaluating it again.

Asfor the C++ implementation, the array of cuts passed to the callback isinitialized in a
separate function makecuts. The callback isthen created and used to with the noswot cuts
by calling.

cplex.use (new Callback (makeCuts (cplex, 1lp)));

IloCplex provides an easier way to manage such cutsin acase like this, where al cuts can
be easily enumerated before starting the optimization. Calling the methods cplex.addcut
and cplex.addcuts alowsyou to copy the cutsto T1ocplex before the optimization.
Thus, instead of creating and using the callback, a user could have written:

cplex.addCuts (makeCuts (var)) ;

as shown in example i loadmipex4 . cpp in the distribution. During branch & cut,
ILOG CPLEX will consider adding individual cutsto its representation of the model only if

ILOG CPLEX 10.0 — UsSER’'S MANUAL

they are violated by a node LP solution in about the same way this example handles them.
Whether this or adding the cuts directly to the model gives better performance when solving
the model depends on the individual problem.

The complete program iloadmipex5 . cpp appearsonlinein the standard distribution at
yourCPLEXinstallation/examples/src.The Javaversionisfoundin file
AdMIPex5.java at the samelocation. The C#NET implementation isin AdMIPex5.cs
and the VB.NET implementation isin AdMIPexs . vb.

ILOG CPLEX 10.0 — USER’'S MANUAL 419

420 ILOG CPLEX 10.0 — USER’'S MANUAL

30

Goals and Callbacks: a Comparison

Goals and callbacks both provide an API within 11oCplex to alow you to take control over
the branch & cut search for solving M1P models. With one exception, the same functionality
isavailablein both APIs. Infact, the goal API isbuilt on top of callbacks. Asaconsequence,
you cannot use callbacks and goals at the same time. To help you choose which API ismore
suited to your needs, this section examines commonalities and differences between both.

As pointed out previoudly, both APIs allow you to control the branch & cut search used by
IloCplex to solve MIP models. The following points distinguish specific features of this
control.

[—Checking feasibility

- With goals, you can discontinue the search at a node by returning arFail goal.
Alternatively, you can continue searching, even though an integer feasible solution
has been found, by returning another nonempty goal.

- With callbacks, you can use method prune of the branch callback to discontinue the
search, and an incumbent callback to accept or reject integer feasible solutions.

[Creating branches

- With goals, you create branches by using by using or goals with local cut goals as
parameters.

- With callbacks, you create branches by using a branch callback.
[—Adding local or global cuts

ILOG CPLEX 10.0 — USER’'S MANUAL 421

422

. With goals, you can add global and local cuts by using global and local cut goals,
respectively.

. With callbacks, you need to implement either a cut callback (for global and local cuts)
or abranch callback for branching on local cuts

[Injecting solution candidates

- With goals, you inject solutions by using a solution goal.

- With callbacks, you need to implement a heuristic callback to inject solutions.
[_Controlling the node selection strategy

- With goals, you control node selection by applying node evaluators to your search
goal.

- With callbacks, you control node selection by using a node callback.

Thus, one of the main differences between goals and callbacksis that with goals, all
functionality is available from the execute method of the goal, whereas with callbacks, you
must implement different callbacks to access different functionality.

As an example, suppose you want to extend a search to satisfy additional constraints that
could not conveniently be added as linear constraints to the model.

With callbacks, you need to use an incumbent callback and a branch callback. The
incumbent callback has to reject an otherwise integer feasible solution if it violates such an
additional constraint. In this case, the branch callback has to follow up with an appropriate
branch to enforce the constraint. Since the branch callback function allows branching only
on individual variables, the determination of the appropriate branch may be quite difficult
for constraints not modeled with linear expressions.

With goals, the feasihility test and the resulting branching can be implemented with asingle
goal.

The second big difference between goals and callbacks is that with goals you can easily
specify different search strategies in different subtrees. To do this, simply provide different
search goals as a parameter to the or goal when creating the root nodes for the subtreesin
question. To achieve a similar result with callbacks requires an implementation that istoo
complex for a presentation here.

The only functionality that is not supported via goalsisthat provided by the so1ve callback.
Because of this, the solve callbacks can be used at the same time as goals. However, this
callback is very rarely used.

In summary, goals can be advantageous if you want to take control over several steps of the
branch & cut search simultaneously, or if you want to specify different search strategiesin
different subtrees. On the other hand, if you only need to control a single aspect of the
search—for example, adding cuts—using the appropriate callback may involve a smaller
API and thus be quicker and easier to understand and implement.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

31

Advanced Presolve Routines

This chapter explains how to use the advanced presolve routines. These advanced routines
are available only in the Callable Library. The topics are:

[Introduction to Presolve on page 424

[Restricting Presolve Reductions on page 425
[Manual Control of Presolve on page 428

[Modifying a Problem on page 430

ILOG CPLEX 10.0 — USER’'S MANUAL 423

Introduction to Presolve

424

This discussion of the advanced presolve interface begins with a quick introduction to
presolve. Most of the information in this section will be familiar to people who areinterested
in the advanced interface, but everyone is encouraged to read through it nonetheless.

Asmost CPLEX users know, presolveis a process whereby the problem input by the user is
examined for logical reduction opportunities. The goal is to reduce the size of the problem
passed to the requested optimizer. A reduction in problem size typically translatesto a
reduction in total run time (even including the time spent in presolve itself).

Consider scorpion.mps from NETLIB as an example:

CPLEX> disp pr st
Problem name: scorpion.mps

Constraints : 388 [Less: 48, Greater: 60, Equal: 280]
Variables : 358
Constraint nonzeros: 1426
Objective nonzeros: 282
RHS NONzeros: 76

CPLEX> optimize

Tried aggregator 1 time.

LP Presolve eliminated 138 rows and 82 columns.
Aggregator did 193 substitutions.

Reduced LP has 57 rows, 83 columns, and 327 nonzeros.
Presolve time = 0.00 sec.

Iteration log . . .

Iteration: 1 Dual objective = 317.965093
Dual - Optimal: Objective = 1.8781248227e+03
Solution time = 0.01 sec. Iterations = 54 (0

CPLEX is presented with a problem with 388 constraints and 358 variables, and after
presolve the dual simplex method is presented with a problem with 57 constraints and 83
variables. Dual simplex solves this problem and passes the sol ution back to the presolve
routine, which then unpresolves the solution to produce a solution to the original problem.
During this process, presolve builds an entirely new ‘presolved’ problem and stores enough
information to translate a solution to this problem back to asolution to the original problem.
This information is hidden within the user's problem (in the CPLEX LP problem object, for
Callable Library users) and was inaccessible to the user in CPLEX releases prior to 7.0.

The presolve process for amixed integer program is similar, but has a few important
differences. First, the actual presolve reductions differ. Integrality restrictions allow CPLEX
to perform several classes of reductions that are invalid for continuous variables. A second
difference is that the MIP solution process involves a series of linear program solutions. In
the MIP branch & cut tree, alinear program is solved at each node. MIP presolveis
performed at the beginning of the optimization and applied a second time to the root
relaxation, unless the relaxation preprocessing indicator RelaxPreInd Of

CPX_PARAM RELAXPREIND isset to O (zero), in which case the presolve is performed only

ILOG CPLEX 10.0 — UsSER’'S MANUAL

once. All of the node relaxation solutions use the presolved problem. Again, presolve stores
the presolved problem and the information required to convert a presolved solution to a
solution for the original problem within the LP problem object. Again, thisinformation was
inaccessible to the user in CPLEX releases prior to version 7.0.

A Proposed Example

Now consider an application where the user wishesto solve alinear program using the
simplex method, then modify the problem slightly and solve the modified problem. Asan
example, let's say a user wishes to add afew new constraints to a problem based on the
results of the first solution. The second solution should ideally start from the basis of the
first, since starting from an advanced basisis usualy significantly faster if the problemis
only modified slightly.

Unfortunately, this scenario presents several difficulties. First, presolve must translate the
new constraints on the original problem into constraints on the presolved problem. Presolve
in releases prior to 7.0 could not do this. In addition, the new constraints may invalidate
earlier presolve reductions, thus rendering the presolved problem useless for the
reoptimization. (There is an example in Restricting Presolve Reductions on page 425.)
Presolve in releases prior to 7.0 had no way of disabling such reductions. In the prior
releases, a user could either restart the optimization on the original, unpresolved problem or
perform a new presolve on the modified problem. In the former case, the reoptimization
does not benefit from the reduction of the problem size by presolve. In the latter, the second
optimization does not have the benefit of an advanced starting solution.

The advanced presolve interface can potentially make this and many other sequences of
operations more efficient. It provides facilities to restrict the set of presolve reductions
performed so that subsequent problem modifications can be accommodated. It also provides
routines to translate constraints on the original problem to constraints on the presolved
problem, so new constraints can be added to the presolved problem. In short, it provides a
variety of capabilities.

When considering mixed integer programs, the advanced presolve interface plays avery
different role. The branch & cut process needsto be restarted from scratch when the problem
is even slightly modified, so preserving advanced start information isn't useful. The main
benefit of the advanced presolve interface for MIPsisthat it allows a user to trandate
decisions made during the branch & cut process (and based on the presolved problem) back
to the corresponding constraints and variables in the origina problem. This makes it easier
for auser to control the branch & cut process. Details on the advanced MIP callback
interface are provided in Advanced MIP Control Interface on page 31.

Restricting Presolve Reductions

As mentioned in Introduction to Presolve on page 424, some presolve reductions are
invalidated when a problem is modified. The advanced presolve interface therefore dlows a

ILOG CPLEX 10.0 — USER’'S MANUAL 425

426

user to tell presolve what sort of modifications will be made in the future, so presolve can
avoid possibly invalid reductions. These considerations only apply to linear programs. Any
modifications of QP or QCP models will cause ILOG CPLEX to discard the presolved
model.

Example: Adding Constraints to the First Solution

Consider adding a constraint to a problem after solving it. Imagine that you want to optimize
alinear program:

Primal: Dual:
max -x1 + x2 + x3 min 6yl + b5y2
st x1 + x2 + 2x3 £ 6 st yl > -1
X2 + x3 £ 5 yl + y2 > 1
0 2yl + y2 > 1
x1, X2, x3 2> 0 yl, y2, y3 2 0

Note that the first constraint in the dual (y1 > -1) isredundant. Presolve can use this
information about the dua problem (and complementary slackness) to conclude that
variable x1 can be fixed to 0 and removed from the presolved problem. While it may be
intuitively obvious from inspection of the primal problem that x1 can be fixed to O, itis
important to note that dual information (redundancy of the first dual constraint) is used to
formally proveit.

Now consider the addition of a new constraint x2 < 5x1:

Primal: Dual:
max -x1 + x2 + x3 min 6yl + b5y2
st x1 + x2 + 2x3 £ 6 st yl - 5y3 > -1
x2 + x3 < 5 ylL. + y2 + y3 > 1
-5x1 + x2 < 0 2yl + y2 > 1
x1, X2, x3 > 0 yl, y2, y3 2 0

Our goal isto add the appropriate constraint to the presolved problem and reoptimize. Note,
however, that the dual information presolve used to fix x1 to 0 was changed by the addition
of the new constraint. The first constraint in the dual is no longer guaranteed to be
redundant, so the original fixing is no longer valid (the optimal solutionisnow x1=1, x2=5,
x3=0). Asaresult, CPLEX is unable to use the presolved problem to reoptimize.

We classify presolve reductions into several classes: those that rely on primal information,
those that rely on dual information, and those that rely on both. Future addition of new
constraints, modifications to objective coefficients, and tightening of variable bounds (a
specia class of adding new constraints) require the user to turn off dual reductions.
Introduction of new columns, modifications to right-hand-side values, and relaxation of

ILOG CPLEX 10.0 — UsSER’'S MANUAL

variable bounds (a special case of modifying right-hand-side values) require the user to turn
off primal reductions.

These reductions are controlled through the cpx_pPARAM REDUCE parameter. The parameter
has four possible settings. The default value cCPX PREREDUCE PRIMALANDDUAL (3)
indicates that presolve can rely on primal and dual information. With setting
CPX_PREREDUCE_DUALONLY (2), presolve only uses dua information, with setting
CPX_PREREDUCE_PRIMALONLY (1) it only uses primal information, and with setting
CPX_PREREDUCE_NO_ PRIMALORDUAL (0) it uses neither (which is eguivalent to turning
presolve off).

Setting the cPx_PARAM REDUCE parameter has one additional effect on the optimization.
Normally, the presolved problem and the presolved solution are freed at the end of an
optimization call. However, when cPx_PARAM REDUCE iS Set to avalue other than its
default, ILOG CPLEX assumes that the problem will subsequently be modified and
reoptimized. It therefore retains the presolved problem and any presolved solution
information (internally to the LP problem object). If the user has set cPX PARAM REDUCE
and is finished with problem modification, the user can call cPxfreepresolve to freethe
presolved problem and reclaim the associated memory. The presolved problem is
automatically freed when the user calls cpxfreeprob on the original problem.

We should note that cutting planesin mixed integer programming are handled somewhat
differently than one might expect. If auser wishes to add his own cuts during the branch &
cut process (through cpxaddusercuts Of CPXcutcallbackadd), it may appear necessary
to turn off dual reductions to accommodate them. (In fact, in this respect, these cuts differ
from lazy constraints discussed in User-Cut and Lazy-Constraint Pools on page 379.)
However, for reasons that are complex and beyond the scope of this discussion, dual
reductions can be |eft on. The reasons relate to the fact that valid cuts never exclude integer
feasible solutions, so dual reductions performed for the original problem are still valid after
cutting planes are applied. However, asmall set of reductions does need to be turned off.
Recall that presolve must translate a new constraint on the origina problem into a constraint
on variables in the presolved problem. Most reductions performed by CPLEX presolve
replace variables with linear expressions of zero or more other variables (plus a constant). A
few do not. These latter reductions make it impossible to perform the translation to the
presolved problem. Set cPx_PARAM PRELINEAR to O (zero) to forbid these | atter
reductions.

Restricting the type of presolve reductions will also allow presolve to conclude more about
infeasible and/or unbounded problems. Under the default setting of cPx_PARAM REDUCE,
presolve can only conclude that a problem is infeasible and/or unbounded. If

CPX_PARAM REDUCE iSSet {0 CPX PREREDUCE_PRIMALONLY (1), presolve can conclude
that a problem is primal infeasible with return status CPXERR PRESLV_INF. If

CPX_PARAM REDUCE iSSet {0 CPX_PREREDUCE_DUALONLY (2), presolve can conclude that

ILOG CPLEX 10.0 — USER’'S MANUAL 427

aproblem is primal unbounded (if it is primal feasible) with return status
CPXERR PRESLV_UNBD.

I Reminder: The previous paragraph applies to CPXpresolve, not CPXIpopt.

A final facility that modifies the set of reductions performed by presolveisthe
CPXcopyprotected routine. The user provides as input alist of variablesin the original
problem that should survive presolve (that is, should exist in the presolved problem).
Presolve will avoid reductions that remove those variables, with one exception. If a
protected variable can be fixed, presolve will still remove it from the problem. This
command is useful in cases where the user wants to explicitly control some aspect of the
branch & cut process (for example, through the branch callback) using knowledge about
those variables.

Manual Control of Presolve

428

While presolve was a highly automated and transparent procedure in releases of CPLEX
prior to 7.0, releases 7.0 and above give the user significant control over when presolveis
performed and what is done with the result. This section discusses these added control
facilities. Recall that the functions mentioned here are documented in detail, including
arguments and return values, in the reference manual.

Thefirst control function provided by the advanced presolveinterface is cpxpresolve,
which manually invokes presolve on the supplied problem. Once thisroutineis called on a
problem, the problem has a presolved problem associated with it. Subsequent callsto
optimization routines (CPXprimopt, CPXdualopt, CPXbaropt, CPXmipopt) Will use this
presolved problem without repeating the presolve, provided no operation that discards the
presolved problem is performed in the interim. The presolved problem is automatically
discarded if a problem modification is performed that isincompatible with the setting of
cpx_PARAM REDUCE (further information is provided in Modifying a Problem on page 38).

By using the parameter cpx_PARAM REDUCE to restrict the types of presolve reductions,
CPLEX can make use of the optimal basis of the presolved problem. If you set

CPX_PARAM REDUCE to restrict presolve reductions, then make problem modifications that
don't invalidate those reductions, CPLEX will automatically use the optimal basis to the
presolved problem. On the other hand, if the nature of the problem modificationsis such that
you cannot set CPx_PARAM REDUCE, You can still perform an advanced start by making the
modifications, calling cPxpresolve to create the new presolved problem, then calling
CPXcopystart, passing the original model and any combination of primal and dual
solutions. With nondefault settingsof cpx_paraM REDUCE, CPLEX will crush the solutions
and use them to construct a starting basis for the presolved model. If you are continuing with
primal simplex, only providing a primal starting vector will usually perform better.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

We should point out afew of the subtleties associated with using cPxcopystart to start an
optimization from an advanced, presolved solution. This routine only creates a presolved
solution vector if the presolved problem is already present (either because the user called
Cpxpresolve Or because the user turned off some presolve reductions through
cpx_PARAM REDUCE and then solved a problem). The earlier sequence would not have
started from an advanced solution if cPXcopystart had been called before cpxpresolve.
Another important detail about cPxcopystart isthat it crushes primal and/or dual
solutions, not bases. It then uses the crushed solutions to choose a starting basis. If you have
abasis, you need to compute optimal primal and dual solutions (using cPxcopybase and
then cpxprimopt), extract them, and then call cPxcopystart with them to usethe
corresponding advanced solution. In general, starting with both a primal and dual solutionis
preferable to starting with one or the other. One other thing to note about cPxcopystart is
that the primal and dual slack (slack and dj) arguments are optional. The routine will
compute slack valuesif none are provided.

Recall that you can set the parameter cpx_pPARAM ADVIND to 2 in order to use advanced
starting information together with presolve. At this setting, CPLEX will use starting
information provided to it with cPXcopystart Or CPXcopybase When it solvesan LP with
the primal or dual simplex optimizer in the following way. If no presolved model is
available, presolve isinvoked. Then the starting information is crushed and installed in the
presolved model. Finally, the presolved model is solved from the advanced (crushed)
starting point.

Another situation where a user might want to use cPxpresolve isif the user wishesto
gather information about the presolve, possibly in preparation for using the advanced MIP
callback routines to control the branch & cut process. Once cpxpresolve hasbeen called,
the user can then call cpxgetprestat to obtain information about the reductions
performed on the problem. This function provides information, for each variable in the
original problem, on whether the variable was fixed and removed, aggregated out, removed
for some other reason, or is still present in the reduced problem. It also gives information,
for each row in the original problem, on whether it was removed due to redundancy,
aggregated out, or is still present in the reduced problem. For those rows and columns that
are present in the reduced problem, this function provides a mapping from original row/
column number to row/column number in the reduced problem, and vice-versa.

Another situation where a user might want to use cpxpresolve isto work directly onthe
presolved problem. By calling cpxgetredlp immediately after cpxpresolve, theuser can
obtain a pointer to the presolved problem. For an example of how this might be used, the
user could call routines cpPxcrushx and cPxcrushpi to presolve primal and dual solution
vectors, call cpxgetredlp to get accessto the presolved problem, then use cPXcopystart
to copy the presolved solutions into the presolved problem, then optimize the problem, and
finally call routines cPxuncrushx and cPXuncrushpi—CPXgpuncrushpi for QPs—to
unpresol ve solutions from the presolved problem, creating solutions for the origina
problem.

ILOG CPLEX 10.0 — USER’'S MANUAL 429

Theroutine cPxgetredlp providesthe user accessto internal CPLEX data structures. The
presolved problem must not be modified by the user. If the user wishes to manipulate the
reduced problem, the user should make a copy of it (using cPXcloneprob) and manipulate
the copy instead.

The advanced presolve interface provides another call that is useful when working directly
with the presolved problem (either through cpxgetredlp or through the advanced MIP
callbacks). Thecall to cpPxcrushform translatesalinear expression in the original problem
into alinear expression in the presolved problem. The most likely use of thisroutineisto
add user cuts to the presolved problem during a mixed integer optimization. The advanced
presolve interface also provides the reverse operation. The cPxuncrushform routine
translates alinear expression in the presolved problem into alinear expression in the original
problem.

A limited presolve analysisis performed by cpxbasicpresolve and by the Concert
Technology method 11oCplex: :basicPresolve. This function determines which rows
are redundant and computes strengthened bounds on the variables. This information can be
used to derive some types of cutsthat will tighten the formulation, to aid in formulation by
pointing out redundancies, and to provide upper bounds for variables. cPxbasicpresolve
does not create a presolved problem.

Theinterface allows the user to manually free the memory associated with the presolved
problem using routine cpxfreepresolve. The next optimization call (or call to
Cpxpresolve) recreates the presolved problem.

Modifying a Problem

430

This section briefly discusses the mechanics of modifying a problem after presolve has been
performed. This discussion applies only to linear programs; it does not apply to quadratic
programs, quadratically constrained programs, nor mixed integer programs.

Asnoted earlier, the user must indicate through the cPx_PARAM REDUCE parameter the
types of modifications that are going to be performed on the problem. Recall that if primal
reductions are turned off, the user can add variables, change the right-hand-side vector, or
loosen variable bounds without losing the presolved problem. These changes are made
through the standard problem modification interface (Cpxaddcols, CPXchgrhs, and
CPXchgbds).

Recall that if dual reductions are turned off, the user can add constraints to the problem,
change the objective function, or tighten variable bounds. Variable bounds are tightened
through the standard interface (cPxchgbds). The addition of constraints or changes to the
objective value must be done through the two interface routines cpxpreaddrows and
cpxprechgobj. We should note that the constraints added by cpxpreaddrows are
equivalent to but sometimes different from those input by the user. The dual variables
associated with the added rows may take different val ues than those the user might expect.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

If auser makes a problem modification that is not consistent with the setting of
CPX_PARAM REDUCE, the presolved problem is discarded and presolve isreinvoked at the
next optimization call. Similarly, CPLEX discards the presolved problem if the user
modifies a variable or constraint that presolve had previously removed from the problem.
You can use cPXpreaddrows OF CPXprechgobj to make sure that this will not happen.
Note that cPxpreaddrows aso permits changes to the bounds of the presolved problem. If
the nature of the procedure dictates areal need to modify the variables that presolve
removed, you can use the CPxcopyprotected routine to instruct CPLEX not to remove
those variables from the problem.

Instead of changing the bounds on the presolved problem, consider changing the bounds on
the original problem. CPLEX will discard the presolved problem, but calling cpxpresolve
will cause CPLEX to apply presolve to the modified problem, with the added benefit of
reductions based on the latest problem modifications. Then use cPXcrushx, CPXcrushpi,
and cprxcopystart to provide an advanced start for the problem after presolve has been
applied on the modified problem.

ILOG CPLEX 10.0 — USER’'S MANUAL 431

432 ILOG CPLEX 10.0 — USER’'S MANUAL

32

Advanced MIP Control Interface

In this manual, Using Callbacks on page 403 introduces callbacks, their purpose, and
conventions. This chapter documents the CPLEX advanced MIP control interface,
describing callbacks in greater detail. It assumes that you are already familiar with that
introduction to callbacks in general, and it includes sections about:

[Introduction to MIP Callbacks on page 434
[Heuristic Callback on page 435

[Cut Callback on page 436

[Branch Selection Callback on page 437

[Ihcumbent Callback on page 438

[Mode Selection Callback on page 439
[—Jolve Callback on page 439

These callbacks allow sophisticated usersto control the details of the branch & cut process.
Specifically, users can choose the next node to explore, choose the branching variable, add
their own cutting planes, place additional restrictions on integer solutions, or insert their own
heuristic solutions. These functions are meant for situations where other tactics to improve
CPLEX performance on ahard MIP problem, such as non-default parameter settings or
priority orders, have failed. See Troubleshooting MIP Performance Problems on page 272
for more information about MIP parameters and priority orders.

ILOG CPLEX 10.0 — USER’'S MANUAL 433

Users of the advanced MIP control interface can work with the variables of the presolved
problem or, by following afew simple rules, can instead work with the variables of the
original problem.

Tip: The advanced MIP control interface relies heavily on the advanced presolve
capabilities. We suggest that the reader become familiar with Chapter 31, Advanced
Presolve Routines, before reading this chapter.

Control callbacksin the ILOG Concert Technology CPLEX Library use the variables of the
original model. These callbacks are fully documented in the ILOG CPLEX Reference
Manual.

Introduction to MIP Callbacks

434

Asthe reader is no doubt familiar, the process of solving a mixed integer programming
problem involves exploring atree of linear programming relaxations. CPLEX repeatedly
selects anode from the tree, solves the LP relaxation at that node, attempts to generate
cutting planes to cut off the current solution, invokes a heuritic to try to find an integer
feasible solution “close” to the current relaxation solution, selects a branching variable (an
integer variable whose value in the current relaxation is fractional), and finally places the
two nodes that result from branching up or down on the branching variable back into the
tree.

The CPLEX Mixed Integer Optimizer includes methods for each of the important steps
listed above (node selection, cutting planes, heuristic, branch variable selection, incumbent
replacement). While default CPLEX methods are generally effective, and parameters are
availableto choose alternatives if the defaults are not working for a particular problem, there
arerare cases where a user may wish to influence or even override CPLEX methods.
CPLEX provides a callback mechanism to allow the user to do this. If the user installs a
callback routine, CPLEX callsthisroutine during the branch & cut processto allow the user
to intervene. CPLEX callback functions are thread-safe for use in parallel (multiple CPU)
applications.

Before describing the callback routines, we first discuss an important issue related to
presolve that the user should be aware of. Most of the decisions made within MIP relate to
the variables of the problem. The heuristic, for example, finds values for al the variablesin
the problem that produce afeasible solution. Similarly, branching chooses a variable on
which to branch. When considering user callbacks, the difficulty that arisesisthat the user is
familiar with the variables in the original problem, while the branch & cut processis
performed on the presolved problem. Many of the variables in the original problem may
have been modified or removed by presolve.

CPLEX provides two options for handling the problem of mapping from the original
problem to the presolved problem. First, the user may work directly with the presolved

ILOG CPLEX 10.0 — UsSER’'S MANUAL

problem and presolved solution vectors. Thisis the default. While this option may at first
appear unwieldy, note that the Advanced Presolve Interface allows the user to map between
original variables and presolved variables. The downside to this option isthat the user hasto
manually invoke these advanced presolve routines. The second option is to set
CPX_PARAM MIPCBREDLP to cPX_ OFF (0), thus requesting that the callback routines work
exclusively with original variables. CPLEX automatically trandlates the data between
original and presolved data. While the second option is simpler, the first provides more
control. These two options will be revisited at several pointsin this chapter.

Heuristic Callback

Thefirst user callback we consider is the heuristic callback. The first step in using this
callback isto call cPxsetheuristiccallbackfunc, with apointer to a callback function
and optionally a pointer to user private data as arguments. We refer the reader to advanced
example admipex2 . ¢ for further details of how this callback is used. Once this routine has
been called, CPLEX callsthe user callback function at every viable nodein the branch & cut
tree (we call anodeviableif its LP relaxation is feasible and its relaxation objective value is
better than that of the best available integer solution). The user callback routineis called
with the solution vector for the current relaxation as input. The callback function should
return afeasible solution vector, if oneisfound, as output.

The advanced MIP control interface provides several routinesthat allow the user callback to
gather information that may be useful in finding heuristic solutions. The routines
CPXgetcallbackgloballb and CcPxgetcallbackglobalub, for example, return the
tightest known global lower and upper bounds on all the variablesin the problem. No
feasible solution whose objective is better than that of the best known solution can violate
these bounds. Similarly, the routines cpxgetcallbacknodelb and
CPXgetcallbacknodeub return variable bounds at this node. These reflect the bound
adjustments made during branching. The routine cPxgetcallbackincumbent returnsthe
current incumbent - the best known feasible solution. The routine cpxgetcallbacklp
returns a pointer to the MIP problem (presolved or unpresolved, depending on the
CPX_PARAM MIPCBREDLP parameter). This pointer can be used to obtain various
information about the problem (variable types, etc.), or as an argument for the advanced
presolve interface if the user wishes to manually translate between presolved and
unpresolved values. In addition, the callback can use the cbdata parameter passed to it,
along with routine cPxgetcallbacknodelp, to obtain a pointer to the node relaxation LP.
This can be used to access desired information about the relaxation (row count, column
count, etc.). Note that in both cases, the user should never use the pointers obtained from
these callbacks to modify the associated problems.

As noted earlier, the cpx_PARAM MIPCBREDLP parameter influences the arguments to the
user callback routine. If this parameter is set to its default value of cpx_on (1), the solution
vector returned to the callback, and any feasible solutions returned by the callback, are

ILOG CPLEX 10.0 — USER’'S MANUAL 435

presolved vectors. They contain one value for each variable in the presolved problem. The
sameistrue of the various callback support routines (cPxgetcallbackgloballb, €tc.). If
the parameter is set to cpx_orF (0), all these vectors relate to variables of the original
problem. Note that this parameter should not be changed in the middle of an optimization.

The user should be aware that the branch & cut process works with the presolved problem,
so the code will incur some cost when translating from presolved to original values. This
cost is usually small, but can sometimes be significant.

We should a'so note that if a user wishes to solve linear programs as part of a heuristic
callback, the user must make a copy of the node LP (for example, using cPxcloneprob).
The user should not modify the CPLEX node LP.

Cut Callback

436

The next example we consider is the user cut callback routine. The user calls
Chxsetcutcallbackfunc to set acut callback, and the user's callback routineis called at
every viable node of the branch & cut tree. We refer the reader to admipexs . ¢ for adetailed
example.

A likely sequence of events once the user callback functionis called is as follows. First, the
routine calls cpxgetcallbacknodex to get the relaxation solution for the current node. It
possibly also gathers other information about the problem (through cpxgetcallbacklp,
ChXgetcallbackgloballb, etc.) It then calls auser separation routine to identify violated
user cuts. These cuts are then added to the problem by calling cpxcutcallbackadd, and
the callback returns. Local cuts, that is, cuts that apply to the subtree of which the current
node is the root, can be added by the routine cpxcutcallbackaddlocal.

At this point, it isimportant to draw a distinction between the two different types of
constraints that can be added through the cut callback interface. The first type isthe
traditional MIP cutting plane, which is a constraint that can be derived from other
congtraints in the problem and does not cut off any integer feasible solutions. The second is
a“lazy constraint”, which is a constraint that can not be derived from other constraints and
potentially cuts off integer feasible solutions. Either type of constraint can be added through
the cut callback interface.

Aswith the heuristic callback, the user can choose whether to work with presolved values or
original values. If the user chooses to work with original values, afew parameters must be
modified. If the user adds only cutting planes to the original problem, the user must set
advanced presolve parameter cPx PARAM PRELINEAR t0 ¢PX OFF (0). This parameter
forbids certain presolve reductions that make translation from original values to presolved
valuesimpossible.

If the user adds any lazy constraints, the user must turn off dual presolve reductions (using
the cPx_PARAM REDUCE parameter). The user must think carefully about whether

ILOG CPLEX 10.0 — UsSER’'S MANUAL

constraints added through the cut interface are implied by existing constraints, in which case
dual presolve reductions may be left on, or whether they are not, in which case dual
reductions are forbidden.

ILOG Concert Technology users should use the class

IloCplex: :LazyConstraintCallbackI when adding lazy constraints, and the class
IloCplex: :UserCutCallbackI When adding cutting planes. Dua reductions and/or non-
linear reductions then will be turned off automatically.

One scenario that merits special attention is when the user knows alarge set of cutsapriori.
Rather than adding them to the original problem, the user may instead wish to add them only
when violated. The CPLEX advanced MIP control interface provides more than one
mechanism for accomplishing this. The first and probably most obvious at this point isto
install auser callback that checks each cut from the user set at each node, adding those that
areviolated. The user can do thiseither by setting CPx_PARAM MIPCBREDLP tO CPX_OFF tO
work with the original problem in the cut callback, or by using the Advanced Presolve
Interface to trandate the cuts on the original problem to cuts on the presolved problem, and
then use the presolved cutsin the cut callback.

Another, perhaps simpler alternative is to add the cuts or constraints to cut pools before
optimization begins. Pools are discussed in User-Cut and Lazy-Constraint Pools on
page 379.

Branch Selection Callback

The next callback to consider is the branch variable selection callback.

After cpxsetbranchcallbackfunc iscalled with apointer to auser callback routine, the
user routine is called whenever CPLEX makes a branching decision. CPLEX indicates
which variable has been chosen for branching and allows the user to modify that decision.
The user may specify the number of children for the current node (between 0 and 2), and the
set of bounds or constraints that are modified for each child through one of the routines
CPXbranchcallbackbranchbds, CPXbranchcallbackbranchconstraints, Or
CPxbranchcallbackbranchgeneral. Thechildren are explored in the order that they are
returned. The branch callback routine is called for all viable nodes. In particular, it will be
called for nodes that have zero integer infeasihilities; in this case, CPLEX will not have
chosen a branch variable, and the default action will be to discard the node. The user can
choose to branch from this node and in this way impose additional restrictions on integer
solutions.

For example, auser branch routine may call cPxgetcallbacknodeintfeas toidentify
branching candidates, call cPxgetcallbackpseudocosts to obtain pseudo-cost
information on these variables, call cpPxgetcallbackorder to get priority order
information, make a decision based on this and perhaps other information, and then respond

ILOG CPLEX 10.0 — USER’'S MANUAL 437

that the current node will have two children, where one has a new lower bound on the branch
variable and the other has a new upper bound on that variable.

Alternatively, the branch callback routine can be used to sculpt the search tree by pruning
nodes or adjusting variable bounds. Choosing zero children for a node prunes that node,
while choosing one node with a set of new variable bounds adjusts bounds on those
variables for the entire subtree rooted at this node. Note that the user must be careful when
using this routine for anything other than choosing adifferent variable to branch on. Pruning
avalid node or placing an invalid bound on a variable can prune the optimal solution.

We should point out one important detail associated with the use of the

CPX_PARAM MIPCBREDLP parameter in abranch callback. If this parameter is set to
cpx_OFF (0), the user can choose branch variables (and add bounds) for the original
problem. However, not every fractional variable is actually available for branching. Recall
that some variables are replaced by linear combinations of other variablesin the presolved
problem. Since branching involves adding new bounds to specific variablesin the presolved
problem, a variable must be present in the presolved problem for it to be branched on. The
user should use the cPxgetcallbacknodeint feas routine from the Advanced Presolve
Interface to find branching candidates (those for which cpxgetcallbacknodeintfeas
returns CPX_INTEGER INFEASIBLE). The CPXcopyprotected routine can be used to
prevent presolve from removing specific variables from the presolved problem. (In Concert
Technology, thisissue is handled for you automatically.) While restricting branching may
appear to limit your ability to solve a problem, in fact a problem can always be solved to
optimality by branching only on the variables of the presolved problem.

Incumbent Callback

438

The incumbent callback is used to reject integer feasible solutions that do not meet
additional restrictions the user may wish to impose. The user callback routine will be called
each time a new incumbent solution has been found, including when solutions are provided
by the user’s heuristic callback routine. The user callback routineis called with the new
solution asinput. Depending on the API, the callback function sets a parameter or invokes a
method to indicate whether or not the new solution should replace the incumbent solution.

For the object-oriented callback classes of the C++, Java, and .NET APIs, all callback
information about the model and solution vector pertainsto the original, unpresol ved model.
For the C API, the cPx_PARAM MIPCBREDLP parameter influences the arguments to the
user callback routine. If this parameter is set to its default value of cpx_on (1), the
solution vector that isinput to the callback is a presolved vector. It contains one value for
each variable in the presolved problem. The same is true of the various callback support
routines (CPXcallbackglobalub, and so forth.). If the parameter is set to cpx_OFF (0),
all these vectors relate to the variables of the original problem. Note that this parameter
should not be changed in the middle of an optimization.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

Node Selection Callback

The user can influence the order in which nodes are explored by installing a node selection
callback (through cpxsetnodecallbackfunc). When CPLEX chooses the node to
explore next, it will call the user callback routine, with CPLEX's choice as an argument. The
callback has the option of modifying this choice.

Solve Callback

Thefinal callback we consider is the solve callback. By calling
Chxsetsolvecallbackfunc, the user instructs CPLEX to call a user function rather than
the CPLEX choice (dual simplex by default) to solve the linear programming relaxations at
each node of the tree. Advanced example admipex6 . ¢ gives an example of how this
callback might be used.

Note: We expect the most common use of this callback will be to craft a customer solution
strategy out of the set of available CPLEX algorithms. For example, a user might create a
hybrid strategy that checks for network status, calling cpxhybnetopt instead of
CPXdualopt whenit findsit.

ILOG CPLEX 10.0 — USER’'S MANUAL 439

440 ILOG CPLEX 10.0 — USER’'S MANUAL

33

Parallel Optimizers

This chapter tells you how to use ILOG CPLEX parallel optimizers: Parallel Barrier,
Parallel MIP, and Concurrent. These parallel optimizers are available as a separate product
from ILOG CPLEX. They are implemented to run on hardware platforms with parallel

processors. These parallel optimizers, though separate products, can be called from the
Interactive Optimizer and the Component Libraries.

In this chapter, you will learn about:

[_Threads on page 442

[_Mondeterminism on page 443

[CTlock Settings and Time Measurement on page 444

[Wsing Parallel Optimizersin the Interactive Optimizer on page 444

[Wsing Parallel Optimizersin the ILOG CPLEX Component Libraries on page 445
[Parallel Barrier Optimizer on page 445

[Concurrent Optimizer on page 446

[Parallel MIP Optimizer on page 446

ILOG CPLEX 10.0 — USER’'S MANUAL 441

Threads

The ILOG CPLEX parallel optimizers are licensed for a specific maximum number of
threads (that is, the number of processors applied to a given problem). The number of
threads that ILOG CPLEX actually uses during a parallel optimization isthe smaller of:

[the number of threads made available by the operating system;

[_the number of threads indicated by the licensed values of the thread-limit parameters.
Table 33.1 summarizes the values of those thread-limit parameters.

Table33.1 Thread-Limit Parameters

Interactive Command

Concert Technology

Enumeration Value Callable Library Parameter

set threads Threads CPX_PARAM THREADS

set barrier limits threads BarThreads CPX PARAM BARTHREADS

set mip limits threads MIPThreads CPX PARAM MIPTHREADS

set mip limits strongthreads |StrongThreadLim CPX PARAM STRONGTHREADLIM

442

The global thread parameter Threads establishes a default thread count for all parallel
optimizers. Thread limits for specific optimizers can be set to values that differ from the
global default (for example, by setting T1oCplex: :MIPThreads). The default value of the
global thread limit is 1 (one). Thereforein order for any of the CPLEX optimizersto invoke
parallel threads, the user must do one of the following:

[aither the user sets a parameter to avalue higher than 1 (one) and lets the CPLEX
optimizers determine the way to use the threads; normally, the user sets the global thread
limit to establish the default level of parallelism;

[ar the user sets any of the other thread limits to control the parallelism more explicitly.

The number of threads used when running a parallel CPLEX optimizer is entirely separate
from the limit on licensed uses. A typical ILOG CPLEX license permits one licensed use,
that is, asingle concurrent execution on one licensed compuiter. If the license also contains
the parallel option with athread limit of, say, four (on a machine with at least four
processors), that one concurrent execution of ILOG CPLEX can employ any number of
parallel threads to increase performance, up to that limit of 4. A license with the parallel
option that additionally has alimit larger than one on the number of licensed uses can
support that many simultaneous executions of ILOG CPLEX, each with the licensed
maximum number of parallel threads. In such a case, the operating system will manage any
contention for processors.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

The number of parallel threads used by an ILOG CPLEX optimizer is usually controlled by
ILOG CPLEX parameter settings. These settings are discussed in more detail in the sections
that follow.

Example: Threads and Licensing

For example, let's assume you use ILOG CPLEX to optimize MIP models on an eight
processor machine, and you have purchased an ILOG CPLEX license for four parallel
threads. Then you can use the Interactive Optimizer command set threads i,
substituting values 1 through 4 for i. You will not be able to set the thread count higher than
4 because you are licensed for a maximum of four threads.

Threads and Performance Considerations

If you set the number of threads to a value greater than the number of available processors,
performance will usually degrade. If you set the number of threads to a value less than the
number of processors, the remaining processors will be available for other jobs on your
platform. Simultaneously running multiple parallel jobs with atotal number of threads
exceeding the number of processors may impair the performance of each individual process
as its threads compete with one another.

The benefit of applying more threads to optimizing a specific problem varies depending on
the optimizer you use and the characteristics of the problem. You should experiment to
assess performance improvements and degradation when you apply more or fewer
processors. For example, when you optimize the root relaxation using the barrier optimizer,
there may be little or no benefit in applying more than four processors to the task. In
contrast, if you use 16 processors during the MIP phase of an optimization, you may
improve solution speed by afactor of 20. In such a case, you should set the parameters
barrier limit threads andmip limit threads to different valuesin order to use
your computing resources efficiently.

Another key consideration in setting optimizer and global thread limitsis your management
of overall system load.

Nondeterminism

The parallel optimizers are nondeter ministic: repeated solutions of amodel using exactly the
same settings can produce different solution paths and, in the case of the parallel MIP
optimizer, very different solution times and results.

The basic algorithm in the ILOG CPLEX Parallel MIP Optimizer is branch & cut. The

primary source of parallelismin branch & cut isthe solution of the continuous relaxations at
the individual nodes of the search tree. These subproblems can be distributed over available
processors to be carried out in parallel. The individual solution paths for these subproblems

ILOG CPLEX 10.0 — USER’'S MANUAL 443

will, in fact, be deterministic, but the speed at which their solutions occur can vary slightly.
These variations lead to nodes being taken from and replaced in the branch & cut treein
different order, and this reordering leads to nondeterminism about many other quantities that
control the optimization. This nondeterminism is unavoidable in such a context, and its
effects can result in some casesin very different solution paths.

TheILOG CPLEX Barrier Optimizer isalso not deterministic, but in practice the differences
between runswill be minor in comparison to the case of MIP, and should usually amount to
achange (if any) of at most afew iterations. The difference is due to uncertainty in the
parallel order of arithmetical operations, in conjunction with numeric roundoff.

Clock Settings and Time Measurement

The clock-type parameter determines how ILOG CPLEX measures computation time. CPU
time, the default, is most appropriate when only one processor is used. It reports the amount
of time the CPU spent performing computation on behalf of your application. For parallel
execution, CPU time is system dependent and generally will not reflect the desired metric.
On some parallel systems, it may measure aggregate CPU time, that is, the sum of time used
by all processors. On others, it may report the CPU time of only one process. In short, it may
give you amisleading indication of parallel speed.

The alternative type, wall-clock time, is usually more appropriate for parallel computing
because it measures the total physical time elapsed after an operation begins. When multiple
processes are active, and when parallel optimizers are active, wall-clock time can be much
different from CPU time.

You can choose the type of clock setting, in the:
[Interactive Optimizer, with the command set clocktype 1.
[Concert Technology, with the T1oCplex method set Param (ClockType, 1).

[Callable Library, with the routine
CPXsetintparam(env, CPX PARAM CLOCKTYPE, 1i).

Replace the i with the value 1 to specify CPU time or 2 to specify wall-clock time.

Using Parallel Optimizers in the Interactive Optimizer

444

1. Start the parallel CPLEX Interactive Optimizer with the command cplex at the
operating system prompt.

2. Set the thread-limit, as explained in Threads on page 442.

3. Enter your problem object and populate it as usual.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

4. Call the parallel optimizer with the appropriate command from Table 33.2.
Table 33.2 Parallel Optimizer Commands in the Interactive Optimizer

Parallel MIP Optimizer mipopt

Parallel Barrier Optimizer baropt

Parallel Concurrent Optimizer | set lpmethod 6
and then optimize

Using Parallel Optimizers in the ILOG CPLEX Component Libraries

1. Createyour ILOG CPLEX environment and initialize a problem object in the usual way.
See Initialize the ILOG CPLEX Environment on page 107 and Instantiate the Problem
Object on page 108 for details.

2. Within your application, set the appropriate ILOG CPLEX parameter from Table 33.1 to
specify the number of threads.

3. Enter and populate your problem object in the usual way, asin Put Data in the Problem
Object on page 108.

4. Call the parallel optimizer with the appropriate method or routine from Table 33.3.
Table 33.3 Parallel Optimizer Methods and Routines of Component Libraries

Optimizer Concert lloCplex Method Callable Library
Parallel MIP Optimizer solve CPXmipopt
Parallel Barrier Optimizer | setParam (RootAlg, Barrier) CPXbaropt or CPXhybbaropt

and then solve

Concurrent Optimizer setParam (RootAlg, Concurrent) |CPXsetintparam(env,

and then solve CPX_ PARAM LPMETHOD,
CPX_ALG_CONCURRENT)

and then CPX1popt Or CPXgpopt

Parallel Barrier Optimizer

The ILOG CPLEX Parallel Barrier Optimizer achieves significant speedups over its serial
counterpart on awide variety of classes of problems. (The serial Barrier Optimizer is
introduced in Chapter 9, Solving LPs: Barrier Optimizer, and explored further in Chapter 11,
Solving Problems with a Quadratic Objective (QP) and in Chapter 12, Solving Problems

ILOG CPLEX 10.0 — USER’'S MANUAL 445

with Quadratic Constraints (QCP).) Consequently, the parallel barrier optimizer will be the
best continuous choice on a parallel computer more frequently than on a single-processor.
For that reason, you should be careful not to apply performance data or experience based on
serial optimizers when you are choosing which optimizer to use on aparallel platform.

If you decide to use the parallel barrier optimizer on the subproblems of aM P, see also other
special considerations about nested parallelism in Nested Parallel Processing on page 448.

Concurrent Optimizer

On amultiprocessor computer, the concurrent optimizer launches distinct LP and QP
optimizers on multiple threads, terminating as soon as the first optimizer finishes. Thefirst
thread uses the same strategy as the single-processor automatic LPMethod Setting (o). If
a second thread is available, the concurrent optimizer runs the barrier optimizer on it. If a
third processor is available, dual simplex, primal simplex, and barrier are all run. All further
available threads are devoted to making the barrier optimization parallel. It should be noted
that the barrier optimization is not considered complete until the crossover step has been
performed and simplex re-optimization has converged; in other words, regardless of which
optimizer turns out to be the fastest, the concurrent optimizer always returns a basic solution
at optimality.

The concurrent optimizer requires more memory than any individual optimizer, and of
course it adds system load by consuming more aggregate CPU time than the fastest
individual optimizer would alone. But the advantages offered in terms of robust solution of
models, and assurance in most cases of the minimum solution time, will make it attractivein
many situations.

Parallel MIP Optimizer

The ILOG CPLEX Parallel MIP Optimizer delivers significant increases in speed on awide
variety of models, particularly on difficult ones that solve alarge number of nodesin the
branch & cut search tree. There are several different opportunities for applying multiple
processors to the solution of a MIP problem. These topics highlight those opportunities:

- Increase the Global Thread Parameter on page 447

. Branch & Cut Parallel Processing on page 447

. Root Relaxation Parallel Processing on page 447

. Individual Optimizer Parallel Processing on page 448
. Nested Parallel Processing on page 448

446 ILOG CPLEX 10.0 — USER’'S MANUAL

After those highlights of opportunities to apply multiprocessing, the following sections tell
you more about managing parallel MIP optimization:

[Memory Considerations and the Parallel MIP Optimizer on page 448
[Output fromthe Parallel MIP Optimizer on page 448

Increase the Global Thread Parameter

The most straightforward way to invoke parallelism is by setting the global thread
parameter, Threads, t0 avalue greater than 1 to indicate the desired degree of parallelism.
If the other parameters remain set to their default values, the result is that nodes in the
branch & cut tree will be processed in parallel; that is, each node is solved in its entirety on
one of the avail able processors, independently of the work being performed on other
processors. In typical cases, the number of nodes waiting for solution quickly becomes
greater than the number of threads, creating enough work which can be done in parallel to
make speed increases possible. ILOG CPLEX automatically manages the pool of nodes, so
that each time a thread finishes one node, it is assigned to solving another.

Branch & Cut Parallel Processing

A contrasting and specialized approach to obtaining speed increases by parallel processing
within the branch & cut treeisto:

1. choose strong branching (varsel parameter setting 3) as the variable selection strategy;

2. apply multiple processors to the strong branching variable selection computation by
setting the strong branching thread limit, st rongThreadLim, to avalue greater than 1;
and

3. leaving the global thread limit at 1 to inhibit processing the branching and solution of the
nodesin parallel.

On models where strong branching is already a beneficial technique, this approach to
parallelism can be especially attractive.

Root Relaxation Parallel Processing

In some model s, the continuous root relaxation takes significant solution time before parallel
branching begins. These models have potential for additional speed increases by running the
root relaxation step in parallel. If the root problem isan LP or QP and the Threads
parameter is set to a value greater than 1, the concurrent optimizer isinvoked by default.
This provides aform of parallelism that applies the available threads to multiple optimizers.
If the root problem isa QCRP, the barrier optimizer aloneis used.

You can try adifferent form of parallelism at the root by selecting the barrier optimizer
specifically with the starting algorithm parameter (Rootalg in Concert,

CPX_PARAM STARTALG inthe Callable Library, set mip strategy startalgorithm
in the Interactive Optimizer). The parallel threadswill all be applied to the barrier algorithm.

ILOG CPLEX 10.0 — USER’'S MANUAL 447

448

Individual Optimizer Parallel Processing

Parallelism in barrier is ordinarily controlled by the global thread count parameter, but this
default behavior can be overridden by the individual optimizer thread limit parameter,
BarThreads. The degree of parallelism within the branch & cut tree likewise can be
controlled by the MIP thread limit Mi pThreads, which overrides the global thread limit.
This capability to set either or both MipThreads and BarThreads permits great flexibility
in the use of parallel resources during the solution of a MIP model.

For example, on amodel where only a small number of nodesis active at any onetime, the
benefit of parallel solution of these nodesis limited. If the individual nodes are
computationally challenging, then it may be possible to achieve speed increases by leaving
the global thread limit at its default of 1, setting the parameter Nodea1g to barrier, and
setting the continuous optimizer thread limit (BarThreads) to avalue greater than 1. The
global thread limit of 1 will inhibit the parallelism of the branching process, while the
explicit thread limit of more than 1 will permit the optimization of each nodein parallel.

Nested Parallel Processing

Nested parallelism represents a further way to exploit the flexibility of independent thread
parameters. For example, it might be determined from experience in a given family of
models that only a modest degree of parallelism is beneficial at the nodes and additional
processors do not help speed up the branching. In such a case, better speed increases might
be obtained by combining a parallelization of the work that the continuous optimizer does at
each node. On an 8-processor computer, you might opt to solve amodel by setting the
MipThreads limit to 4 instead of its maximum of 8, and the BarThreads limit to 2, thus
keeping all 8 processors busy as much of the time as possible, with the four MIP threads
each invoking two threads for the barrier optimizer.

If you do decide to try a nested parallel approach, keep in mind the rule of thumb that it is
usually better to keep ahigher degree of parallelism of the nodes themselves (MipThreads)
than of the continuous optimizer (BarThreads); thisisin keeping with the general
observation that M| P speed increases are on average closer to linear in the number of threads
than the speed increases for the continuous optimizers.

Memory Considerations and the Parallel MIP Optimizer

Before the parallel MIP optimizer invokes parallel processing, it makes separate, internal
copiesof theinitial problem. Theindividual processors use these copies during computation,
so each of them requires an amount of memory roughly equal to the size of the presolved
model.

Output from the Parallel MIP Optimizer

The parallel MIP optimizer generates slightly different output in the node log (see Progress
Reports: Interpreting the Node Log on page 268) from the serial MIP optimizer. The
following paragraphs explain those differences.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

If the MIP optimizer isrunning in parallel, it will display elapsed timefor the MIP optimizer
in wall-clock time, independent of the setting of the clock-type parameter (assuming MIP

logging has not been turned off).

ILOG CPLEX printsasummary of timing statistics specific to the parallel MIP optimizer at
the end of optimization. You can seetypical timing statistics in the following sample run.

Problem 'fixnet6.mps.gz' read.

Read time = 0.02 sec.

CPLEX> o

Tried aggregator 1 time.

MIP Presolve modified 308 coefficients.
Aggregator did 1 substitutions.

Reduced MIP has 477 rows, 877 columns,
Presolve time = 0.02 sec.

Clique table members: 2

MIP emphasis: balance optimality and feasibility

and 1754 nonzeros.

Root relaxation solution time = 0.07 sec.
Nodes Cuts/
Node Left Objective IInf Best Integer Best Node
0 0 3192.0420 12 3192.0420
* 0+ 0 0 4505.0000 3192.0420
3384.5860 15 4505.0000 Cuts: 36
3513.7923 17 4505.0000 Cuts: 25
3530.1967 19 4505.0000 Flowcuts: 9
* 0+ 0 0 4471.0000 3530.1967
3604.4590 17 4471.0000 Flowcuts: 10
3607.9420 18 4471.0000 Flowcuts: 4
* 0+ 0 0 4448.0000 3607.9420
3608.7548 20 4448 .0000 Flowcuts: 3
3617.6257 19 4448.0000 Flowcuts: 2
3624.7454 19 4448 .0000 Flowcuts: 2
3627.2428 20 4448.0000 Flowcuts: 1
* 0+ 0 0 3994.0000 3627.2428
* 30+ 5 0 3985.0000 3736.8034
* 46 0 0 3983.0000 3972.7760

Root relaxation processing (before b&c) :

CPU time = 0.60
Parallel b&c, 2 threads:

Real time = 0.72

Critical time (total) = 0.00

Spin time (average) = 0.01
Total (sequential+parallel) = 1.32 sec.

Cover cuts applied: 1
Flow cuts applied: 38
Gomory fractional cuts applied: 9

Integer optimal solution: Objective =
Solution time = 0.90 sec. Iterations =

CPLEX> g

ILOG CPLEX 10.0 —

328

3.9830000000e+03
Nodes = 47

USER'S MANUAL

ItCnt

51

92
104
104
124
131
131
136
141
150
152
152
305
326

Gap

29.14%
24.87%
22.00%
21.64%
21.04%
19.38%
19.30%
18.89%
18.87%
18.67%
18.51%
18.45%

9.18%

6.23%

0.26%

449

450

The summary at the end of the sample says that 0.60 of a second was spent in the phase of
processing the root relaxation, that is, al the combined steps (preprocessing, root relaxation
solution, cutting planes, heuristic) that occur at the root before the first branch occurs. The
parallel part of this sample run took 0.72 of a second of real time (that is, elapsed time for
that phase).

Other parts of the sample report indicate that the processors spent an average of 0.01 of a
second of real time spinning (that is, waiting for work while there were too few active nodes
available). The real critical time was atotal of 0.00 seconds, time spent by individual
processors in updating global, shared information. Since only one processor can access the
critical region at any instant in time, the amount of time spent in thisregion really is crucial:
any other processor that tries to access this region must wait, thus sitting idle, and thisidle
time is counted separately from the spin time.

There is another difference in the way logging occursin the parallel MIP optimizer. When
this optimizer is called, it makes anumber of copies of the problem. These copies are known
as clones. The parallel MIP optimizer creates as many clones as there are threads available
to it. When the optimizer exits, these clones and the memory they used are discarded.

If alog fileis active when the clones are created, then ILOG CPLEX createsaclonelog file
for each clone. The clone log files are named clonek. log, where k isthe index of the
clone, ranging from 0 (zero) to the number of threads minus one. Since the clones are
created at each call to the parallel MIP optimizer and discarded when it exits, the clone logs
are opened at each call and closed at each exit. (The clone log files are not removed when
the clones themselves are discarded.)

The clone logs contain information normally recorded in the ordinary log file (by default,
cplex.log) but inconvenient to send through the normal log channel. The information
likely to be of most interest to you are special messages, such as error messages, that result
from callsto the L P optimizers called for the subproblems.

ILOG CPLEX 10.0 — UsSER’'S MANUAL

A

absolute objective difference
inintegrality constraints of aMIP 252
in MIP performance 275
absolute optimality tolerance
definition 275
gap 275
accessing
basisinformation (C++ API) 55
current parameter value (C API) 120
current parameter value (C++ APl) 51
default parameter value (C API) 119
dual values (C++ APl) 55
maximum parameter value (C API) 119
minimum parameter value (C API) 119
objective function value (C++ API) 55
reduced costs (C++ APl) 55
solution quality (C++ API) 56
solution values (C++ API) 54
active model
asinstance of I1oCplex (JavaAPl) 74
MIP (JavaAPI) 80
active node 388
add method
IloModel C++ class
extensible arrays 45
modifying a model 57
addMinimize method (JavaAPl) 76
advanced basis

ILOG CPLEX 10.0

Index

example 180
in networks 160
parallel threads and 159
primal feasibility and 159
reading from file (LP) 164
saving to file (LP) 164
starting from (LP) 164
advanced starting basis 180
AdvInd parameter
MIP start 265
solution polishing and 262
AggCutLim 260
AggCutLim parameter
controlling cuts 260
AggInd parameter
MIP preprocessing 263
aggregator
barrier preprocessing 195
simplex and 162
algorithm
choosing in LP (C++ API) 49
controllingin I1oCplex (C++ API) 51
pricing 165
type (JavaAPl) 81
using multiple 336
Algorithm.Barrier (JavaAPl) 85
application
creating with Concert Technology (C++ API) 41
development steps (C++ API) 41
arc 204

— USER’S MANUAL 451

architecture
C++ API 40
Callable Library (C API) 106
Java APl 68

arguments
null pointers 114
optional 114

array
constructing (Java APl) 88
creating multi-dimensional (C++ API) 63
creating variablesin (Java API) 72
extensible (C++ API) 45
using for 1/0O (C++ API) 63

B

BarAlg
large objective values and 202
log fileand 191
settings 199
barrier optimizer
algorithm 184
algorithms and infeasibility 202
barrier display parameter 199
centering corrections 199
column nonzeros parameter and density 196
column nonzeros parameter and instability 200
corrections limit 199
growth parameter 201
infeasibility analysis 202
inhibiting dua formulation 162
linear 183 to 202
log file 188
numeric difficulties and 200
numerical emphasisand 198
paralel 445
performance tuning 193
preprocessing 195
primal-dual 160
QCP and 228
quadratic 213 to 224
quadratic constraints and 228
row-ordering algorithms 196
second-order cone program (SOCP) and 228
simplex optimizer and 185

452 ILOG CPLEX 10.0

solution quality 191

solving LP problems 183
starting-point heuristics 197
unbounded optimal face and 201
unbounded problems 201

uses 185

BarStartAlg parameter

barrier starting algorithm 197

BarThreads 448
BarThreads parameter

parallel processing and 442

BAS fileformat 174
basis

accessing information (C++ API) 55
advanced, primal feasible 159

advanced, role in network 160

advanced, starting from (example) 180
column generation and 330

condition number 173, 176

crash parameter and 168

crossover algorithms 185

current 107

differences between LP and network optimizers 211
from basisfile 211

infeasibility and 175

maximum row residuals and 178

no factoring in network optimizer 210
objectivein Phase | and 175

optimal, condition nhumber and 173
optimal, numeric stability and 172
paralel threads and advanced basis 159
preprocessing versus starting (MIP) 264
previous optimal 109

refactoring rate 167

removing objects from (C++ API) 58
rolein converting LP to network flow 212
rolein converting network-flow to LP 211
rolein network optimizer 207

rolein network optimizer to solve QP 208
saving best so far 174

sensitivity analysis and (Java APl) 85
singularitiesand 173

starting from advanced 425

unexplored nodesin tree (MIP) 277
unstable optimal 176

USER'S MANUAL

BBInterval parameter
controlling branch and cut 253
Best Bound 254
Best Estimate 254
bibliography 35
column generation 330
BigM 311
BndStrenInd parameter
MIP preprocessing 263
bound violation (LP) 178
Bounded return status (Java API) 77
branch & cut algorithm
controlling process with presolve 425
heuristic callback in 435
Java APl 80
memory problemsand 277
MIP performance tuning and 251
parallel processing 447
parameters 253
priority order 265
solves MIP models 247
special ordered sets (SOS) 285
storing tree nodes 256, 278
tree 251
tree and presolvenode
solving linear problem at 424
tree subproblems 281
branch variable selection callback 437
branching direction (Java API) 84
BrDir parameter
controlling branch and cut 253
breakpoint
discontinuous piecewise linear and 296
example 294
piecewise linear function and 294
BtTol 253
BtTol parameter
controlling branch and cut 253

C

call by value110

Calable Library
categories of routines 106
core 106

ILOG CPLEX 10.0

debugging and 133
description 24
parameters 119
using 105 to 124
callback
branch variable selection 437
control 413
cut 436
diagnostic 404
graphic user interface and 413
heuristic 435
incumbent 438
node selection 439
resetting to null 121
resetting to null (C++ APl) 52
solve 439
using status variables 412
changing
bounds setLB (JavaAPl) 91
bounds setUB (JavaAPl) 91
limit on barrier corrections 199
maximization to minimization 210
model setLinearCoef (JavaAPl) 91
pricing algorithm 207
problem type
network to LP 211
gp 220
zeroed_gp 220
quadratic coefficients 219
type of variable 335
variable type (C++ API) 58
channel example 147
character string length requirements 115
check.c CPLEX file116
Cholesky factor 193
barrier iteration 184
barrier log file and 190
clique cuts
counting 259
definition 257
Cliques parameter
controlling cuts 259
ClockType parameter
parallel processing and 444
clonekK.log 450

— USER’'S MANUAL 453

clones 450
log files 450
threads and 450
closing
application (C API) 110
application (network) 210
environment (C API) 110
environment (network) 210
log files 143
CoeRedInd parameter
MIP preprocessing 263
column
dense 200
density 196
index number 114
name 114
nonzeros parameter and density 196
nonzeros parameter and instability 200
referencing 114
column generation
basis and 330
cutting plane method and 330
reduced cost and (example) 332
reduced cost to determine next variable 330
columnwise modeling (C API) 122
columnwise modeling (C++ API) 62
columnwise modeling (Java API)
IloMPModeler and 71
objective and 88
ranges and 88
complementarity 184
barrier optimizer and 184
convergence tolerance 201
unbounded models and 201
Component Libraries (definition) 24
Concert Technology
accessing parameter values (C++ API) 51
application development steps (C++ API) 41
creating application (C++ API) 41
description 24
design (C++ API) 40
error handling (C++ API) 59
solving problem with (C++ API) 40
using (C++ API) 39 to 66
writing programs with (C++ API) 39

454 ILOG CPLEX 10.0

concurrent optimizer 446
licensing issues 442
non-default parameters and 161
option for (C++ API) 50
parallel processing and 447
root relaxation and 447
cone (SOCP) 228
conflict
comparing 11S 349
definition 347
groupsin 362
conflict refiner 347
C++ APl example 359
Interactive Optimizer example 350
possible status 357
proved status 357
constraint
adding with user-written callback 436
convex quadratic 225
creating ranged (Java API) 70
cuts as 257
indicator 311
lazy 379, 436
logical 305
modeling linear (C++ API) 47
quadratic 225
ranged (JavaAPl) 73
removing from basis (C++ API) 58
representing with I1oRange (C++ API) 44
violation 178
constructing arrays of variables (Java APl) 88
continuous piecewise linear 295
continuous relaxation (Java API) 80
continuous relaxation (MIP) 251
continuous relaxation subproblem 388
control callback
definition 413
typesof 413
conventions
character strings 115
naming 140
notation 31
numbering 136, 138
numbering rows, columns 135
convergence tolerance

— USER’'S MANUAL

barrier algorithm and 161

definitioin 193

effect of tightness 200

performance and 193
convert CPLEX utility 141
converting

error code to string 209

file formats 141

network-flow model to LP 210

network-flow problemto LP 211, 212
convex

quadratic constraints and 226
convex quadratic constraint 225
cover cuts 258

counting 259

defined 257
Covers parameter

controlling cuts 259
CPLEX

Component Libraries 24

core 106

licensing (C++ API) 40

parameters (C++ API) 51
cplex.h header file 120

extern statementsin 119

in an application 135

macros for pointersin 117
cplex.logfile

changing name 188

clonelogs 450

default name 143, 166
CPX_ALG_AUTO symbolic constant 282
CPX_ALG_CONCURRENT symbolic constant 282
CPX_ALG_DUAL symbolic constant 282
CPX_ALG_HYBNETOPT symbolic constant 282
CPX_ALG_PRIMAL symbolic constant 282
CPX_ALG_SIFTING symbolic constant 282
CPX_INTEGER INFEASIBLE 438
CPX_PARAM ADVIND

MIP start 265

presolve and advanced start 429

solution polishing and 262
CPX_PARAM AGGIND

MIP preprocessing 263
CPX_PARAM BARSTARTALG

ILOG CPLEX 10.0

barrier starting algorithm 197
CPX_PARAM BARTHREADS

paralel processing and 442
CPX_PARAM BBINTERVAL

controlling branch and cut 253
CPX_PARAM BNDSTRENIND

MIP preprocessing 263
CPX_PARAM BRDIR

controlling branch and cut 253
CPX_PARAM BTTOL

controlling branch and cut 253
CPX_PARAM CLIQUES

controlling cuts 259
CPX_PARAM CLOCKTYPE

example of parameter checking 120

parallel processing and 444
CPX_PARAM COEREDIND

MIP preprocessing 263
CPX_PARAM COVERS

controlling cuts 259
CPX_PARAM CUTLO

conflict refiner and 348

FeasOpt and 366
CPX_PARAM CUTUP

conflict refiner and 348

FeasOpt and 366
CPX_PARAM DATACHECK

entering problem dataand 115
CPX_PARAM DEPIND

barrier 195

LPsand 163
CPX_PARAM DISJCUTS

controlling cuts 259
CPX_PARAM EPAGAP

limiting M1P optimization 250
CPX_PARAM EPGAP

limiting M1P optimization 250
CPX_PARAM FLOWCOVERS

controlling cuts 259
CPX_PARAM FLOWPATHS

controlling cuts 259
CPX_PARAM FRACCUTS

controlling cuts 259
CPX_PARAM GUBCOVERS

controlling cuts 259

— USER’'S MANUAL 455

CPX_PARAM IMPLBD

controlling cuts 259
CPX_PARAM INTSOLLIM

limiting MIP optimization 250
CPX_PARAM LPMETHOD

choosing LP optimizer 158

network flow 207

parallel processing and 445
CPX_PARAM MEMORYEMPHASIS

barrier 194

conserving memory 169

final factor after preprocessing 163

presolve and 163
CPX_PARAM MIPCBREDLP

branch callbacks and 438

callback arguments and 435

heuristic callbacks and 435

incumbent callback and 438

presolved and original problem 435

user defined cuts and 437
CPX_PARAM MIPTHREADS

parallel processing and 442
CPX_PARAM MIRCUTS

controlling cuts 259
CPX_PARAM NODEFILEIND

effect on storage 279

node filesand 278
CPX_PARAM NODELIM

limiting MIP optimization 250
CPX_PARAM_NODESEL

controlling branch and cut 253
CPX_PARAM NUMERICALEMPHASIS

barrier 198

LP171
CPX_PARAM POLISHTIME

solution polishing 262
CPX_PARAM PREIND

MIP preprocessing 263
CPX_PARAM PRELINEAR

advanced MIP control and 436

advanced presolve 427

user cut pools 381

user defined cuts 381
CPX_PARAM PREPASS

MIP preprocessing 263

456 ILOG CPLEX 10.0

CPX_PARAM PROBE
MIP 256
CPX_PARAM QPMETHOD
network flow and quadratic objective 208
CPX_PARAM REDUCE
advanced presolve 427
infeasible problems and 427
lazy constraints and 381
lazy constraints and advanced MIP control 436
MIP preprocessing 263
optimal basis and 428
presolve and problem modifications 430
problem modifications and 428
unbounded problems and 427
CPX_PARAM RELAXPREIND
advanced presolve 424
MIP preprocessing 263
CPX_PARAM REPAIRTRIES
MIP starts and 265
CPX_PARAM REPEATPRESOLVE
MIP preprocessing 263
purpose 264
CPX_PARAM SCRIND
error checking and 116
example lpex6.c 181
example with callbacks 412
managing input and output 146
network flow 209
programming practices and 135
repeated singularitiesand 173
CPX_PARAM SCRIND parameter
data checking and 116
reporting repeated singularities 173
CPX_PARAM STARTALG
initial subproblem and 281
parallel processing and barrier 447
CPX_PARAM STRONGTHREADLIM
paralel processing and 442
CPX_ PARAM SUBALG
node relaxations and 282
CPX_PARAM SUBMIPNODELIM
solution polishing and 262
CPX_PARAM THREADS
paralel processing and 442
CPX_PARAM TILIM

— USER’'S MANUAL

limiting MIP optimization 250

solution polishing and 262
CPX_PARAM TRELIM

effect on storage 279

limiting MIP optimization 250

node filesand 278
CPX_PARAM VARSEL

controlling branch and cut 253
CPX_PARAM WORKDIR

barrier 195

node file subdirectory 279

node filesand 278
CPX_PARAM WORKMEM

barrier 194

node filesand 278
CPX_ PREREDUCE DUALONLY 427
CPX_PREREDUCE NO PRIMALORDUAL 427
CPX_PREREDUCE PRIMALANDDUAL 427
CPX_PREREDUCE PRIMALONLY 427
CPX_SEMICONT 290
CPX_ SEMIINT 290
CPXaddchannel routine

datatypesin Callable Library and 112

message handling and 146
CPXaddcols routine

maintai nable code and 129

memory management and 113

modifying problems 430
CPXaddfpdest routine

example 1pex5 . c 147

file pointersand 117

message channels and 146
CPXaddfuncdest routine

example 147

function pointersand (C API) 117

message channels and 146
CPXaddindcontr 312
CPXaddrows routine

example 123

memory allocation and (C API) 113

modularity and 129
CPXaddusercuts 427
CPXALG_BARRIER symbolic constant 282
CPXbaropt 428
CPXbasicpresolve 430

ILOG CPLEX 10.0

CPXCENVptr 112
CPXCHANNELptr datatype 112
CPXCHARptr datatype 117
CPXcheckaddcols routine 116
CPXcheckaddrows routine 116

CPXcheckchgcoeflist routine 116

CPXcheckcopyctype routine 116
CPXcheckcopylp routine 116

CPXcheckcopylpwnames routine 116

CPXcheckcopygsep routine 116
CPXcheckcopyquad routine 116
CPXcheckcopysos routine 116
CPXcheckvals routine 116
CPXchgbds 430
CPXchgcoeflist routine 129
CPXchgprobtype routine 283
CPXchggpcoef routine 219

changing quadratic terms 219

example 220
CPXchgrhs 430
CPXcloneprob routine

advanced preprocessing and 430

copying node LPs 436
CPXcloseCPLEX routine

callbacks and 412

example lpex6.c 181

example mipex2.c 284

example gpex1.c 223

example gpex2.c 224

managing input and output 147

network flow problems 210

purpose 110
CPXCLPptr 112
CPXCNETptr 112
CPXcopybase 429
CPXcopybase routine 181
CPXcopycttype routine 290
CPXcopyctype routine

checking types of variables 134

example mipex1.c 283

specifying types of variables 243
CPXcopylp routine 109, 129
CPXcopynettolp routine 210
CPXcopyorder routine 288
CPXcopyprotected 428, 438

— USER’'S MANUAL

457

CPXcopyquad routine 224
CPXcopysos routine

example mipex3.c 288
CPXcopystart 429
CPXcopystart routine

advanced presolved solution and 429

crushing primal or dua solutions 429
CPXcreateprob 412
CPXcreateprob routine 224

datatypesand 112

example Ipex6.c 181

example mipex1.c 283

example mipex2.c 284

example gpex1.c 223, 224

problem object (C API) 108

rolein application 123
CPXcutcallbackadd 427, 436
CPXdelchannel routine 146, 147
CPXdelfpdest routine 117, 146, 147
CPXdelfuncdest routine 146, 147
CPXdelindconstr 312
CPXdisconnectchannel routine 146
CPXdualopt 428, 439
CPXENVptr datatype 112
CPXERR_NEGATIVE_SURPLUS symbolic constant 376
CPXERR_PRESLV_INF 427
CPXERR_PRESLV UNBD 428
CPXERR_PRESOLVE_ BAD PARAM 381
cpxerror message channel 145, 147
CcpxXfclose routine 117
CPXFILEptr datatype 117
CPXflushchannel routine 146
CPXfopen routine 117, 143
CPXfputs routine 117
CPXfreepresolve 427
CPXfreeprob 427
CPXfreeprob routine 110, 181, 223, 224, 284, 412
CPXgetcallbackgloballb 435, 436
CPXgetcallbackglobalub 435
CPXgetcallbackincumbent 435
CPXgetcallbackinfo routine 116, 410, 411, 412
CPXgetcallbacklp 435,436
CPXgetcallbacknodeintfeas 437,438
CPXgetcallbacknodelb 435
CPXgetcallbacknodelp 435

458 ILOG CPLEX 10.0

CPXgetcallbacknodeub 435
CPXgetcallbacknodex 436
CPXgetcallbackorder 437
CPXgetcallbackpseudocosts 437
CPXgetchannels routine 112, 145, 147
CPXgetcolindex routine 115
CPXgetcolname routine 377
CPXgetcols routine 375, 376, 377
CPXgetctype routine 244
CPXgetdblparam routine 114, 120
CPXgetdblguality routine173, 179, 191
CPXgeterrorstring routine 209, 412
CPXgetintparam routine 114, 120
CPXgetintquality routine 191
CPXgetnumcols routine 113
CPXgetobjval routine 283
CPXgetredlp 429

CPXgetrowindex routine 115
CPXgetrowname routine 113
CPXgetslack routine 283

CPXgetsos routine 244

CPXgetstat routine 283, 411
CPXgetstrparam routine 114, 120
CPXgetx routine 111, 283
CPXhybnetopt 439
CcpXinfodblparamroutine 114, 119
CpXinfointparamroutine 114, 119
cpPXinfostrparamroutine114,119, 120
cpxlog message channel 145

CPX1lpopt 223, 224

CPX1lpopt routine 123, 413

CPXLPptr datatype 112

CPXmemcpy routine 118
CPXMIP_ABORT_FEAS symbolic constant 411
CPXMIP_ ABORT_ INFEAS symbolic constant 411
CPXmipopt 428

CPXmipopt routine 283, 284

CPXmsg routine 108, 117, 146, 147
CPXmsgstr routine 118
CPXNETaddarcs routine 209
CPXNETaddnodes routine 209
CPXNETcheckcopynet routine 116
CPXNETchgobjsen routine 210
CPXNETcreateprob routine 112, 209
CPXNETdelnodes routine 210

— USER’'S MANUAL

CPXNETfreeprob routine 210
CPXNETprimopt routine 210, 212
CPXNETptr datatype 112
CPXNETsolution routine 210
CPXnewcols routine 123, 129
CPXnewrows routine 129
CPXopenCPLEX routine

datatypesand 112

example Ipex1.c 147

example Ipex6.c 181

example netex1.c 209

example gpex1.c 223

example gpex2.c 224

initializing environment 107

managing input and output 145

parameters and 120

rolein application 123
CPXordwrite routine 288
CPXpreaddrows 430
CPXpresolve 429
CPXprimopt 428, 429
CPXprimopt routine 119, 283
CPXPROB_FIXEDMILP symbolic constant 283
CPXPUBLIC symbolic constant 117
CPXPUBVARARGS symbolic constant 117
CPXgpopt routine 223, 224
CPXreadcopyprob routine 109, 378
cpxresults message channel 145
CPXsavwrite routine 132
CPXsetbranchcallbackfunc 437
CPXsetcutcallbackfunc 436
CPXsetdblparam routine 114, 120
CPXsetdefaults routine 121
CPXsetheuristiccallbackfunc 435
CPXsetintparam routine

arguments of 120

example Ipex6.c 181

example netex1.c 209

parameter typesand 114

redirecting output to screen 135

selecting root algorithm 281

setting clock type 444
CPXsetlogfile routine 143, 188

channelsand 146

collecting messages 116

ILOG CPLEX 10.0

file pointersand 117

managing log files 143
CPXsetlpcallbackfunc routine117, 411, 413
CPXsetmipcallbackfunc routine117, 411
CPXsetnodecallbackfunc 439
CPXsetsolvecallbackfunc 439
CPXsetstrparam routine 114, 120
CPXsolution routine 124, 283, 411
CPXstrcpy routine118
CPXstrlen routine118
CPXVOIDptr datatype117
cpxwarning message channel 145
CPXwriteprob routine 124, 133, 174, 288
creating

application with Concert Technology (C++ API) 41

array of variables (JavaAPl) 72

arrays of variables (Java APl) 72

Boolean variables (Java API) 72

CPLEX environment 209

log file 143

modeling variables (Java API) 70, 72

network flow problem object 209

new rows (Java APl) 87

objective function (Java API) 70

problem object 108

ranged constraints (Java APl) 70
crossover

verifying barrier solutions 198
CSV fileformat 142
cut callback 436
CutLo parameter

conflict refiner and 348

FeasOpt and 366
cuts 258, 388

adding 259

clique 257

counting 259

cover 257

disiunctive 258

dual reductions and 427

flow cover 258

flow path 258

Gomory fractional 258

GUB cover 258

implied bound 258

— USER’'S MANUAL

459

local or global 389

MIR 258

recorded in MIP node log file 270

re-optimizing 259

what are 257
CutsFactor parameter

controlling cuts 260
cutting plane method 330
CutUp parameter

conflict refiner andd 348

FeasOpt and 366

D

data
entering 108
data types
specia 112
debugging
Callable Library and 133
diagnostic routines and 116
heap 136
Interactive Optimizer and 133
return values and 135
definition 242
degeneracy
dual 281
stalling and 174
delete goal stacks 393
deleting
model objects (C++ API) 57
variables (JavaAPl) 91
deleting nodes 393
dense column 196
dense matrix
reformulating QP 217
DepInd parameter
barrier 195
LPsand 163
Depth First 254
destroying
CPLEX environment 110
nodes 210
problem object 110
devex pricing 167

460 ILOG CPLEX 10.0

diagnosing
infeasibility (barrier) 202
infeasibility (LP) 175
infeasibility (preprocessor) 341
infeasibility (QP) 221
infeasiblity as conflict 347
performance problems (LP) 169
unboundedness 343, 345
diagnostic callback
definition 404
types of 404
diagnostic routine 116
log fileand 116
message channels and 116
redirecting output from 116
diet model (JavaAPl) 75
diff method (JavaAPl) 72
dimensions, checking 136
discontinuous piecewise linear 296
breakpoints and 296
segments and 296
DisjCuts parameter
controlling cuts 259
disunctive cuts 258
displaying
barrier information 188
barrier solution quality 191
basis condition 173
bound infeasibilities 177
column-nonzeros parameter 201
infeasibilities on screen 177
messages 146
MIP information periodically 271
network objective values 206
network solution information 209
network solution on screen 210
optimization progress 413
problem dimensions 136
problem statistics 136
reduced-cost infeasibilities 177
simplex solution quality 193
solution quality 176
solutions on screen 147
variables 138
dual feasibility 184

USER'S MANUAL

dud reduction 341
dud residual 177
dua simplex optimizer
perturbing objective function 174
selecting 159
stalling 174
dud variable
solution data (C++ API) 55
duality gap 184

E

elapsed time for the MIP optimizer 449
emphasis
memory (barrier) 194
memory (LP) 169
MIP 247
numerical (barrier) 198
numerical (LP) 171
empty goal 390, 393
end method
I1loEnv C++ class42
enter Interactive Optimizer command 243
entering 243
LPsfor barrier optimizer 186
mixed integer programs (M1Ps) 243
network arcs 209
network data 209
network data from file 212
network nodes 209
enumeration
Algorithm (C++ API) 49
BasisStatus (C++ API) 55
BoolParam (C++ API) 51
IntParam (C++ API) 51
NumParam (C++ API) 51
Quality (C++ API) 56
Status (C++ APl) 53
String Param (C++ APl) 51
environment
constructing (C++ API) 42
initializing 107
multithreaded 108
releasing 110
EpAGap 275

ILOG CPLEX 10.0

EpAGap parameter

limiting M1P optimization 250

EpGap 275
EpGap parameter

limiting M1P optimization 250

eqg method (Java APl) 73
error checking

diagnostic routines for 116
MPSfile format 140
problem dimensions 136

error handling

in Concert Technology (C++ API) 59
querying exceptions 135

Error return status (C++) 54
Error return status (Java APl) 77
example

Column Generation 329

columnwise modeling 122
columnwise modeling (C++ API) 62
conflict refiner (Interactive Optimizer) 350
creating multi-dimensional arrays (C++ API) 63
Cutting Stock 329

FORTRAN 118

message handler 146

MIP node log file 269

MIP optimization 283

MIP problem from file 283

MIP with SOS and priority orders 287
network optimization 205

optimizing QP 222

output channels 147

Piecewise Linear 293

project staffing 350

reading QP from file 223, 224
resource allocation 350

rowwise modeling 122

rowwise modeling (C++ API) 61
using arrays for I/O (C++ API) 63

executing agoal 388
expression

building (C++ API) 43

editable (JavaAPI) 73

in ranged congtraints (Java APl) 74
linear (C++ API) 43

logical (C++ API) 43

USER'S MANUAL

461

piecewise linear (C++ API) 43
square method (Java API) 72
sum method (Java API) 72

using modeling variables to construct (Java APl) 70

external variables 110
extrarim vectors 139

F

FailGoal 389
feasibility

analysis and barrier optimizer 202

check 389

dual 168, 184

network flows and 205

primal 184

progresstoward 175, 205
feasibility tolerance

default 178

largest bound violation and 178

network optimizer and 207

range of 178

reducing 176
Feasible return status (C++) 54
Feasible return status (Java API) 77
FeasOpt 365

definition 365

example 367

invoking 366

preferences 367
feasOpt method

C++ APl 366

Java APl 86
file format

converting 141

described 138

example of quadratic program 223, 224
file reading routinesin Callable Library 107
file writing routinesin Callable Library 107
flow cover cuts

defined 258
flow path cuts

defined 258
FlowCovers parameter

controlling cuts 259

462 ILOG CPLEX 10.0

FlowPaths parameter
controlling cuts 259
FORTRAN 118, 136
FracCand 260
FracCand parameter
controlling cuts 260
FracCuts parameter
controlling cuts 259
FracPass 260
FracPass parameter
controlling cuts 260
fractional cuts
defined 258
free row 139

G

ge method (JavaAPI) 73

getBasisStatus method

IloCplex Javaclass 85
getBasisStatuses method

IloCplex C++ class55
getBoundSA method

IloCplex C++ class55
getBoundSA method (Java API) 85
getCplexStatus method

IloCplex C++ class 54, 56
getDefault method

IloCplex C++class51
getDual method

IloCplex C++ class55
getDual method (Java API) 85
getDuals method

IloCplex C++ class 55
getDuals method (Java API) 85
getMax method

IloCplex C++class51
getMax method (Java APl) 83
getMessage method

IloException class 135
getMin method

IloCplex C++class51
getMin method (Java APl) 83
getNumVar method

— USER’'S MANUAL

generalized upper bound (GUB) cover cuts 258

IloCplex class (JavaAPl) 87
getObjSA method

IloCplex C++ class55
getObjSA method (Java APl) 85
getObijValue method

IloCplex C++ class55
getParam method

IloCplex C++class51
getParam method (Java APl) 83
getQuality method

IloCplex C++ class 56

IloCplexclass173,191
getRange method

IloCplex class (JavaAPl) 87
getRangeSA method (Java API) 85
getReducedCost method

IloCplex C++ class55
getReducedCost method (Java API) 85
getReducedCosts method

IloCplex C++ class55
getReducedCosts method (Java APl) 85
getRHSSA method

IloCplex C++ class55
getSlack method

IloCplex C++ class55
getSlacks method

IloCplex C++ class55
getStatus method

IloCplex C++ class53

IloCplex: :Exception class 135
getStatuses method

IloCplex class180
getValue method

IloCplex C++ class54
getValues method

IloCplex C++ class55
global thread limit 448
global thread parameter 447
global variables 110
goa

empty 390

executing 388
goal stack 392
goals as parameters 389
Gomory fractional cuts

ILOG CPLEX 10.0

H

head 204

header file 135

heap, debugging 136
heuristic

defined 258

graphic user interface (GUI) 413
group 362

definition 362
examplein conflict 362

GUB

constraint 258

GUBCovers parameter

controlling cuts 259

callback 435

definition 260

node 261

relaxation induced neighborhood search (RINS) 261
RINSHeur 261

solutions 396

starting point 197

SubMIPNodeLimMDefault Para Fonts> 261

histogram

column counts 189
detecting dense columns 196

ill-conditioned

basis 178

factorsin 179

maximum dual residual and 178
problem 176

IloAdd template class (C++ APl) 64
IloAddable class(JavaAPl)

active model 74
modeling objects and 70

IloAlgorithm: : Exception class (C++ APl) 59
IloAlgorithm: : Status enumeration (C++ API) 53
IloArray template class (C++ API) 45

IloColumn class

and example (JavaAPI) 90

IloColumnArray class (JavaAPl) 88

USER'S MANUAL 463

IloConstraint class (C++ API) 47
IloConversion class (C++ APl) 43, 47,58
IloConversion class (JavaAPl) 91
IloCplex class
getBasisStatus method (Java API) 85
getBasisStatuses method (C++ API) 55
getBoundSA method (C++ API) 55
getCplexStatus method (C++ API) 54, 56
getDefault method (C++ API) 51
getDual method (C++ APl) 55
getDuals method (C++ API) 55
getMax method (C++ API) 51
getMin method (C++ API) 51
getObjSA method (C++ API) 55
getObjVvalue method (C++ API) 55
getParam method (C++ APl) 51
getQuality method 173, 191
getQuality method (C++ API) 56
getReducedCost method (C++ API) 55
getReducedCosts method (C++ API) 55
getRHSSA method (C++ API) 55
getSlack method (C++ APl) 55
getSlacks method (C++ API) 55
getStatus method (C++ API) 53
getStatuses method 180
getValue method (C++ APl) 54
getValues method (C++ APl) 55
IloMPModeler and (JavaAPl) 70
isDualFeasible method (C++ APl) 54
isPrimalFeasible method (C++ API) 54
modeling objects and (Java API) 70
notifying about changesto (C++ API) 57
objectsin user application (C++ APl) 40
PrimalPricing (JavaAPl) 82
setDefaults method (C++ APl) 52
setParam method (C++ API) 52
solve method (C++ API) 48, 53, 54, 55, 56, 57, 58, 65
writeBasis method 174
IloCplex: :Algorithm enumeration 49
IloCplex: :BarStartAlg 197
IloCplex: :BasisStatus enumeration (C++ API) 55
IloCplex: :BoolParam enumeration (C++ API) 51
IloCplex: :Exception class 135
getStatus method 135
IloCplex: :Exception class (C++ API) 59

464 ILOG CPLEX 10.0

IloCplex:
IloCplex:
IloCplex:
IloCplex:
IloCplex:
IloCplex:

: IntParam enumeration (C++ API) 51
:Kappa 173
:NumParam enumeration (C++ API) 51
:Quality enumeration (C++ APl) 56
:Reduce 341
: StringParam enumeration (C++ APl) 51
IloCplexModeler interface

modeling objects (JavaAPI) 70
IloCPModeler class (JavaAPl) 70
IloEnv class42

end method (C++ API) 42
IloException class

getMessage method 135
IloExpr C++ class43
ILOG License Manager

examples 151

invoking 150
ILOG License Manager (ILM) 149

CPLEX (C++ API) and 40

types of 150
IloLPMatrix class (JavaAPl) 87
IloMaximize C++ function 44
IloMinimize C++ function 44, 64
IloModel C++ class44
IloModel class

add method (C++ API) 45, 57

add method (Java API) 91

remove method (C++ APl) 45, 57

remove method (Java APl) 91
IloModeler class

basic modeling (Java APl) 72

creating modeling objects (Java APl) 70

creating variables (Java API) 72
I1loMPModeler class

creating variables (Java APl) 72
IloMPModeler class (JavaAPl) 70

delete method 91
IloNumArray C++ class45
IloNumExpr class

objective and (Java APl) 74

ranged constraints and (Java API) 73

variables and (Java API) 72
IloNumVar C++ class42, 47
IloNumVar class

modeling objects and (Java APl) 70

— USER’'S MANUAL

IloNumVarArray C++ class43
IloNumVarclass
extension of I1oNumExpr (JavaAPl) 72
IloObjective C++ class47
IloObjective class
addable objects (Java API) 74
as modeling object (C++ API) 47
declaring (C++ API) 43
modeling by column (Java API) 88
setExpr method in QP term 219
IloObjectiveSense class
example (JavaAPl) 74
maximizing (Java APl) 74
minimizing (JavaAPl) 74
objective function and (Java APl) 74
ilogpexl.cpp example
example
ilogpexl.cpp 222
IloRange C++ class 44, 47
IloRange class
modeling by column (Java API) 88
modeling objects and (Java API) 74
IloSemiContVar class47
IloSolver asfactory (JavaAPl) 68
I10S0S1 C++ class47
I10S0S2 C++ class47
ImplBd parameter
controlling cuts 259
implied bound cuts
defined 258
includefile 135
incumbent
node 252
solution 252
incumbent callback 438
index number 114
indicator constraint 305
definition 311
restrictions 313
indicator variable 313
indicators: seeindicator constraint
Individual optimizer parallel processing 448
infeasibility
barrier optimizer and 202
conflictsand 347

ILOG CPLEX 10.0

diagnosing in network flows 212

displaying on screen 177

dual 199, 202

interpreting results 177

maximum bound 177, 178

maximum reduced-cost 177, 178

network flow 205

network optimizer and 212

norms 190

primal 191, 199, 202

ratio in barrier log file 191

repairing 365

reports 175

scaling and 176

unboundedness and (LP) 177

unscaled 176
Infeasible return status (C++ APl) 54
Infeasible return status (Java APl) 77
infeasible solution

accessing information (Java APl) 86

analyzing (C++ API) 55
InfeasibleOrUnbounded

return status (C++ APl) 54

return status (Java APl) 77
initiaizing

CPLEX environment 209

problem object 108, 209
input operator (C++ API) 45
instantiating

CPLEX environment 209

problem object 108, 209
integrality constraints 388
integrality tolerance

MIP 276

parameter 276
I nteractive Optimizer

debugging and 132

description 24

experimenting with optimizers 130

improving application performance 132

testing codein 128
IntSolLim parameter

limiting M1P optimization 250
isDualFeasible method

IloCplex C++ class54

— USER’'S MANUAL 465

isolated point 297
isPrimalFeasible method
IloCplex C++ class54

J

Java seridization 70

K

knapsack constraint
cover cuts and 257
GUB cover cuts and 258
knapsack problem with reduced cost in objective 331

L

lazy constraint 436
definition 379
Interactive Optimizer and 382
LPfileformat and 382, 384
MPSfile format and 384
pool 379 to 385
SAYV fileformat and 382, 384
1le method
in expressions (JavaAPI) 73
license
CPLEX (C++ APl) 40
runtime 149
limiting
network iterations 207
strong branching candidate list 275
strong branching iterations 275
linear expression (C++ APl) 43
linear objective function (C++ API) 47
linear relaxation
asinitial subproblemin MIP 281
MIP and coefficients at nodes 263
MIP and preprocessing 263
MIP and progress reports 268
log file
barrier optimizer 188
Cholesky factor in 190
clonesand 450
closing 143

466 ILOG CPLEX 10.0

contents 166, 191

creating 143

default 143

description 143

diagnostic routines and 116

iteration 170

naming 143

network 207

paralel MIP optimizer and 450

parameter 143

records infeasibilities 177

records singularities 173

relocating 143

renaming 143
logical constraint 305, 306

examplein early tardy scheduling 323
logical expression (C++ API) 43
LP

barrier optimizer 183

choosing agorithm (C++ API) 49

network optimizer 203

problem formulation 24, 184

solving 157 to 202
LPfileformat

lazy constraints 382

QCP and 229

QPsand 218

row, column order 138

special considerations 138

user cuts 382

M

managing

log file143

memory (LP) 169

memory (MIP) 277
Markowitz tolerance 174, 175

default 175

increasing to stay feasible 175

maximum value 174

numeric stability and 174

pivotsand 174

slow progressin Phase | and 175
maximal cliques

— USER’'S MANUAL

recorded in MIP node log file 270
maximization

concave QPs 214

lower cutoff parameter 276
maximize method

objective functions and (Java APl) 74
maximum bound infeasibility 178
maximum reduced-cost infeasibility 178
maximum row residual 178
memory 277
memory emphasis

barrier 194

continuous (LP) 169
memory leaks (C++ API) 42
memory management

MIPsand 277

performancein LP 169

refactoring frequency and 170
MemoryEmphasis parameter

barrier 194

conserving memory and 169

final factor after preprocessing 163

presolve and 163
message channel

diagnostic routines and 116
message handler (example) 146
minimal covers

recorded in MIP node log file 270
minimization

convex QPs 214

upper cutoff parameter 276
minimize method

objective functions and (Java APl) 74
MIP 241 to 284

active model (Java API) 80

branch & cut (Java API) 80

changing variable type 246

memory problems and 277

optimizer 241

problem formulation 242

progress reports 268

relaxation algorithm 281

subproblem algorithm 281

subproblems 281

supplying first integer solution 264

ILOG CPLEX 10.0

terminating optimization 249
MIP gap tolerance 249
absolute 249
relative 249
MIPEmphasis 247
MIPThreads parameter
paralel processing and 442
MipThreads parameter
branch and cut tree 448
MIR cuts 258
MIRCuts parameter
controlling cuts 259
Mixed Integer Linear Program (MILP)
definition 242
definition (Java API) 80
Mixed Integer Programming (MIP)
definition 242
Mixed Integer Quadratic Program (MIQP)
definition 242
definition (Java API) 80
Mixed Integer Quadratically Constrained Program (MIQCP)
242
model
active (JavaAPl) 74
adding columnsto 334
adding objects (C++ API) 57
adding submodels (C++ API) 44
changing variable type 335
consistency and tolerance 417
deleting objects (C++ APl) 57
extracting (C++ API) 48
IloMPModeler and (JavaAPl) 71
modifying (Java API) 90
notifying changesto I1oCplex object (C++ API) 57
portfolio optimization 217
reformulating dense QP 217
reformulating large QP 217
removing objects (C++ APl) 57
serializing 141
solving (C++ API) 40, 48
solving with I1oCplex (C++ API) 65
XML representation of 141
modeling
columnwise 122
columnwise (C++ API) 62

— USER’'S MANUAL 467

objects (C++ API) 40
rowwise 122
rowwise (C++ API) 61
modeling by column (Java APl)
IloMPModeler and 71
objective and 88
ranges and 88
modeling variable
creating (JavaAPI) 70
IloNumVar (JavaAPl) 72
modifying
constraintsin QCP 236
model (JavaAPI) 90
MPSfile format
conversion utility 141
CPLEX extensions 139
lazy constraintsin 384

quadratically constrained program (QCP) in 229

saving modifications 140
saving QP 218
user cutsin 384
multithreaded application
needs multiple environments 108

N

namespace conflicts 110
naming
arcsin network flow 209
conventions 140
log file 143
node file 280
nodes in network flow 209
negative method
expressions and (Java APl) 72
negative semi-definite objective 215
nested parallel processing 448
NET file format 210
NetItLim 207
network
converting to LP model 210
embedded 207
infeasibility in 205
modeling variables 204
problem formulation 204, 205

468 ILOG CPLEX 10.0

network extractor 208
network object 204
network optimizer 160, 203 to 209

preprocessing and 209

problem formulation 205

turn off preprocessing 209
node 388

demand 205

from 204

head 204

sink 205

source 205

supply 205

tail 204

to 204

transshipment 205

viable 435
node file 278

cpx hame convention 280

parameters and 278

using with MIP 256

when to use 256, 278
node heuristic 261
node log 268
node problem 388
node selection callback 439
node selection strategy

best estimate 280

depth-first search 280
NodeAlg parameter

node relaxations and 282
NodeFileInd parameter

effect on storage 279

node filesand 278
NodeLim parameter

limiting M1P optimization 250
NodeSel parameter

controlling branch and cut 253
nondeterminism 443
nonlinear expression

definition 308
nonseparable 214
notation in this manual 31
notifying

changesto I1oCplex object (C++ API) 57

— USER’'S MANUAL

numbering conventions
C136
Fortran 136
row, column order 138
numeric difficulties
barrier growth parameter 201
barrier optimizer and 200
basis condition number and 173
complementarity 201
convergence tolerance 201
definition (LP) 170
dense columns removed 200
infeasibility and 175
sensitivity 173
unbounded optimal face 201
numeric variable (C++ APl) 47
numerical emphasis
barrier optimizer and 198
continuous (LP) 171
NumericalEmphasis parameter
barrier 198
LP171

O

ObjDif tolerance parameter 252

objective coefficients
crash parameter and 168
modified in log file 206
network flows and 206
priority and 266

objective difference
absolute 252, 275
relative 252, 275

objective function
accessing value of (C++ API) 55
changing sense 210
constructor (JavaAPIl) 74
creating (JavaAPI) 70
freerow as 139
inlogfile 206
in MPSfile format 140
maximization 140
maximize (C++ API) 44
minimize (C++ APl) 44

ILOG CPLEX 10.0

modeling (Java APl) 74
network flows and 205
optimality tolerance and 178
preprocessing and 341
primal reductions and 341

representing with I1o0Objective (C++ API) 43

sign reversal in 140
objective value
accessing sack in (C++ API) 55
inlog file 206
network flows and 205
object range parameter 201
unbounded 201
operator << (C++ API) 45
operator >> (C++ API) 45
Optimal return status (C++ API) 54
Optimal return status (JavaAPI) 77
optimality
basis condition number and 173
cutoff parameters 276
infeasibility ration 191
normalized error and 193
singularitiesand 174
tolerance 176, 178
relative 275
optimality tolerance
absolute 275
changing relative or absolute 275

gap 275

maximum reduced-cost infeasibility and 178

Network and 207
reducing 176
relative 275
relative, default 275
Setting 178
when to change 275
optimization
interrupting 413
stopping 249, 413
optimization problem

defining with modeling objects (C++ API) 40
representing with I1oModel (C++ API) 44

optimization routinesin Callable Library 106
optimizer
barrier (linear) 183 to 202

— USER’'S MANUAL

469

barrier (Qquadratic) 213 to 224
choosing (JavaAPl) 79, 81
concurrent 446
differences between Barrier, simplex 185
dual simplex 159
MIP 241
network 160, 203 to 209
parallel 441 to 450
primal ssimplex 160
primal-dual barrier 160
optimizing
cuts 259
OrGoal 392
output
channel parameter 144
debugging and 135
redirecting 145
output operator (C++ APl) 45

P

paralel
license 442
optimizers 441 to 450
threads 442
Parallel Barrier Optimizer 445
Parallel MIP Optimizer 446
memory considerations 448
output log file 448
parallel processing
branch & cut 447
individual optimizer 448
nested 448
root relaxation 447
selected starting algorithm 447
parameter
accessing current value 120
accessing current value (C++ API) 51
accessing default value (C API) 119
accessing maximum value (C API) 119
accessing minimum vaue (C API) 119
algorithmic 193
barrier corrections 199
Callable Library and 119
controlling branch & cut strategy 253

470 ILOG CPLEX 10.0

gradient 165
log file 143
maximum value of (Java API) 83
minimum value of (Java API) 83
netfind 208
object range 201
optimality cutoff 276
output channel 144
preprocessing dependency 195
querying (JavaAPl) 83
routinesin Callable Library 107
screen indicator 209
setting 120
branching direction (Java APl) 84
CAPI 120
example algorithm (Java API) 81
example steepest edge pricing (Java API) 83
example turn off presolve (Java API) 82
priority in MIP (Java API) 84
RootAlg(JavaAPl) 81
setDefaults (JavaAPl) 83
setting (Java API) 82
setting all defaults (C API) 121
setting all defaults (C++ API) 52
setting in C++ API 52
symbolic constants as 120
tree memory 277
types of
string (JavaAPl) 82
StringParam (JavaAPl) 82
performance
convergence tolerance and 193
perturbing
objective function 174
variable bounds 174
piecewise linear 293
continuous 295
definition 294
discontinuous 296
example 294
examplein early tardy scheduling 323
expression (C++ API) 43
IloMPModeler and (JavaAPl) 71
isolated point ignored 297
steps 296

USER'S MANUAL

polishing asolution 261
PolishTime parameter
solution polishing 262
pool
of cuts 380
of lazy constraints 380
of user cuts 380
populating problem object 108, 209
portability 117
portfolio optimization model 217
positive semi-definite
objective 215
quadratic constraint 228
second-order cone program (SOCP) and 228
possible status in conflict refiner 357
preference
example 362
FeasOpt 367
PreInd parameter
MIP preprocessing 263
PreLinear parameter
user cut pools 381
user defined cuts 381
PrePass parameter
MIP preprocessing 263
preprocessing
advanced basisand (LP) 165
barrier and 195
barrier optimizer 195
definition of 162
dense columns removed 200
dependency parameter 195
dual reductionsin 341
lazy constraints and 381
MIPs 262
network optimizer and 209
primal reductionsin 341
second-order cone program (SOCP) and 228
simplex and 162
starting-point heuristicsand 197
turning off 164
presolve 424
barrier preprocessing 195
dependency checking in 162
final factorization after uncrush in 163

ILOG CPLEX 10.0

gathering information about 429
interface 428
lazy constraints and 381
limited 430
process for MIP 424
protecting variables during 428
restricting dual reductions 426
restricting primal reductions 427
simplex and 162
simplex preprocessing 162
turning off (Java APl) 82
presolved problem
adding constraints to 425
and branch & cut process 434
building 424
freeing 427
freeing memory 430
retaining 427
pricing algorithms 207
primal feasibility 184
primal reduction 341
primal simplex optimizer 160
perturbing variable bounds 174
stalling 174
primal variables 168
primal-degenerate problem 159
priority 266
binary variables and 265
integer variables and 265
order 265
parameter to control 266
reading from file 266
semi-continuous variables and 265
semi-integer variables and 265
special ordered set (SOS) and 265
priority order (Java API) 84
Probe parameter
MIP 256
probing parameter 256
problem
analyzing infeasible (C++ APIl) 55
solving with Concert Technology (C++ API) 40
problem description
example: Rates 290
example: semi-continuous variables 290

— USER’'S MANUAL

471

example:Column Generation 331
example:Cutting Stock 331
problem formulation
barrier 184
dual 184, 186
ill-conditioned 176
infeasibility reports 175
linear 24
network 205
network-flow 204
primal 184, 186
removing dense columns 196
switching from network to LP 210, 212
problem modification routines in Callable Library 106
problem object
creating 108
destroying 110
freeing 110
initializing 108
instantiating 108
network 204
populating 108, 209
problem query routinesin Callable Library 106
problem representation
example: Rates 291
example: semi-continuous variables 291
example:Column Generation 332
example:Cutting Stock 332
problem solution
example: Rates 292
example: semi-continuous variables 292
example:Column Generation 336
example:Cutting Stock 336
problem type
changing from network to LP 211, 212
changing to gp 220
changing to zeroed_gp 220
quadratic programming and 218
prod method in expressions (Java APl) 72
proved status in conflict refiner 357
pruned node 388
PSD
positive semi-definite in objective function 215
quadratic constraints and 228
second-order cone program (SOCP) as exception to 228

472 ILOG CPLEX 10.0

QCP
barrier optimizer and 228
convexity and 226
determining problem type 229
examples 237
file types and 229
modifying constraintsin 236
PSD and 228
QP
example 222, 223, 224
portfolio optimization 217
problem formulation 214
reformulating large, dense models 217
solution example 223, 224
solving 213 to 224
QP relaxation 221
quadratic
constraints 225
convex constraints 225
quadratic coefficient
changing 219
quadratic objective function (C++ API) 47
quadratically constrained programming (QCP) 225 to 237
query routine 377

R

ranged constraint
creating (Java API) 70
definition (JavaAPI) 73
name of (JavaAPI) 73
ranged row 139
reading
MIP problem data 283
MIP problem data from file 244
network datafrom file 212
QP problem data from file 223, 224
start values from MST file 265
redirecting
diagnostic routines 116
log file output 145
oputput 135
screen output 145

USER'S MANUAL

Reduce parameter
lazy constraints and 381
MIP preprocessing 263
reduced cost
accessing (C++ APl) 55
accessing (Java API) 85
choosing variables in column generation 332
column generation and 330
pricing (LP) 167
reduction
dual 341
reduction, primal 341
refactoring frequency
dual simplex algorithm and 161
primal ssimplex algorithm and 161
reference counting 393
reference row values 287
refineConflict
Java APl 86
reflection scaling 208
relative objective difference 252, 275
relative optimality tolerance
default (MIP) 275
definition 275
relaxation
algorithm applied to 281
of MIP problem 251
QP221
solving MIPs (Java API) 80
relaxation induced neighborhood search (RINS) 261
RelaxPreInd parameter
advanced presolve 424
MIP preprocessing 263
RelObjDif tolerance parameter 252
relocating log file 143
remove method
IloModel C++ class45, 57
renaming
log file 143
repairing
infeasibility 365
RepairTries parameter
MIP starts and 265
RepeatPresolve parameter
MIP preprocessing 263

ILOG CPLEX 10.0

purpose 264
residual
dua 177
maximum dual 178
maximum row 178
row 177
return status
Bounded (JavaAPI) 77
Error (C++) 54
Error (JavaAPl) 77
Feasible (C++) 54
Feasible (JavaAPl) 77
Infeasible (C++) 54
Infeasible (JavaAPl) 77
InfeasibleOrUnbounded (C++ APl) 54
InfeasibleOrUnbounded (JavaAPl) 77
Optimal (C++ APl) 54
Optimal (JavaAPI) 77
Unbounded (C++ API) 54
Unbounded (JavaAPl) 77
Unknown (C++ API) 54
Unknown (JavaAPl) 77
return value 113
debugging with 135
routines to access parameters 120
right-hand side (RHS)
file formats for 139
rim vectors 139
RINSHeur 261
root relaxation
parallel processing 447
RootAlg parameter
initial subproblem and 281
network flow 207
network flow and quadratic objective 208
parallel processing and 445
paralel processing and barrier 447
row
index number 114
name 114
referencing 114
residual 177
row-ordering algorithms 196
approximate minimum degree (AMD) 196

approximate minimum fill (AMF) 196

— USER’'S MANUAL

473

automatic 196

nested dissection (ND) 196
rowwise modeling

CAPI 122

C++ APl 61

S

SAV fileformat 218
lazy constraints 384
QCP and 229
user cuts 384
saving
best factorable basis 174
scaled problem statistics 177
scaling 176, 178
alternative methods of 167
definition 167
in network extraction 208
infeasibility and 176
numeric difficulties and QP 222
objective functionin QP 222
singularitiesand 174
search tree 388
second order cone programming (SOCP) 225
second-order cone program (SOCP)
formulation 228
semi-continuous variable
C++ APl 47
example 291
Java APl 71
priority and 265
semi-definite
negative and objective 215
positive and constraints 228
positive and objective 215
semi-integer variable 290
priority and 265
sensitivity analysis (C++ API) 55
sensitivity analysis (JavaAPl) 85
Separable 214
serialization 70
serializing 141
setDefaults method
IloCplex C++class52

474 ILOG CPLEX 10.0

setExpr method

IloObjective class219

setOut 143
setParam method

IloCplex C++ class52

setting

algorithmin LP (C++ API) 49

al default parameters 121

all default parameters (C++ API) 52
callbacksto null 121

callbacksto null (C++ API) 52
parameters 120

parameters (C API) 120
parametersin C++ APl 52

sifting 160
simplex

column generation and 330
dual 159

feasibility tolerancein MIP 276
optimizer 185

pricing phase and 330

primal 160

simplex method

column generation and 330
pricing phase and 330

singularity 173
slack

accessing bound violationsin (C++ API) 56
accessing in constraintsin active model (JavaAPI) 78
accessing slack variablesin congtraints (C++ API) 55
accessing slack variablesin objective (C++ APIl) 55
asindicator of ill-conditioning 179

asreduced cost in infeasibility analysis 179

example CPXgetslack 283

in primal formulation (Barrier) 184

in summary statistics 177

infeasibilities as bound violations and 178
infeasibility in dual associated with reduced costs 178
initial norms and 166

maximum bound violation and (Java APl) 86
meaning in infeasible primal or dual LP 178

pivoted in when constraint is removed (C++ API) 58
primal bound error in solution quality (Barrier) 192
reducing computation of steepest edge pricing 167
rolein inequality constraints (Barrier) 190

USER'S MANUAL

rolein infeasibility analysis 179

row complementarity in solution quality (Barrier) 192

steepest edge and (dual) 166

steepest edge and (primal) 166

using primal variablesinstead 168

variable needed in basis (Network) 211

variables and primal variables (dual) 168
SOCP second-order cone program 228
solution

accessing quality information (C++ API) 56

accessing values of (C++ API) 54

basic infeasible primal 175

basis 185

complementary 184

differences between barrier, simplex 185

example QP 223, 224

feasiblein MIPs 265

incumbent 252

infeasible basis 202

midface 185

nonbasis 185

quality 191, 198

serializing 141

supplying first integer in MI1Ps 264

using advanced presolved 429

verifying 198

XML representation of 141
solution polishing 261
solve callback 439
solve method

IloCplex C++ class48, 53, 54, 55, 56, 57, 58, 65
solving

diet problem (Java API) 78

model (C++ API) 48

singleLLP (JavaAPI) 80

subsequent LPsor QPsinaMIP (JavaAPI) 81
Sparse matrix

IloLPMatrix and (JavaAPl) 87
specia ordered set (SOS)

rolein model (JavaAPl) 71

type 1 (C++ API) 47

type 2 (C++ API) 47

using 285

weightsin 287
speed incresse 447

ILOG CPLEX 10.0

stalling 174
starting algorithm
parallel processing 447
static variables 110
status variables, using 412
steepest-edge pricing 167, 278
step in piecewise linear function 296
strong branching 275
StrongThreadLim 447
StrongThreadLim parameter
parallel processing and 442
SubMIPNodeLim parameter
solution polishing and 262
SubMIPNodeLimMDefault Para Font> 261
summary statistics 177
suppressing output to the screen 148
surplus argument 376
symbolic constants 113, 120

T

tail 204
terminating
because of singularities 174
MIP optimization 249
network optimizer iterations 207
threads 442
clones 450
parallel optimizers 442
performance and 443
Threads global parameter 447
Threads parameter
paralel processing and 442
thread-safe 110
TiLim parameter
limiting M1P optimization 250
solution polishing and 262
time limit
concurrent optimizer and 161
effects al algorithms invoked by concurrent optimizer
161
possible reason for Unknown return status (C++ APl) 54
possible reason for Unknown return status (Java APl) 77
TiLim parameter (MIP) 248
tolerance

USER'S MANUAL 475

absol ute objective difference and 252
absolute optimality 275
advice about 417
complementarity convergence, default of 201
complementary solution and 184
consistency in model and 417
convergence and barrier algorithm 161
convergence and humeric inconsistencies 200
convergence and performance 193
cut callbacks and 416
cut callbacks and (example) 417
cutsin goals and 395
default numeric (example LP) 172
feaibility range 178
feasibility (Network) 207
feasibility and largest bound violation 178
feasibility default 178
feasibility, reducing 176
integrality
example (JavaAPI) 91
Markowitz 174
Markowitz and numeric difficulty 175
Markowitz, increasing to stay feasible 175
optimality 178
optimality (Network) 207
optimality, reducing 176
relative objective difference and 252
relative optimality 275
relative optimality default 275
role of (C++ API) 56
role of (JavaAPIl) 86
simplex feasibility in cut callback 417
simplex optimality (example C++ API) 52
singularities and scaling 174
termination and 249
violated constraintsin goals and 395
warning about absolute and relative objective difference
252
when reducing does not help 176
TreLim parameter
effect on storage 279
limiting MIP optimization 250
node filesand 278
type
changing for variable (Java APl) 71

476 ILOG CPLEX 10.0

conversion (JavaAPl) 91

U

unbounded optimal face
barrier optimizer 186
detecting 201
Unbounded return status (C++ API) 54
Unbounded return status (Java API) 77
unboundedness 343
dual infeasibility and 178
infeasibility and 178
infeasibility and (LP) 177
optimal objectiveand 177
unbounded ray and 344
Unknown return status (C++ APl) 54
Unknown return status (Java APl) 77
unscaled problem statistics 177
user cut
definition 379
Interactive Optimizer and 382
LPfile format and 382, 384
pool 379 to 385
SAV fileformat and 382, 384
user cuts
MPSfile format and 384
utility routinesin Callable Library 106

Vv

variable
accessing dua (C++ API) 55
changing type (C++ API) 43, 58
changing type of 335
constructing arrays of (Java APl) 88
creating modeling (Java API) 70
deleting (Java API) 91
external 110
global 110
in expressions (C++ APl) 43
modeling (Java APl) 72
not addable (Java APl) 74
numeric (C++ API) 47
order 138, 139
removing from basis (C++ API) 58

USER'S MANUAL

representing with I1oNumvar (C++ API) 42
semi-continuous (C++ API) 47
semi-continuous (example) 291
semi-continuous (Java API) 71
semi-integer 290
static 110
type 243
variable selection strategy
strong branching 274, 281
variable type change (Java API) 71
VarSel 447
VarSel parameter
controlling branch and cut 253
vectors, rim 139
violation
bound 178
constraint 178

w

WorkDir parameter
barrier 195
node file subdirectory 279
node filesand 278
working directory
barrier 195
working memory
barrier 194
WorkMem 277
WorkMem parameter
barrier 194
node filesand 278
writeBasis method
IloCplexclass174

X

XML
Concert Technology and 141
serializing model, solution 141

ILOG CPLEX 10.0

USER'S MANUAL

477

478 ILOG CPLEX 10.0 — USER’'S MANUAL

	Meet ILOG CPLEX
	What Is ILOG CPLEX?
	What Does ILOG CPLEX Do?
	What You Need to Know
	In This Manual
	Examples Online
	Notation in This Manual

	Related Documentation
	Announcements and Updates
	Further Reading

	Languages and APIs
	ILOG Concert Technology for C++ Users
	Architecture of a CPLEX C++ Application
	Licenses
	Compiling and Linking

	Creating a C++ Application with Concert Technology
	Modeling an Optimization Problem with Concert Technology
	Modeling Classes
	Data Management Classes

	Solving the Model
	Extracting a Model
	Solving a Model
	Choosing an Optimizer
	Controlling the Optimizers

	Accessing Solution Information
	Accessing Solution Status
	Querying Solution Data
	Accessing Basis Information
	Performing Sensitivity Analysis
	Analyzing Infeasible Problems
	Solution Quality

	Modifying a Model
	Deleting and Removing Modeling Objects
	Changing Variable Type

	Handling Errors
	Example: Optimizing the Diet Problem in C++
	Problem Representation
	Application Description
	Solving the Model with IloCplex
	Complete Program

	ILOG Concert Technology for Java Users
	Architecture of a CPLEX Java Application
	Licenses
	Compiling and Linking

	Creating a Java Application with Concert Technology
	Modeling an Optimization Problem with Concert Technology
	Using IloModeler
	The Active Model

	Building the Model
	Solving the Model
	Accessing Solution Information
	Choosing an Optimizer
	Solving a Single Continous Model
	Solving Subsequent Continuous Relaxations in a MIP

	Controlling ILOG CPLEX Optimizers
	Parameters
	Priority Orders and Branching Directions

	More Solution Information
	Writing Solution Files
	Dual Solution Information
	Basis Information
	Infeasible Solution Information
	Solution Quality

	Advanced Modeling with IloLPMatrix
	Modeling by Column
	Example: Optimizing the Diet Problem in Java
	Modifying the Model

	ILOG Concert Technology for .NET Users
	Describe
	Model
	Build by Rows
	Build by Columns

	Solve
	Good Programming Practices
	Example: Optimizing the Diet Problem in C#.NET

	ILOG CPLEX Callable Library
	Architecture of the ILOG CPLEX Callable Library
	Licenses
	Compiling and Linking

	Using the Callable Library in an Application
	Initialize the ILOG CPLEX Environment
	Instantiate the Problem Object
	Put Data in the Problem Object
	Optimize the Problem
	Change the Problem Object
	Destroy the Problem Object
	Release the ILOG CPLEX Environment

	ILOG CPLEX Programming Practices
	Variable Names and Calling Conventions
	Data Types
	Ownership of Problem Data
	Problem Size and Memory Allocation Issues
	Status and Return Values
	Symbolic Constants
	Parameter Routines
	Null Arguments
	Row and Column References
	Character Strings
	Checking Problem Data
	Callbacks
	Portability
	FORTRAN Interface
	C++ Interface

	Managing Parameters from the Callable Library
	Example: Optimizing the Diet Problem in the Callable Library
	Problem Representation
	Program Description
	Complete Program

	Programming Considerations
	Developing CPLEX Applications
	Tips for Successful Application Development
	Prototype the Model
	Identify Routines to Use
	Test Interactively
	Assemble Data Efficiently
	Test Data
	Choose an Optimizer
	Program with a View toward Maintenance and Modifications

	Using the Interactive Optimizer for Debugging
	Eliminating Common Programming Errors
	Check Your Include Files
	Clean House and Try Again
	Read Your Messages
	Check Return Values
	Beware of Numbering Conventions
	Make Local Variables Temporarily Global
	Solve the Problem You Intended
	Special Considerations for Fortran
	Tell Us

	Managing Input and Output
	Understanding File Formats
	Working with LP Files
	Working with MPS Files
	Converting File Formats

	Using Concert XML Extensions
	Using Concert csvReader
	Managing Log Files
	Creating, Renaming, Relocating Log Files
	Closing Log Files

	Controlling Message Channels
	Parameter for Output Channels
	Callable Library Routines for Message Channels
	Example: Callable Library Message Channels
	Concert Technology Message Channels

	Licensing an Application
	Types of ILM Runtime Licenses
	File-Based RTNODE, RTSTOKEN or TOKEN Keys
	Memory-Based RUNTIME Keys

	Routines and Methods Used for Licensing
	Examples
	CPXputenv Routine for C and C++ Users
	The putenv Method for Java Users
	The Putenv Method for .NET Users
	CPXRegisterLicense Routine for C and C++ Users
	The registerLicense Method for Java Users
	The RegisterLicense Method for .NET Users

	Summary

	Continuous Optimization
	Solving LPs: Simplex Optimizers
	Choosing an Optimizer for Your LP Problem
	Automatic Selection of Optimizer
	Dual Simplex Optimizer
	Primal Simplex Optimizer
	Network Optimizer
	Barrier Optimizer
	Sifting Optimizer
	Concurrent Optimizer
	Parameter Settings and Optimizer Choice

	Tuning LP Performance
	Preprocessing
	Starting from an Advanced Basis
	Simplex Parameters

	Diagnosing Performance Problems
	Lack of Memory
	Numeric Difficulties

	Diagnosing LP Infeasibility
	Coping with an Ill-Conditioned Problem or Handling Unscaled Infeasibilities
	Interpreting Solution Quality
	Finding a Conflict
	Repairing Infeasibility: FeasOpt

	Example: Using a Starting Basis in an LP Problem
	Example ilolpex6.cpp
	Example lpex6.c

	Solving LPs: Barrier Optimizer
	Introducing the Barrier Optimization
	Using the Barrier Optimizer
	Special Options
	Controlling Crossover
	Using SOL File Format
	Interpreting the Barrier Log File
	Preprocessing in the Log File
	Nonzeros in Lower Triangle of AAT in the Log File
	Ordering-Algorithm Time in the Log File
	Cholesky Factor in the Log File
	Iteration Progress in the Log File
	Infeasibility Ratio in the Log File

	Understanding Solution Quality from the Barrier LP Optimizer
	Tuning Barrier Optimizer Performance
	Memory Emphasis: Letting the Optimizer Use Disk for Storage
	Preprocessing
	Detecting and Eliminating Dense Columns
	Choosing an Ordering Algorithm
	Using a Starting-Point Heuristic

	Overcoming Numeric Difficulties
	Numerical Emphasis Settings
	Difficulties in the Quality of Solution
	Difficulties during Optimization
	Difficulties with Unbounded Problems

	Diagnosing Infeasibility Reported by Barrier Optimizer

	Solving Network-Flow Problems
	Choosing an Optimizer: Network Considerations
	Formulating a Network Problem
	Example: Network Optimizer in the Interactive Optimizer
	Understanding the Network Log File
	Tuning Performance of the Network Optimizer

	Solving Problems with the Network Optimizer
	Network Extraction
	Preprocessing and the Network Optimizer

	Example: Using the Network Optimizer with the Callable Library netex1.c
	Solving Network-Flow Problems as LP Problems
	Example: Network to LP Transformation netex2.c

	Solving Problems with a Quadratic Objective (QP)
	Identifying Convex QPs
	Entering QPs
	Matrix View
	Algebraic View
	Examples for Entering QPs
	Reformulating QPs to Save Memory

	Saving QP Problems
	Changing Problem Type in QPs
	Changing Quadratic Terms
	Optimizing QPs
	Diagnosing QP Infeasibility
	Example: Creating a QP, Optimizing, Finding a Solution
	Example: iloqpex1.cpp
	Example: QPex1.java
	Example: qpex1.c

	Example: Reading a QP from a File qpex2.c

	Solving Problems with Quadratic Constraints (QCP)
	Identifying a Quadratically Constrained Program (QCP)
	Convexity
	Semi-definiteness
	Second Order Cone Programming (SOCP)

	Determining Problem Type
	Concert Technology and QCP Problem Type
	Callable Library and QCP Problem Type
	Interactive Optimizer and QCP Problem Type
	File Formats and QCP Problem Type

	Changing Problem Type
	Changing Quadratic Constraints
	Solving with Quadratic Constraints
	Numeric Difficulties and Quadratic Constraints
	Examples: QCP

	Discrete Optimization
	Solving Mixed Integer Programming Problems (MIP)
	Stating a MIP Problem
	Considering Preliminary Issues
	Entering MIP Problems
	Displaying MIP Problems
	Changing Problem Type in MIPs
	Changing Variable Type

	Using the Mixed Integer Optimizer
	Emphasizing Feasibility and Optimality
	Terminating MIP Optimization

	Tuning Performance Features of the Mixed Integer Optimizer
	Branch & Cut
	Probing
	Cuts
	Heuristics
	Preprocessing: Presolver and Aggregator
	Starting from a Solution
	Issuing Priority Orders

	Using the MIP Solution
	Progress Reports: Interpreting the Node Log
	Troubleshooting MIP Performance Problems
	Too Much Time at Node 0
	Trouble Finding More than One Feasible Solution
	Large Number of Unhelpful Cuts
	Lack of Movement in the Best Node
	Time Wasted on Overly Tight Optimality Criteria
	Slightly Infeasible Integer Variables
	Running out of Memory
	Difficulty Solving Subproblems: Overcoming Degeneracy
	Unsatisfactory Subproblem Optimization

	Example: Optimizing a Basic MIP Problem
	Complete Program: ilomipex1.cpp
	Complete Program: mipex1.c

	Example: Reading a MIP Problem from a File
	Complete Program: ilomipex2.cpp
	Complete Program: mipex2.c

	Using Special Ordered Sets (SOS)
	What Is a Special Ordered Set (SOS)?
	Example: SOS Type 1 for Sizing a Warehouse
	Declaring SOS Members
	Example: Using SOS and Priority
	Complete Program: ilomipex3.cpp
	Complete Program: mipex3.c

	Using Semi-Continuous Variables: a Rates Example
	What Are Semi-Continuous Variables?
	Describing the Problem
	Representing the Problem
	Building a Model
	Solving the Problem
	Ending the Application
	Complete Program

	Using Piecewise Linear Functions in Optimization: a Transport Example
	Piecewise Linearity in ILOG CPLEX
	What Is a Piecewise Linear Function?
	Syntax of Piecewise Linear Functions
	Discontinuous Piecewise Linear Functions
	Isolated Points in Piecewise Linear Functions
	Using IloPiecewiseLinear

	Describing the Problem
	Variable Shipping Costs
	Model with Varying Costs

	Developing a Model
	Representing the Data
	Adding Constraints
	Checking Convexity and Concavity
	Adding an Objective

	Solving the Problem
	Displaying a Solution
	Ending the Application
	Complete Program: transport.cpp

	Logical Constraints in Optimization
	What Are Logical Constraints?
	What Can Be Extracted from a Model with Logical Constraints?
	Logical Constraints in the C++ API
	Logical Constraints in the Java API
	Logical Constraints in the .NET API

	Which Nonlinear Expressions Can Be Extracted?
	Logical Constraints for Counting
	Logical Constraints as Binary Variables
	How Are Logical Constraints Extracted?

	Using Indicator Constraints
	What Is an Indicator Constraint?
	Example: fixnet.c
	Indicator Constraints in the Interactive Optimizer
	What Are Indicator Variables?
	Restrictions on Indicator Constraints
	Best Practices with Indicator Constraints

	Using Logical Constraints: Food Manufacture 2
	Describing the Problem
	Representing the Data
	What Is Known?
	What Is Unknown?
	What Are the Constraints?
	What Is the Objective?

	Developing the Model
	Using Logical Constraints
	Solving the Problem
	Ending the Program

	Early Tardy Scheduling
	Describing the Problem
	Understanding the Data File
	Reading the Data
	Creating Variables
	Stating Precedence Constraints
	Stating Resource Constraints
	Representing the Piecewise Linear Cost Function
	Transforming the Problem
	Solving the Problem

	Using Column Generation: a Cutting Stock Example
	What Is Column Generation?
	Column-Wise Models in Concert Technology
	Describing the Problem
	Representing the Data
	Developing the Model: Building and Modifying
	Adding Extractable Objects: Both Ways
	Adding Columns to a Model
	Changing the Type of a Variable
	Cut Optimization Model
	Pattern Generator Model
	Changing the Objective Function

	Solving the Problem: Using More than One Algorithm
	Ending the Program
	Complete Program

	Infeasibility and Unboundedness
	Preprocessing and Feasibility
	Managing Unboundedness
	What Is Unboundedness?
	Avoiding Unboundedness
	Diagnosing Unboundedness

	Diagnosing Infeasibility by Refining Conflicts
	What Is a Conflict?
	What a Conflict Is Not
	How to Invoke the Conflict Refiner
	How a Conflict Differs from an IIS
	Meet the Conflict Refiner in the Interactive Optimizer
	A Model for the Conflict Refiner
	Optimizing the Example
	Interpreting the Results and Detecting Conflict
	Displaying a Conflict
	Interpreting Conflict

	More about the Conflict Refiner
	Using the Conflict Refiner in an Application
	What Belongs in an Application to Refine Conflict
	Conflict Application vs Interactive Optimizer

	Repairing Infeasibilities with FeasOpt
	What Is FeasOpt?
	Invoking FeasOpt
	Specifying Preferences
	Example: FeasOpt in Concert Technology

	Advanced Programming Techniques
	Using Query Routines in the Callable Library
	Using Surplus Arguments for Array Allocations
	Example: Using Query Routines lpex7.c

	User-Cut and Lazy-Constraint Pools
	What Are Pools of User Cuts or Lazy Constraints?
	Adding User Cuts and Lazy Constraints
	Using Component Libraries
	Using the Interactive Optimizer
	Reading and Writing LP Files
	Reading and Writing SAV Files
	Reading and Wrtiting MPS Files

	Deleting User Cuts and Lazy Constraints

	Using Goals
	Branch & Cut with Goals
	The Goal Stack
	Memory Management and Goals
	Cuts and Goals
	Injecting Heuristic Solutions
	Controlling Goal-Defined Search
	Search Limits

	Using Callbacks
	Diagnostic Callbacks
	Implementing Callbacks in ILOG CPLEX with Concert Technology
	Writing Callback Classes by Hand
	Writing Callbacks with Macros
	Callback Interface
	The Continuous Callback

	Example: Deriving the Simplex Callback ilolpex4.cpp
	Implementing Callbacks in the Callable Library
	Setting Callbacks
	Callbacks for Continuous and Discrete Problems
	Return Values for Callbacks

	Interaction Between Callbacks and ILOG CPLEX Parallel Optimizers
	Example: Using Callbacks lpex4.c
	Control Callbacks for IloCplex
	Example: Controlling Cuts iloadmipex5.cpp

	Goals and Callbacks: a Comparison
	Advanced Presolve Routines
	Introduction to Presolve
	Restricting Presolve Reductions
	Manual Control of Presolve
	Modifying a Problem

	Advanced MIP Control Interface
	Introduction to MIP Callbacks
	Heuristic Callback
	Cut Callback
	Branch Selection Callback
	Incumbent Callback
	Node Selection Callback
	Solve Callback

	Parallel Optimizers
	Threads
	Example: Threads and Licensing
	Threads and Performance Considerations

	Nondeterminism
	Clock Settings and Time Measurement
	Using Parallel Optimizers in the Interactive Optimizer
	Using Parallel Optimizers in the ILOG CPLEX Component Libraries
	Parallel Barrier Optimizer
	Concurrent Optimizer
	Parallel MIP Optimizer
	Memory Considerations and the Parallel MIP Optimizer
	Output from the Parallel MIP Optimizer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

