Stage

» Quantile regression by random projections
» Forecasting energy prices
» Involves statistics, probability theory, LP

» Implementation:

v

Taste for theory

v

Supported by grants from Siebel Energy Institute
and RTE

Could lead to CIFRE PhD with RTE
Hurry ifinterested

v

v

1/16

Mixed-Integer Nonlinear
Programming

Leo Liberti, CNRS LIX Ecole Polytechnique
liberti@lix.polytechnique.fr

PMA@MPRO

2/16

liberti@lix.polytechnique.fr

s
H

Mathematical Programming
Formulations

Ecﬁ
RiTecinae

MP: formal language for expressing optimization

|

Mathematical Programming

N

problems P

» Parameters p =problem input
p also called an instance of P

» Decision variables x: encode problem output
» Objective function min f(p, x)

» Constraints Vi <m g;(p,x) <0
f, g explicit mathematical expressions involving
symbols p, x

If an instance p is given (i.e. an assignment of numbers
to the symbols in p is known), write f(z), g;(x)

This excludes black-box optimization

|

MPRO — PMA —p. 19

» Main optimization problem classes

PoivTEaimaue

o)
en
2
g

BQP

gen..

pooling

MBQP
SOCP
SDP
. pooling
LF BLP
cNLP
E MILP ‘ graph drawing
: NLP
g
é cMINLP
MINLP
blackbox
finear nonlinear

MPRO — PMA —p. 20

i
3l

Notation

P: MP formulation with decision variables
r=(x1,...,Tp)

Solution: assignment of values to decision variables,
l.e. a vector v € R"

F(P) =set of feasible solutions = € R" such that
Vi <m (gi(r) <0)

G(P) =set of globally optimal solutions z € R”
st.xe F(P)andVy € F(P) (f(x) < f(y))

|

MPRO — PMA —p. 21

Citations

#

VTEGHNIQUE

f.ﬂ Williams, Model building in mathematical programming, 2002 T

o Liberti, Cafieri, Tarissan, Reformulations in Mathematical
Programming: a computational approach, in Abraham et al.
(eds.), Foundations of Comput. Intel., 2009

L |

MPRO — PMA —p. 22

| e
2

Haverly’s pooling problem

Description

-

Given an oil routing network with pools and blenders,
unit prices, demands and quality requirements:

< 2.59
o1 3% Sulphur . <2.5% Sulphur> <100
$6 $9

1% Sulphur
21
$16

N 2% Sulphur - <1.5% SU|phUL < 200
1 > =
$10 Y22 $15

Find the input quantities minimizing the costs and
satisfying the constraints: mass balance, sulphur
L balance, quantity and quality demands J

MPRO — PMA —p. 4

i
3l
L]

-
F-

Variables and constraints

Variables: input quantities x, routed quantities y,
percentage p of sulphur in pool

Every variable must be > 0 (physical quantities)

Bilinear terms arise to express sulphur quantities in
terms of p,y

Sulphur balance constraint: 3z11 + z21 = p(y11 + y12)
Quality demands:

pyi1 +2y21 < 2.5(y11 + y21)
py12 +2y22 < 1.5(y12 + y22)

Continuous bilinear formulation = nonconvex NLP

N

|

MPRO — PMA-p. 5

mg

POLVTECHNIQUE

=

Formulation

) 3% Sulphur < 2.5% Sulphur <100
$6 $9 ’

1% Sulphur
$16

1o 2% Sulphur - - <1.5% Sulphur < 200
$10 vz $15 "

min 6x11; + 16x21 + 10z12—

—9(y11 +y21) — 15(y12 + y22) cost
st x11 +®21 —y11 — Y12 = 0 mass balance
T12 — Y21 — y22 = 0 mass balance
y11 + y21 < 100 demand
Y12 + y22 < 200 demand
3211 + 221 — p(y11 + y12) = O sulphur balance

py11 + 2y21 < 2.5(y11 + y21) sulphur limit
py12 + 2y22 < 1.5(y12 + y22) sulphur limit

MPRO — PMA —p. 6

Network design

ECOLE
PoLYTECHNIQUE

f.’ Decide whether to install pipes or not (0/1 decision) T

#® Associate a binary variable z;; with each pipe

> i bijzig

Vi,j <2 y;; <2002;; pipe activation: if z;; = 0, no flow

L |

MPRO — PMA-p. 7

P The optimal network
3% Sulphur - $%92.5% Sulphur < 100

$6

1% Sulphur

x2o1 = 100 =100
$16 N
o < 1.5% Sulphur
212 = 100 27 Sulphur A -—>$j15 P < 200
$10 y22 = 100

® 211=0,291=0

® zi9o=1,299=1

L |

MPRO — PMA —p. 8

Pooling problem network

Inputs Poals Qutputs

o = O 4116

Formulation: sets and parameters

» Sets

> I:index set for input nodes

» P:index set for pool nodes

J:index set for output nodes

K: index set for flow attributes

Vp € P N~ (p): index set for inputs — p
» Vp € P N*(p): index set for p — outputs

v

v

v

» Parameters
> Vi € I1S; =supplyatnode i
» Vj € J D; = max. demand at node j
» Vi€ I,k € K A, = qty of attribute £ in input flow i
» Vj € J,k € K Lj;, = min qty attr k at output j
» Vj € J,k € K Uj, = max qty attr k at output j
> Vi € I ¢! = unit acquisition costs at input i
» Vjed cj = unit selling price at output j

5/16

Formulation: decision variables & objective

» Decision variables
» Vie I,p € Pz, =flowin pipe (4, p)
» Vp € P,j € Jy;p =Hlowin pipe (p, j)
» Vp € P,k € K g, = qty attr kin pool p
» Vj € J, k € K Qi = qty attr k in output j

> Obj ective function

min F'(z, y) = Z CiTip — Z C}']ypj

peEP peEP
ieN " (p) JENT(p)

6/16

Formulation: constraints
» Supply: Yiel Y x;, <S5

peP
€N~ (p)
» Max demand: Vj e J > y, <D,
epP
jeIJ)\ﬁL(p)

» Mass balance for flow across pools:
Vp - P Z Cl?ip = Z ypj
i€EN(p) JENT(p)
» Attr. gty balance input/pools:
Vpe Pke K Z Aigxip = Z QpkTip
tEN~(p) i€N~(p)
» Attr. qty balance pools/output:
VieJkeK > qutpi= Y, Qirty

peP pEP
JENT(p) JENT(p)

7/16

Generalized pooling problem

» Decision variables
» Viel,peP z;g = 1iff pipe (7, p) installed, 0 othw
» Vpe PjeJ zg;'t = 1iff pipe (p, j) installed, 0 othw
» Objective function

ENICTRED D NI Dl

peP peP
iEN~ (p) JENT(p)

» Constraints

|

Vpe Pyie N (p) zip < Sizig
VpePjENT(p) yp < Djzpst

8/16

Classification in systematics

> nvolve q,1.ip, GprYpj> QikYpj
Bilinear terms in equations: nonconvex 7 (FP)

v

= (nonconvex) NL.P

v

v

Generalized pooling problem: (nonconvex) MINLP

9/16

2

-

TEGINQUE

1.

2.

Citations

C. Haverly, Studies of the behaviour of recursion for the pooling
problem, ACM SIGMAP Bulletin, 1978

Adhya, Tawarmalani, Sahinidis, A Lagrangian approach to
the pooling problem, Ind. Eng. Chem., 1999

. Audet et al., Pooling Problem: Alternate Formulations and

Solution Methods, Manag. Sci., 2004

. Liberti, Pantelides, An exact reformulation algorithm for large

nonconvex NLPs involving bilinear terms, JOGO, 2006

. Misener, Floudas, Advances for the pooling problem: modeling,

global optimization, and computational studies,

Appl. Comput. Math., 2009

. D’Ambrosio, Linderoth, Luedtke, Valid inequalities for the

pooling problem with binary variables, LNCS, 2011 J

MPRO — PMA-p. 9

| e
2

Drawing graphs

At a glance

Which graph has most symmetries?

i
3l

°

Euclidean graphs

Graph G = (V, E), edge weight function d: £ — R T

E.g.V={1,2,3}, £ ={{1,2},{1,3},{2,3}}
dig = di1z3 = doz =1

Find positions z, = (z,1, z+2) of each v € V in the plane
S.t.:

V{u,v} € E ||xy — xyll2 = du

Generalization to R for K € N: 2, = (241, . .., Zyx)

|

MPRO — PMA —p. 12

P Application to proteomics

-

An artificial protein test set: lavor-11_7

|7

Embedding protein data in R’

lagr: four non-isometric embeddings

B

Sensor networks in 2D and 3D

|,

T
: 1
o8l : r’t,{
ﬁ* W -
o
7 b . 1
0.6 - 5.y, ¥ 3
£y ke T e
OO AN
- L8
¥ K
LA s

Formulation

: 2
min E tow
x,t

{uw}eE

Vu o} €E Y (wuk—2ar)? = diy+tu
k<K

E:
3

Citations

. Lavor, Liberti, Maculan, Mucherino, Recent advances on the

discretizable molecular distance geometry problem, Eur. J. of
Op. Res., invited survey

. Liberti, Lavor, Mucherino, Maculan, Molecular distance

geometry methods: from continuous to discrete, Int. Trans. in

Op. Res., 18:33-51, 2010

. Liberti, Lavor, Maculan, Computational experience with the

molecular distance geometry problem, in J. Pintér (ed.), Global
Optimization: Scientific and Engineering Case Studies, Springer,
Berlin, 2006

|

MPRO — PMA —p. 17

Reformulations

E
g:.
El

e

L.’

Exact reformulations

The formulation @ is an exact reformulation of P if T

3 an efficiently computable surjective map
¢ : F(Q) — F(P) s.t. ¢lg(q) is onto G(P)

Informally: any optimum of () can be mapped easily to an

optimum of P, and for any optimum of P there is a corresponding
optimum of ()

Construct @ so that it is easier to solve than P J

MPRO — PMA —p. 24

xy when x is binary

f.p If 3 bilinear term zy where x € {0,1}, y € [0, 1] T

We can construct an exact reformulation:
» Replace each term xy by an added variable w
» Adjoin Fortet’s reformulation constraints:

0
r+y—1
x

Y

& & & E
INIAN IV IV

s Get a MILP reformulation

» Solve reformulation using CPLEX: more effective
than solving MINLP

L |

MPRO — PMA —p. 25

66 99
P Proof

POLVTECHNIQUE

0.8

MPRO — PMA —p. 26

ECOLE
PoLYTECHNIQUE

s

L

X

°

Relaxations

The formulation @ is a relaxation of P if min fg(y) < min fp(x) () T

Relaxations are used to compute worst-case bounds to the optimum

value of the original formulation

Construct @ so that it is easy to solve
Proving (x) may not be easy in general

The usual strategy:

» Make sure y D 2 and F(Q) 2 F(P)

» Make sure Vz € F(P) (fo(y) < fr(x))
» Then it follows that Q is a relaxation of P
Example: convex relaxation

» F(Q) aconvex set containing F(P)

® fo aconvex underestimator of fp

» Then @ is a cNLP and can be solve efficiently

|

MPRO — PMA —p. 27

xy when z, y continuous
f.o Get bilinear term zy where z € [z, 2Y], y € [y%, yY] T

» We can construct a relaxation:
» Replace each term zy by an added variable w
» Adjoin following constraints:

2

:z:Ly + ny . xLyL
:L‘Uy + yU:C — nyU

Uy 4yt — 2Uy"

€ & & &
ININ IV IV

:L‘Ly + yU:U — :cLyU
#® These are called McCormick’s envelopes
Get an LP relaxation (solvable in polynomial time)

|

MPRO — PMA —p. 28

Software

ECOLE
POLVTECHNIQUE

N N

® ROSE (https://projects.coin-or.org/ROSE)

L |

MPRO — PMA —p. 29

https://projects.coin-or.org/ROSE

Citations

i
3l
L]

N

-
e
3

® McCormick, Computability of global solutions to factorable
nonconvex programs: Part | — Convex underestimating problems,

Math. Prog. 1976

® Liberti, Reformulations in Mathematical Programming: definitions
and systematics, RAIRO-RO 2009

L |

MPRO — PMA —p. 30

| e
2

Global Optimization methods

Deterministic / Stochastic

Exact = Deterministic

» “Exact” in continuous
space: c-approximate
(find solution within

pre-determined € distance) .)
from optimum in # Find solution with proba-

bility 1 in infinite time

Heuristic = Stochastic

obyj. fun. value)

»# For some problems, fi-
L nite convergence to opti-

mum (s = 0) J

MPRO — PMA —p. 32

Multistart

2

TECHNIQUE

-

The easiest GO method
1 ff=00
¥ = (00,...,00)
while — termination do
z’ = (random(), . .., random())
x = localSolve(P, z')
if fp(z) < f* then
f*« fp(x)
¥
9: end if
10: end while

Termination condition: e.g. repeat k times

L |

MPRO — PMA —p. 33

Six-hump camelback function

flz,y) = 42% — 212" + %x(i + xy — 4y? + 4y?

MNioamweo®
T
MiAioaMmweoo

Global optimum (CoUENNE)

-

|

MPRO — PMA —p. 34

Six-hump camelback function

flz,y) = 42% — 212" + %xG + xy — 4y? + 4y?

Multistart with IPOPT, £ =5

-

|

MPRO — PMA —p. 34

Six-hump camelback function

flz,y) = 42% — 212" + %xG + xy — 4y? + 4y?

Multistart with IPOPT, £ = 10

-

|

MPRO — PMA —p. 34

Six-hump camelback function

flz,y) = 42% — 212" + %xG + xy — 4y? + 4y?

Multistart with IPOPT, £ = 20

-

|

MPRO — PMA —p. 34

Six-hump camelback function

flz,y) = 42% — 212" + %xG + xy — 4y? + 4y?

Multistart with IPOPT, & = 50

-

|

MPRO — PMA —p. 34

Six-hump camelback function

flz,y) = 42% — 212" + %xG + xy — 4y? + 4y?

Multistart with SNOPT, k£ = 20

-

|

MPRO — PMA —p. 34

Citations

i
3l
L]

-
F-

® Schoen, Two-Phase Methods for Global Optimization, in
Pardalos et al. (eds.), Handbook of Global Optimization 2,
2002

Liberti, Kucherenko, Comparison of deterministic and
stochastic approaches to global optimization, ITOR 2005

L |

MPRO — PMA —p. 35

Section 2

Variable Neighbourhood Search

10/16

Variable Neighbourhood Search

» Applicable to discrete and continuous problems

» Uses any local search as a black-box

> Inits basic form, easy to implement

» Few configurable parameters

» Structure of the problem dealt with by local search

» Few lines of code around LS black-box

11/16

Variable Neighbourhood Search

random 1
""-\.__H_\--\-
\\
_Incul search 1
- I\ B
'|
["
¢ s ()
¥ * | 5 \.
J. l “ H
|
7 s [P
IU""J’ seirch 2 . local minimum 1,2 st
' . Y- g
K ' s
a ' =
random 2 - . k=1 ; =4
2 5 i ;
< 3 :
“ random 3 "'ﬂ’ i
- % p: s -_\\ i
: : o X
. oo .
- k=2 i !
\“‘x_h_ | 4
.
i
\
'
»

|
@

k=Kmax

local minimum 3
’

12/16

Variable Neighbourhood Search

I: Input: max no. k,,, of neighbourhoods

2: loop

k < 1,sample rnd. pt. 7,

while & < £, do
Ni(x*) neighb. of 2* s.t. Ni,(z*) D Nj_q(x*)
sample rnd. pt. Z from N (z*)

if 2’/ better than z* then
¥ a2, k<0
10: end if
11: k<+k+1
12: if termination condition, then exit
13: end while
14: end loop

13/16

Neighbourhood structure (continuous vars)

o k=2
No(z') e oy — fihcmen i
Na(a') |
Na(z’)

original domain (variable ranges)

14./16

Neighbourhood structure (binary vars)

v

y € {0, 1} binary vars

v

current incumbent y* € {0, 1}?

v

“neighbourhood” centered at y* of radius & € N:

STy > (—u) <k

i<p i<p

* __ * _
y; =0 y;, =1

v

Local Branching constraint

15/16

Citations

1. L.Liberti, M. Drazi¢, Variable Neighbourhood Search
for the Global Optimization of Constrained NLPs,
Proc. of the Global Optimization Workshop,
Almeria, Spain, 18-22 September 2005

2. L.Liberti, N. Mladenovi¢, G. Nannicini, A recipe for
finding good solutions to MINLPs, Mathematical
Programming Computation, 3:349-390, 2011

16/16

Ecﬁ
RiTecinae

spatial Branch-and-Bound (sBB)

i
3l

X

Generalities

Tree-like search
Explores search space exhaustively but implicitly

Builds a sequence of decreasing upper bounds and
increasing lower bounds to the global optimum

Exponential worst-case
Only general-purpose “exact” algorithm for MINLP

Since continuous vars are involved, should say “c-approximate”

Like BB for MILP, but may branch on continuous vars

Done whenever one is involved in a nonconvex term

|

MPRO — PMA —p. 37

Example

Original problem P

Example

Starting point x’

Example

Local (upper bounding) solution x*

Example

L v

L Convex relaxation (lower) bound f with | f* — f| > ¢ J

MPRO — PMA —p. 38

Example

C1! C

Branch atx = T into C', Cs J

MPRO — PMA —p. 38

Example

Chi Cy

2L | zY

Convex relaxation on C' : lower bounding solution &

|

MPRO — PMA —p. 38

.

|

Example

C1! Ch

localSolve

| U
xl | z

localSolve. from T : new upper bounding solution x*

|

MPRO — PMA —p. 38

|

Example

Cy Cs

ye?

i

|f* — f| > e:branchatz = %

Example

Cy/ Cs Oy

L zV
L Repeat on C3: get¥ = x* and |f* — f| < &, no more branching J

MPRO — PMA —p. 38

Example

ge?

2 | | zY

Repeat on Cy: f > f* (can'timprove z* in C3)

|

MPRO — PMA —p. 38

Example

8

2 | | zY

Repeat on Cy: f > f* (can'timprove z* in Cy)

|

MPRO — PMA —p. 38

Example

2 | | zY
L No more subproblems left, return ™ and terminate J

MPRO — PMA —p. 38

Ecﬁ
RiTecinae

2.
3.

Pruning

P was branched into Cy, Cy]
C1 was branched into C3, Cy

('3 was pruned by optimality
(x* € G(C3) was found)

. (9, Cy were pruned by bound

(lower bound for Cy worse than f*)

. No more nodes: whole space explored, z* € G(P)

Search generates a tree
Suproblems are nodes

Nodes can be pruned by optimality, bound or
infeasibility (when subproblem is infeasible)

Otherwise, they are branched |

MPRO — PMA —p. 39

Logical flow

2

TEGHNIQUE

-

Notation:
® C = P[z" 2Y]is P restricted to = € [z¥, zY]

® 2*: best optimum so far (start with 2* = o)

® (could be feasible or infeasible

» If C is feasible, we might find a glob. opt. 2’ of C or not
s If we find glob. opt. 2’ improving z*, update z* + 2’/
s Else, try and show no point in 7(C') improves x*

- Else branch C into two suproblems and recurse
on each
subproblems have smaller feasible regions = “easier”

s Else C'is infeasible, discard

L |

MPRO — PMA —p. 40

Correctness

2

TECHNIQUE

-

® Look at else cases:
» C infeasible = can discard C
» (feasible and no point F(C) improves z* = can
discard C

Branching = any subproblem that we’re NOT sure
could improve z* is considered again later

= If process terminates, we’ll have explored all those
parts of F(P) that can contain an optimum better
than z*

s If z* = o0, P infeasible, otherwise z* € G(P)
» Might fail to terminate if e = 0

L |

MPRO — PMA —p. 41

A recursive version

processSubProblem. (C):

1: if isFeasible(C) then
2: 2/ = globalopt(C')
3: if 2/ # oo then
4: if fp(2’) < fp(z*) then
5: update z* <— 2z’ // improvement
6: end if
7. else
8: if lowerBound(C') < fp(z*) — e then
9: Split [z%, Y] into two hyperrectangles [z*, 7], [z, 2V]
10: processSubProblem. (C [z, 7])
11: processSubProblem. (Cz, 7Y])
12: end if
13: endif

LM: end if J

MPRO — PMA —p. 42

Bad news

N N

1. If globalOpt(C') works on any problem, why not call
globalOpt(P) and be done with it?

2. For arbitrary C, isFeasible(C') is undecidable

3. How do we compute lowerBound(C')?

L |

MPRO — PMA —p. 43

i
3l

°

Upper bounds

Upper bounds: z* can only decrease

Computing the global optima for each subproblem
yields candidates for updating =*

As long as we only update =* when 2’ improves it, we
don’t need 2’ to be a global optimum

Any “good feasible point” will do
Specifically, use feasible local optima
= Replace globalOpt() by localSolve()

|

MPRO — PMA —p. 44

i
3l

:
H

Lower bound

Lower bounds: increase over D-chains T

Let Rp be a relaxation of P such that:
1. Rp also involves the decision variables of P
(and perhaps some others)
2. for any range I = [z, 2Y],
Rp[I] is a relaxation of P[I]
3. if I, I’ are two ranges
ID I — min Rp[I] < min Rp[I']
4. For any subproblem C of P,
finding z € G(R¢) or showing F(R¢) = @ is efficient
Specifically, T = localSolve(R¢) € G(R¢)

Define lowerBound(C) = fr.(7)

|

MPRO — PMA —p. 45

A decidable feasibility test
N

Processing C when it’s infeasible will make sBB slower but not
incorrect

= sBB still works if we simply never discard a potentially feasible C

Use a “partial feasibility test” isEvidentlyInfeasible(P)
»® |If isEvidentlyInfeasible(C') is t rue, then C' is guaranteed to be
infeasible, and we can discard it

» Otherwise, we simply don’t know, and we shall process it
Thm: If R is infeasible then C is infeasible
Proof: @ =F(Rc)2D F(C)=2

true if localSolve(R¢) = o0

isEvidentlyInfeasible(C') = _
false otherwise

|

MPRO — PMA —p. 46

Choice of best next node
f.o Instead recursion order, process first nodes which are T
more likely to yield a glob. opt.

® Advantages

» Glob. opt. of P found early
= easier to prune by bound

» |f sBB stopped early, more chance that z* € G(P)
|Indication of a “good subproblem”: if lower bound is lowest

Store subproblems in a min-priority queue Q, where
priority(C) is given by a lower bound for C'

L |

MPRO — PMA —p. 47

i
3l

°

o o o o

Software

COUENNE (open source, AMPL interface)

(projects.coin-or.org/Couenne)

GlobSol (open source, interval arithmetic bounds)
(http://interval.louisiana.edu/GLOBSOL/)

BARON (commercial, GAMS interface)
LGO (commercial, Lipschitz constant bounds)
LINDOGLOBAL (commercial)

Some research codes (aBB, 00OPS, LaGO, GLOP,
Coconut)

|

MPRO — PMA —p. 48

projects.coin-or.org/Couenne
http://interval.louisiana.edu/GLOBSOL/

e

Citations

N

Falk, Soland, An algorithm for separable nonconvex programming problems,
Manag. Sci. 1969

Horst, Tuy, Global Optimization, Springer 1990

Adjiman, Floudas et al., A global optimization method, «BB, for general
twice-differentiable nonconvex NLPs, Gomp. Chem. Eng. 1998

Ryoo, Sahinidis, Global optimization of nonconvex NLPs and MINLPs with
applications in process design, Comp. Chem. Eng. 1995

Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm
for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999

Nowak, Relaxation and decomposition methods for Mixed Integer Nonlinear
Programming, Birkhauser, 2005

Belotti, Liberti et al., Branching and bounds tightening techniques for nonconvex
MINLP, Opt. Meth. Softw., 2009

MPRO — PMA —p. 49

A
N N

To make an sBB work efficiently, you
need further tricks

I Expression trees

Representation of objective f and constraints g
Encode mathematical expressions in trees or DAGs

Eg QZ% + xr179.

+ +
/N / N\

A X A X
/N /N /3TN
r1 2 x1 X9 r1 2 €2

tree DAG

L |

MPRO — PMA —p. 51

Standard form

ECOLE
PoLYTECHNIQUE

f.o ldentify all nonlinear terms z; ® x;, replace them with a T
linearizing variable w;;

® Add a defining constraint w;; = x; ® x; to the formulation
Standard form:

min ¢ (z,w)
=
st. A(z,w) = b
wi; = x; @ x; for suitable 4, j
bounds & integrality constraints
w11 + Wiz Y +\ +
8 i +ri7 = wyy = 3 A X N /

/N, /N

Wi = 122 T1 2T X9 Wiy w12

MPRO — PMA —p. 52

ECOLE
PoLYTECHNIQUE

" »

X

Convex relaxation

Standard form: all nonlinearities in defining constraints

Each defining constraint w;; = x; ® x; is replaced by two convex
inequalities:

w;; < overestimator(z; ® z;)

w;; > underestimator(z; ® x;)

E.g. convex/concave over-, under-estimators for products z;x; where
€ [—1, 1] (McCormick’s envelope):

Convex relaxation is not the tightest possible, but it can be
constructed automatically J

MPRO — PMA —p. 53

Summary

#

E
-

H

El

o
|

ORIGINAL MINLP STANDARD FORM CONVEX RELAXATION
min, f(x) min w; min w;
g(x) <0 Aw =1 Aw =1
2l <z <V w; = wiwy V(i, 4, k) € Ter || McCormick’s relaxation
w; = ;‘j—; V(i j,k) € Tise Secant relaxation
w; = hyj(w;) V(i,7) € Tuy || vl <w <wY
wr <w< wY

® Easier to perform symbolic

) algorithms
Some variables may replaced by convex
) ® Linearizes nonlinear terms
be integral under- and concave
Adds linearizing variables

- . over-estimators
and defining constraints

L |

MPRO — PMA —p. 54

Each defining constraint

°

Ecg

POLVTECHNIQUE

=

Eg: conv. rel. of pooling problem
- <25% SulphurS 100

s.t.

3% Sulphur

m1(‘2% Sulphur

$10 Y22
6x11 + 16x27 + 10x120—

—9(y11 + y21) — 15(y12 + y22)
z11 + 221 — Y11 — Y12 = Olinear
z12 — Y21 — Y22 = O linear
y11 + y21 < 100 linear
Y12 + y22 < 200 linear
3z11 + 221 — p(y11 +y12) =0
py11 + 2y21 < 2.5(y11 + y21)
py12 + 2y22 < 1.5(y12 + y22)

min

s.t.

- S 1.5% Sulphur< 200
$15 -

cost

linear constraints

311 +x21 —w1 =0

w3 + 2y21 < 2.5(y11 + y21)
wyq + 2y22 < 1.5(y12 + y22)

w2 = Y11 + Y12

w1 = pw2
w3 = pyi1
wyq = pyY12

-

Replace nonconvex constr. w = uwv by McCormick’s envelopes:
w > max{ulv + vlu — uLol wWo +vVu —uVoV},
w < min{uYv + vlu — uYol ulo + vVu — uloV}

MPRO — PMA —p. 55

Variable ranges

2

TEGINQUE

-

Crucial property for sBB convergence: convex relaxation
tightens as variable range widths decrease

® convex/concave under/over-estimator constraints are
(convex) functions of 2%, zV

it makes sense to tighten ==, 2V at the sBB root node
(trading off speed for efficiency) and at each other node
(trading off efficiency for speed)

L |

MPRO — PMA —p. 56

OBBT and FBBT

f.p In sBB we need to tighten variable bounds at each nodeﬂ

® OBBT: for each variable z in P compute min and
max{x | conv. rel. constr.}, see e.g. [Caprara et al., MP 2009]

[0,0]
$» FBBT.:
propagation of intervals up and down constraint @
expression trees, with tightening at the root node /

Example: 521 — 22 = 0.
Up: ®:[5, 5] x[0,1]=]0, 5]; ©:[0, 5]—[0, 1]=[-1, 5]. @ [0, 1]
Root node tightening: [—1, 5] N [0,0] = [0, O]. /

Downwards: &:[0, 0]+[0, 1] =0, 1];

1:[0,1]/[5,5] =0, £] [5, 5] [0,1]

L’ lterating (up/tighten/down) k times yields [0, =]

|

MPRO — PMA —p. 57

2
2

°

Quadratic problems
All nonlinear terms are quadratic monomials T

Aim to reduce gap betwen the problem and its convex
relaxation

= replace quadratic terms with suitable linear
constraints (fewer nonlinear terms to relax)

Can be obtained by considering linear relations (called
reduced RLT constraints) between original and linearizing
variables

|

MPRO — PMA —p. 58

°

Reduced RLT Constraints I
N

For each k < n, let wy, = (wk1, ..., wkp)

Multiply Az = b by each x, substitute linearizing variables w;, get
reduced RLT constraint system (RRCS)

Vk <n (Awy = bxy,)

Vi, k < ndefine zx; = wi; — zixg, let zk = (zx1, -+ -y 2kn)

Substitute b = Az in RRCS, get Vi < n(A(wy, — xpz) = 0), i.e.
VE <n(Az, =0). Let B, N be the sets of basic and nonbasic
variables of this system

Setting z; = 0 for each nonbasic variable implies that the RRCS is
satisfied = It suffices to enforce quadratic constraints wy; = x;x; for
(i,k) € N (replace those for (i, k) € B with the linear RRCS)

|

MPRO — PMA —p. 59

Reduced RLT Constraints I1

s

rRLT constraint:

multiply x = 1 by y, get xy =y,
replace zy by w, get w =y
F(P) described linearly

]

MPRO — PMA —p. 60

n Reduced RLT Constraints 111
ﬁ.o If |E| = %n(n + 1) (all possible quadratic terms), get | B| T
fewer quadratic terms in reformulation

Otherwise, judicious choice of multiplier variable set
{z} | K € K} and multiplied linear equation constraint
subsystem must be performed.

L |

MPRO — PMA —p. 61

°

Citations

Sherali, Alameddine, A new reformulation-linearization technique for bilinear
programming problems, JOGO, 1991

Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm
for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999

Liberti, Reduction Constraints for the Global Optimization of NLPs, ITOR, 2004
Liberti, Linearity embedded in nonconvex programs, JOGO, 2005

Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs
involving bilinear terms, JOGO, 2006

Belotti, Liberti et al., Branching and bounds tightening techniques for nonconvex
MINLP, Opt. Meth. Softw., 2009

Sherali, Dalkiran, Liberti, Reduced RLT representations for nonconvex
polynomial programming problems, JOGO (to appear)

|

MPRO — PMA —p. 62

| e
2

The end

