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hnologyP.O.Box 5031, 2600 GA Delft, The NetherlandsE-mail: t.terlaky�twi.tudelft.nlA modern mathemati
al proof is not very di�erent from amodern ma
hine, or a modern test setup: the simple fun-damental prin
iples are hidden and almost invisible undera mass of te
hni
al details. Weyl, Hermann (1885 - 1955)Abstra
tIn this paper the duality theory of Linear Optimization (LO) is built up based on ideasemerged from interior point methods. All we need is elementary 
al
ulus. We will embedthe LO problem and its dual in a self{dual skew{symmetri
 problem. Most duality results,ex
ept the existen
e of a stri
tly 
omplementary solution, are trivial for this embeddingproblem. The existen
e of the 
entral path and its 
onvergen
e to the analyti
 
enter ofthe optimal fa
e will be proved. The proof is based on an elementary, 
areful analysis of aNewton step.We show also that if an almost optimal solution on the 
entral path is known, then asimple strongly polynomial rounding pro
edure provides a stri
tly 
omplementary optimalsolution.The all-one ve
tor is feasible for the embedding problem and it is an interior point on the
entral path. This way an elegant solution to the initialization of IPMs is obtained as well.This approa
h allows to apply any interior point method to the embedding problem while
omplexity results obtained for feasible interior point methods are preserved.Keywords: Linear optimization, interior-point methods, self-dual embedding, stri
tly 
om-plementary solution, strongly polynomial rounding pro
edure, polynomial 
omplexity.AMS Subje
t Classi�
ation: 90C051 Introdu
tionInterior point methods (IPMs) are among the most eÆ
ient methods for solving linear, and wide
lasses of 
onvex optimization problems. Sin
e the path-breaking work of Karmarkar [15℄, mu
hresear
h was invested in IPMs. Many algorithmi
 variants were developed for Linear Optimiza-tion (LO). The new approa
h for
ed to re
onsider all aspe
ts of optimization problems. Notonly the resear
h on algorithms and 
omplexity issues, but implementation strategies, duality1



theory and resear
h on sensitivity analysis got also a new impulse. After more than a de
adeof turbulent resear
h, the IPM 
ommunity rea
hed a good understanding of the basi
s of IPMs.Several books have been published in the last years that summarize and explore di�erent aspe
tsof IPMs. The seminal work of Nesterov and Nemirovskii [21℄ provides the most general frame forpolynomial IPMs for 
onvex programming. Den Hertog [11℄ gives a thorough survey of primaland dual path-following IPMs for linear and stru
tured 
onvex optimization problems. Jansen[12℄ dis
usses primal-dual target following algorithms for linear optimization and 
omplemen-tarity problems. Wright [31℄ also 
on
entrates on primal-dual IPMs, with spe
ial attention oninfeasible IPMs, numeri
al issues and lo
al, asymptoti
 
onvergen
e properties. The volume[28℄ 
ontains 13 survey papers that 
over almost all aspe
ts of IPMs, their extensions and someappli
ations. The book of Ye [34℄ is a ri
h sour
e of polynomial IPMs not only for LO, but for
onvex optimization problems as well. He extends the IPM theory to derive bounds and ap-proximations for 
lasses of non
onvex optimization problems as well. Finally, Roos, Terlaky andVial [25℄ present a thorough treatment of the IPM based theory { duality, 
omplexity, sensitivityanalysis { and wide 
lasses of IPMs for LO. This book provides the basis for our dis
ussions inthis paper.Before going in a detailed dis
ussion of our approa
h, some remarks are made on implemen-tations of IPMs and on extensions and generalizations.IPMs are implemented with great su

ess in re
ent years. It is now a 
ommon sense, thatfor large s
ale, sparse, stru
tured LO problems, IPMs are the method of 
hoi
e. All leadingoptimization software systems, like CPLEX, XPRESS-MP and OSL 
ontain implementations ofIPMs. The reader 
an �nd thorough dis
ussions of implementation strategies in the followingpapers: [2, 16, 18, 32℄. The books [25, 31, 34℄ devote also a 
hapter to that subje
t.Some of the earlier mentioned books [11, 12, 21, 28, 34℄ dis
uss extensions of IPMs for 
lassesof nonlinear problems. In re
ent years the majority of resear
h is devoted to IPMs for Semidef-inite Optimization (SDO). SDO has a wide range of interesting appli
ations not only in su
htraditional areas as 
ombinatorial optimization [1℄, but also in 
ontrol, and di�erent areas ofengineering, more spe
i�
ally stru
tural [8℄ and ele
tri
al engineering [30℄. For surveys on algo-rithmi
 and 
omplexity issues the reader may 
onsult [5, 6, 7, 4, 21, 22, 24, 27℄.Tea
hing Interior Point MethodsAfter years of intensive resear
h a deep understanding of IPMs is developed. There are easy tounderstand, simple variants of polynomial IPMs. The self-dual embedding strategy [13, 25, 35℄provides an elegant solution for the initialization problem of IPMs. It is also possible to buildup not only the 
omplete duality theory of [25℄ of LO, but to perform sensitivity analysis[12, 14, 20, 25℄ on the basis of IPMs. We also demonstrate that IPMs not only 
onverge toan optimal solution (if it exists), but after a �nite number of iterations also allow a stronglypolynomial rounding pro
edure [19, 25℄ to generate exa
t solutions. This all requires only theknowledge of elementary 
al
ulus and 
an be taught not only in a graduate, but at an advan
edundergraduate level as well. Our aim is to present su
h an approa
h, based on the one presentedin [25℄.The paper is stru
tured as follows. First, in Se
tion 2 we brie
y review the general LO problemin 
anoni
al form and dis
uss how Goldman and Tu
ker's [3, 29℄ self-dual and homogeneousmodel is derived. In Se
tion 3 the Goldman-Tu
ker theorem, i.e. the existen
e of a stri
tly
omplementary solution for the skew-symmetri
 self-dual model will be proved. Here su
h basi
IPM obje
ts, as the interior solution, the 
entral path, the Newton step, the analyti
 
enterof polytopes will be introdu
ed. We will show in Se
tion 3.6 that the 
entral path 
onvergesto a stri
tly 
omplementary solution, and in Se
tion 3.7 that an exa
t stri
tly 
omplementary2



solution for LO, or a 
erti�
ate for infeasibility 
an be obtained after a �nite number of iterations.Our theoreti
al development is summarized in Se
tion 4. Finally, in Se
tion 5 a general s
hemeof IPM algorithms is presented.NotationIRn+ will denote the set of nonnegative ve
tors in IRn. Throughout, we shall use k�kp (p 2f1; 2;1g) to denote the p-norm on IRn, with k�k denoting the Eu
lidean norm k�k2. E willdenote the identity matrix, e will be used to denote the ve
tor whi
h has all its 
omponentsequal to one. Given an n-dimensional ve
tor x, we denote by X the n�n diagonal matrix whosediagonal entries are the 
oordinates xj of x. If x, s 2 IRn then xT s denotes the dot produ
tof the two ve
tors. Further, xs, x� for � 2 IR and maxfx; yg will denote the ve
tors resultingfrom 
oordinatewise operations. For any matrix A 2 IRm�n, Aj denotes the j-th 
olumn of A.Furthermore, �(A) := nYj=1 kAjk:For any index set J � f1; 2; : : : ; ng, jJ j denotes the 
ardinality of J and AJ 2 IRm�jJj thesubmatrix of A whose 
olumns are indexed by elements in J . Moreover, if K � f1; 2; : : : ;mg,AKJ 2 IRjKj�jJj is the submatrix of AJ whose rows are indexed by elements in K.2 The Linear Optimization ProblemWe 
onsider the general LO problem (P ) and its dual (D) given in 
anoni
al form:(P ) minn
Tu : Au � b; u � 0o ;(D) maxnbT v : AT v � 
; v � 0o ;where A is an m � k matrix, b; v 2 IRm and 
; u 2 IRk. It is well known that by using onlyelementary transformations, any given LO problem 
an easily be transformed into a \minimal"
anoni
al form. These transformations 
an be summarized as follows:� introdu
e sla
ks in order to get equations (if a variable has a lower and an upper bound,then one or these bounds is 
onsidered as an inequality 
onstraint);� shift the variables with lower or upper bound so that the respe
tive bound be
omes 0 and,if needed repla
e the variable by its negative;� eliminate free variables;� use Gaussian elimination to transform the problem into a form where all equations havea singleton 
olumn (i.e. 
hoose a basis and multiply the equations by the inverse basis)while dependent 
onstraints are eliminated.The weak duality theorem for the 
anoni
al LO problem is easily proved.Theorem 1 Let us assume that u 2 IRk and v 2 IRm are feasible solutions for the primalproblem (P ) and dual problem (D), respe
tively. Then one has
Tu � bT v3



where equality holds if and only if(i) ui(
�AT v)i = 0 for all i = 1; � � � ; k and(ii) vj(Au� b)j = 0 for all j = 1; � � � ;m.1Proof: Using primal and dual feasibility of u and v we may write(
�AT v)Tu � 0 and vT (Au� b) � 0with equality if and only if (i), respe
tively (ii) holds. Summing up these two inequalities wehave the desired inequality0 � (
�AT v)Tu+ vT (Au� b) = 
Tu� bT v:The theorem is proved. 2One easily derives the following suÆ
ient 
ondition for optimality.Corollary 2 Let a primal and dual feasible solution u 2 IRn and v 2 IRm with 
Tu = bT v begiven. Then u is an optimal solution of the primal problem (P ) and v is an optimal solution ofthe dual problem (D). 2The Weak Duality Theorem 1 provides a suÆ
ient 
ondition to 
he
k optimality of a feasiblesolution pair. However, it does not guarantee that, in 
ase of feasibility, an optimal pair withzero duality gap always exists. This is the 
ontent of the so-
alled Strong Duality Theorem thatwe are going to prove in the next se
tions by using only simple 
al
ulus and basi
 
on
epts ofIPMs.As we are looking for optimal solutions of the LO problem with zero duality gap, we need to�nd a solution of the system formed by the primal and the dual feasibility 
onstraints and byrequiring that the dual obje
tive is at least as large as the primal one. By the Weak DualityTheorem 1 we know that any solution of this system is both primal and dual feasible with equalobje
tive values. Thus, by the 
orollary, they are optimal. By introdu
ing appropriate sla
kvariables the following inequality system is derived.Au� z = b; u � 0; z � 0AT v + w = 
; v � 0; w � 0bT v � 
Tu� � = 0; � � 0:By homogenizing, the Goldman-Tu
ker model [3, 29℄ is obtained.Au ��b �z = 0; u � 0; z � 0�AT v +�
 �w = 0; v � 0; w � 0bT v �
Tu �� = 0; � � 0; � � 0:This homogeneous system admits the trivial zero solution, but that has no value for our dis-
ussions. We are looking for some spe
i�
 nontrivial solutions of this Goldman-Tu
ker system.1These 
onditions are in general referred to as the 
omplementarity 
onditions. Using the 
oordinatewisenotation we may write u(
 � AT v) = 0 and v(Au � b) = 0. By the weak duality theorem 
omplementarity andfeasibility imply optimality. 4



Clearly any solution with � > 0 gives a primal and dual optimal pair (u� ; v� ) with zero dualitygap, hen
e � must be zero if � > 0. On the other hand, any optimal pair (u; v) with zero dualitygap is a solution of the Goldman-Tu
ker system with � = 1 and � = 0.One easily veri�es that if (v; u; �; z; w; �) is a solution of the Goldman-Tu
ker system then�� > 0 
annot hold. Indeed, if �� would be positive then the we would have0 < �� = �bT v � �
Tu = uTAv � zT v � uTAT v � wTu = �zT v � wTu � 0yielding a 
ontradi
tion.Finally, if the Goldman-Tu
ker system admits a feasible solution (�v; �u; �� ; �z; �w; ��) with �� = 0and �� > 0, then we may 
on
lude that either (P ), or (D), or both of them are infeasible. Indeed,�� = 0 implies that A�u � 0 and AT �v � 0. Further, if �� > 0 then we have either bT �v > 0, or
T �u < 0, or both. If bT �v > 0, then by assuming that there is a feasible solution u � 0 for (P )we have 0 < bT �v � uTAT �v � 0whi
h is a 
ontradi
tion, thus if bT �v > 0, then (P ) must be infeasible. Similarly, if 
T �u < 0,then by assuming that there is a dual feasible solution v � 0 for (D) we have0 > 
T �u � vTA�u � 0whi
h is a 
ontradi
tion, thus if 
T �u > 0, then (D) must be infeasible.Summarizing the results obtained so far, we have the following theorem.Theorem 3 Let a primal dual pair (P ) and (D) of LO problems be given. The following state-ments hold.1. Any optimal pair (u; v) of (P ) and (D) with zero duality gap is a solution of the 
orre-sponding Goldman-Tu
ker system with � = 1.2. If (v; u; �; z; w; �) is a solution of the Goldman-Tu
ker system then either � = 0 or � = 0,i.e. �� > 0 
annot happen.3. Any solution (v; u; �; z; w; �) of the Goldman-Tu
ker system, where � > 0 and � = 0, givesa primal and dual optimal pair (u� ; v� ) with zero duality gap.4. If the Goldman-Tu
ker system admits a feasible solution (�v; �u; �� ; �z; �w; ��) with �� = 0 and�� > 0, then we may 
on
lude that either (P ), or (D), or both of them are infeasible. 2Our interior point approa
h will lead us to a solution of the Goldman-Tu
ker system, whereeither � > 0 or � > 0, avoiding the undesired situation when � = � = 0.Before pro
eeding, we simplify our notations. Observe, that the Goldman-Tu
ker system 
anbe written in the following 
ompa
t formMx � 0; x � 0; s(x) =Mx; (1)where x = 0BBBB� vu� 1CCCCA ; s(x) = 0BBBB� zw�1CCCCA and M = 0BBBB� 0 A �b�AT 0 
bT �
T 01CCCCA5



is a skew-symmetri
 matrix, i.e. MT = �M . The Goldman-Tu
ker Theorem [3, 25, 29℄ saysthat system (1) admits a stri
tly 
omplementary solution. This theorem will be proven in thenext se
tion.Theorem 4 (Goldman, Tu
ker) There is a stri
tly 
omplementary feasible solution x of (1),i.e. for whi
h x+ s(x) > 0.Observe, that this theorem ensures that either 
ase 3 or 
ase 4 of Theorem 3 must o

ur whenone solves the Goldman-Tu
ker system of LO. This is in fa
t the strong duality theorem of LO.Theorem 5 Let a primal and dual LO problem be given. Exa
tly one of the following statementshold:� Either problem (P ), or (D), or both are infeasible.� (P ) and (D) are feasible and there are optimal solutions u� and v� su
h that
Tu� = bT v�.Proof: Theorem 4 implies that the Goldman-Tu
ker system of the LO problem admits astri
tly 
omplementary solution. Thus, in su
h a solution, either � > 0, and in that 
ase item 3of Theorem 3 implies the existen
e of an optimal pair with zero duality gap. On the other hand,when � > 0, item 4 of Theorem 3 proves that either (P ) or (D) or both are infeasible. 2Our next goal is to give an elementary 
onstru
tive proof of Theorem 4. When this proje
tis �nished, we have the 
omplete duality theory for LO.3 The skew-symmetri
 self-dual model3.1 Basi
 properties of the skew-symmetri
 self-dual modelFollowing the approa
h in [25℄ we make our skew-symmetri
 model (1) a bit more general. Thusour prototype problem is (SP ) min nqTx : Mx � �q; x � 0o ;where the matrix M 2 IRn�n is skew symmetri
 and q 2 IRn+. The set of feasible solutions of(SP ) is denoted by SP = fx : x � 0; Mx � �q g:By using the assumption that the 
oeÆ
ient matrix M is skew-symmetri
 and the right-hand-side ve
tor �q is the negative of the obje
tive 
oeÆ
ient ve
tor, one easily veri�es that the dualof (SP ) is equivalent to (SP ) itself, i.e. the problem (SP ) is self-dual. Due to the self-dualproperty the following result is trivial.Lemma 6 The optimal value of (SP ) is zero and (SP) admits the zero ve
tor x = 0 as a feasibleand optimal solution.Given (x; s(x)), where s(x) =Mx+ q we may writeqTx = xT (s(x)�Mx) = xT s(x) = eT (xs(x));6



i.e. for any optimal solution eT (x(s(x))) = 0 implying that the ve
tors x and s(x) are 
omple-mentary. For further use, the optimal set of (SP ) is denoted bySP � := fx : x � 0; s(x) � 0; xs(x) = 0g:A useful property of optimal solutions is given by the following lemma.Lemma 7 Let x and y be feasible for (SP). Then x and y are optimal if and only ifxs(y) = ys(x) = xs(x) = ys(y) = 0:Proof: Be
ause M is skew-symmetri
 we have (x � y)TM(x � y) = 0 whi
h implies that(x � y)T (s(x) � s(y)) = 0. Hen
e xT s(y) + yT s(x) = xT s(x) + yT s(y) and this vanishes if andonly if x and y are optimal. 2Thus, optimal solutions are 
omplementary in the general sense, i.e. they are not only 
om-plementary w.r.t. their own sla
k ve
tor, but 
omplementary w.r.t. the sla
k ve
tor for anyother optimal solution as well.All of the above results, in
luding to �nd a trivial optimal solution were straightforward for(SP ). The only nontrivial result what we need to prove is the existen
e of a stri
tly 
omple-mentary solution.First we prove the existen
e of a stri
tly 
omplementary solution if the so-
alled interior point
ondition holds.Assumption 8 (Interior Point Condition (IPC)) There exists an x0 2 SP su
h that(x0; s(x0)) > 0:Before pro
eeding, we show that this 
ondition 
an be assumed without loss of generality. Ifthe reader is eager to know the proof of the existen
e of a stri
tly 
omplementary solution forthe self dual model (SP ), he/she might temporarily skip the following subse
tion and return toit when all the results for the problem (SP ) are derived under the IPC.3.2 IPC for the Goldman-Tu
ker modelRe
all that (SP ) is just the abstra
t model of the Goldman-Tu
ker problem (1) and our goalis to prove Theorem 4. In order to apply the results of the 
oming se
tions we need to modifyproblem (1) so that the resulting equivalent problem satis�es the IPC.Self-dual embedding of (1) with IPCDue to the se
ond statement of Theorem 3, problem (1) 
annot satisfy the IPC. However, be
auseproblem (1) is just a homogeneous feasibility problem, it 
an be transformed into an equivalentproblem (SP ) whi
h satis�es the IPC. This happens by enlarging, i.e. embedding the problemand de�ning an appropriate nonnegative ve
tor q.Let us take x = s(x) = e. These ve
tors are positive, but they do not satisfy (1). Let usfurther de�ne the error ve
tor r obtained this way byr := e�Me; and let � := n+ 1:7



Then we have 0B� M r�rT 01CA0B� e11CA+0B� 0�1CA = 0B� Me+ r�rT e+ �1CA = 0B� e11CA :Hen
e, the following problem(SP ) min8><>:�# : �0B� M r�rT 0 1CA0B�x#1CA+0B� s�1CA = 0B� 0�1CA ; 0B�x#1CA ; 0B� s�1CA � 09>=>;satis�es the IPC be
ause for this problem the all-one ve
tor is feasible. This problem is in theform of (SP ), whereM = 0B� M r�rT 01CA ; �x = 0B�x#1CA and �q = 0B� 0�1CA :We 
laim that �nding a stri
tly 
omplementary solution to (1) is equivalent to �nding a stri
tly
omplementary optimal solution to problem (SP ). This 
laim is valid, be
ause (SP ) satis�esthe IPC thus, as we will see it admits a stri
tly 
omplementary optimal solution. Be
ause theobje
tive fun
tion is just a 
onstant multiple of #, this variable must be zero in any optimalsolution, by Lemma 6. This observation implies the 
laimed result.Con
lusion: Every LO problem 
an be embedded in a self-dual problem (SP ) of the form(SP ). This 
an be done in su
h a way that �x = e is feasible for (SP ) and �s(e) = e. Having astri
tly 
omplementary solution of (SP ) we either �nd an optimal solution of the embedded LOproblem or that the LO problem does not have an optimal solution.After this intermezzo, we return to the study of or our prototype problem (SP ) by assumingthe IPC.3.3 The level sets of (SP )Let x 2 SP and s = s(x) be a feasible pair. Due to self duality, the duality gap for this pair istwi
e the value qTx = xT s;however, for the sake of simpli
ity, the quantity qTx = xT s itself will be referred to as the dualitygap. First we show that the IPC implies the boundedness of the level sets.Lemma 9 Let the IPC be satis�ed. Then, for ea
h positive K, the set of all feasible pairs (x; s)su
h that xT s � K, is bounded.Proof: Be
ause the matrix M is skew-symmetri
, we may write0 = (x� x0)TM(x� x0) = (x� x0)T (s� s0)= xT s+ (x0)T s0 � xT s0 � sTx0:From here we get xjs0j � xT s0 + sTx0 = xT s+ (x0)T s0 � K + (x0)T s0:8



The proof is 
omplete. 2In parti
ular, this lemma implies that the set of optimal solutions SP � is bounded as well.23.4 Central path, optimal partitionFirst we de�ne the 
entral path [9, 10, 17, 26℄ of (SP ).De�nition 11 The set of solutionsf(x(�); s(x(�))) : Mx+ q = s; xs = �e; x > 0 for some � > 0gis 
alled the 
entral path of (SP ).If no 
onfusion is possible, instead of s(x(�)) the notion s(�) will be used. Now we are readyto present our main theorem. This in fa
t establishes the existen
e of the 
entral path. At thispoint our dis
ussion deviates from the one presented in [25℄. The proof presented here is moreelementary be
ause it does not make use of the logarithmi
 barrier fun
tion.Theorem 12 The next statements are equivalent.(i) (SP) satis�es the interior point 
ondition;(ii) For ea
h � > 0 there exists (x(�); s(�)) > 0 su
h thatMx+ q = sxs = �e:(iii) For w > 0 there exists (x; s) > 0 su
h thatMx+ q = sxs = w:The solution of these systems are unique.Before proving this highly important result we introdu
e the notion of optimal partition andpresent our main result. The partition (B;N) of the index set f1; :::; ng given byB : = fi : xi > 0; for some x 2 SP �g:N : = fi : s(x)i > 0; for some x 2 SP �g:is 
alled the optimal partition. By Lemma 7 the sets B and N are disjoint. Our main result saysthat the 
entral path 
onverges to a stri
tly 
omplementary optimal solution, and this resultproves that B [N = f1; :::; ng. When this result is established, the Goldman-Tu
ker Theorem4 for the general LO problem is proved be
ause we use the embedding method presented inSubse
tion 3.2.2The following result shows that the IPC not only implies the boundedness of the level sets, but the 
onverseis also true. We do not need this property in developing our main results, so this is presented without proof.Corollary 10 Let (SP ) be feasible. Then the following statements are equivalent:(i) the interior point 
ondition is satis�ed;(ii) the level sets of xT s are bounded;(iii) the optimal set SP � of (SP ) is bounded. 2 9



Theorem 13 If the IPC holds then there exists an optimal solution x� and s� = s(x�) of problem(SP ) su
h that x�B > 0, s�N > 0 and x� + s� > 0.First we prove Theorem 12.Proof: We start the proof by demonstrating that the systems in (ii) and (iii) may have atmost one solution. Be
ause (ii) is a spe
ial 
ase of (iii), it is suÆ
ient to prove uniqueness for(iii).Let us assume to the 
ontrary that for a 
ertain w > 0 there are two ve
tors (x; s) 6= (�x; �s) > 0solving (iii). Then using that the matrix M is skew-symmetri
, we may write0 = (x� �x)TM(x� �x) = (x� �x)T (s� �s) = Xxi 6=�xi(x� �x)i(s� �s)i:Due to xs = w = �x�s we have xi < �xi () si > �sixi > �xi () si < �si:By 
onsidering these sign properties one easily veri�es that the relation0 = Xxi 6=�xi(x� �x)i(s� �s)i < 0should hold, but this is an obvious 
ontradi
tion. As a result, we may 
on
lude that if thesystems in (ii) and (iii) admit a feasible solution, then su
h a solution is unique.The Newton stepIn proving the existen
e of a solution for the systems in (ii) and (iii) our main tool will be toanalyze the Newton step when applied to the nonlinear systems in (iii).3Let a ve
tor (x; s) > 0 with s = Mx + q be given. For a parti
ular w > 0 one will �nd thedispla
ements (�x;�s) that solve M(x+�x) + q = s+�s(x+�x)(s+�s) = w:This redu
es to M�x = �sx�s+ s�x+�x�s = w � xs:This equation system is still nonlinear. When we negle
t the se
ond order term �x�s theNewton equation M�x = �sx�s+ s�x = w � xs3Observe that no preliminary knowledge on any variants of Newton's method is assumed. We just de�ne andanalyze the Newton step for our parti
ular situation. 10



is obtained. This is a linear equation system and the reader easily veri�es that the Newtondire
tion �x is the solution of the nonsingular system of equations4(M +X�1S)�x = x�1w � s:When we perform a step in the Newton dire
tion with step-length �, for the new solutions(x+; s+) we havex+s+ := (x+ ��x)(s+ ��s) = xs+ �(x�s+ s�x) + �2�x�s= xs+ �(w � xs) + �2�x�s:This relation 
lari�es that the lo
al 
hange of xs is determined by the ve
tor w � xs. Lu
kilythis ve
tor is known in advan
e when we apply a Newton step, thus for suÆ
iently small � weknow pre
isely whi
h 
oordinates of xs will de
rease lo
ally (pre
isely those for whi
h the related
oordinate of w�xs is negative) and whi
h 
oordinate of xs will in
rease lo
ally (pre
isely thosefor whi
h the related 
oordinate of w � xs is positive).The equivalen
e of the three statements in Theorem 12.Clearly (ii) is a spe
ial 
ase of (iii) and the impli
ation (ii)! (i) is trivial.It only remains to be proved that (i), i.e. the IPC, ensures that for ea
h w > 0 the nonlinearsystem in (iii) is solvable. To this end, let us assume that an x0 2 SP with (x0; s(x0)) > 0 isgiven. We will use the notation w0 := x0s(x0). The 
laim will be proved in two steps.Step 1. For ea
h 0 < w < w 2 IRn the following two sets are 
ompa
t:Lw := fx 2 SP : xs(x) � wg andU(w;w) := fw : w � w � w; w = xs(x) for some x 2 Lwg:Let us �rst prove that Lw is 
ompa
t. For ea
h w > 0, the set Lw is obviously 
losed. In order toprove the boundedness of Lw �rst we observe that if 0 � x 2 Lw; s(x) � 0; then xT s(x) � eTw.Further, we have 0 = (x� x0)T (s� s0) = xT s+ (x0)T s0 � xT s0 � sTx0;whi
h in parti
ular implies that for ea
h 1 � j � n,xjs0j � xT s0 + sTx0 = xT s+ (x0)T s0 � eTw + (x0)T s0:The last relations demonstrate that Lw is bounded, thus 
ompa
t.By de�nition the set U(w;w) is bounded. We only need to prove that it is 
losed. Let a
onvergent sequen
e wi ! ŵ; wi 2 U(w;w); i = 1; 2; � � � be given. Then 
learly w � ŵ � wholds. Further, for ea
h i there exists xi 2 Lw su
h that wi = xis(xi). Be
ause the set Lw is
ompa
t, there is an x̂ 2 Lw and a 
onvergen
e subsequen
e xi ! x̂ (for ease of notation thesubsequen
e is denoted again the same way). Then we have x̂s(x̂) = ŵ, proving that U(w;w) is
losed, thus 
ompa
t.Observe, that for ea
h w 2 U(w;w) by de�nition we have an x 2 SP with w = xs(x). Dueto w > 0 this relation implies that x > 0 and s(x) > 0.Step 2. For ea
h ŵ > 0, the system Mx+ q = s, xs = ŵ, x > 0 has a solution.If we have ŵ = w0 = x0s(x0), then the 
laim is trivial. If ŵ 6= w0 then we de�ne w :=4Although it is not advised to use for numeri
al 
omputations, the Newton dire
tion 
an be expressed in the
losed form �x = (M +X�1S)�1(x�1w � s). 11



maxfŵ; w0g, � = kwk1 + 1, w := minfŵ; w0g and � = 12 miniwi. Then �e < ŵ < �e and�e < w0 < �e. Due to the last relation the set U := U(�e; �e) is nonempty and 
ompa
t. Wede�ne the nonnegative fun
tion d(w) : U ! IR asd(w) := kw � ŵk1:The fun
tion d(w) is 
ontinuous on the 
ompa
t set U , thus it attains its minimum~w := argminw2Ufd(w)g:If d( ~w) = 0, then ~w = ŵ and hen
e by de�nition there is an x 2 SP satisfying xs(x) = ŵ andthe 
laim is proved.If d( ~w) > 0 then we will show that a damped Newton step from ~w towards ŵ gives a pointw(�) 2 U su
h that d(w(�)) < d( ~w), 
ontradi
ting the fa
t that ~w minimizes d(w). Thissituation is illustrated on Figure 1.

-
6

wi
wwj

ŵ
w0 ~ww(�)

��e
�e ~w w(�)w(�)~w w

Figure 1: The situation when ŵ 6= ~w. A damped Newton step from ~w to ŵ is getting 
loser toŵ. For illustration three possible di�erent ~w values are 
hosen.The Newton step is well de�ned, be
ause for the ve
tor ~x 2 SP de�ning ~w the relations ~x > 0and ~s = s(~x) > 0 hold. A damped Newton step from ~w to ŵ with suÆ
iently small � results ina point 
loser (measured by d(�) = k � k1) to ŵ, be
ausew(�) = x(�)s(�) := (~x+ ��x)(~s+ ��s) = ~x~s+ �(ŵ � ~x~s) + �2�x�s= ~w + �(ŵ � ~w) + �2�x�s:This relation implies that w(�) � ŵ = (1� �)( ~w � ŵ) + �2�x�s;i.e. for � small enough5 all nonzero 
oordinates of jw(�) � ŵj are smaller than the respe
tive
oordinates of j ~w � ŵj. Hen
e, w(�) is getting 
loser to ŵ, 
loser than ~w. Due to �e < ŵ < �e5The reader easily veri�es that any value of� < minn ~wi � ŵi�xi�si : ( ~wi � ŵi)(�xi�si) > 0osatis�es the requirement. 12



this result also implies that for the 
hosen small � value the ve
tor w(�) stays in U . Thus ~w 6= ŵ
annot be a minimizer of d(w), whi
h is a 
ontradi
tion.The proof is 
omplete. 2Now we are ready to prove our main theorem, the existen
e of a stri
tly 
omplementarysolution, when the IPC holds.Proof of Theorem 13.Let �t ! 0 (t = 1; 2; � � �) be a monotone de
reasing sequen
e, hen
e for all t we have x(�t) 2 L�1e.Be
ause L�1e is 
ompa
t the sequen
e x(�t) has an a

umulation point x� and without loss ofgenerality we may assume that x� = limt!1x(�t). Let s� := s(x�). Clearly x� is optimal be
ausex�s� = limt!1x(�t)s(x(�t)) = limt!1�te = 0:We still have to prove that (x�; s(x�)) is stri
tly 
omplementary, i.e. x� + s� > 0. LetB = fi : x�i > 0g and N = fi : s�i > 0g. Using that M is skew symmetri
, we have0 = (x� � x(�t))T (s� � s(�t)) = x(�t)T s(�t)� x�T s(�t)� x(�t)T s�;whi
h, by using that x(�t)is(�t)i = �t, 
an be rewritten asXi2B x�i s(�t)i +Xi2N s�ix(�t)i = n�tXi2B x�ix(�t)i +Xi2N s�is(�t)i = n;By taking the limit as �t goes to zero we obtain thatjBj+ jN j = n;i.e. (B;N) is a partition of the index set. Hen
e (x�; s(x�)) is a stri
tly 
omplementary solution.The proof of Theorem 13 is 
omplete. 2As we mentioned earlier, this result is powerful enough to prove the strong duality theoremof LO in the strong form, in
luding stri
t 
omplementarity, i.e. the Goldman-Tu
ker Theorem4 for SP and for (P ) and (D).Our next step is to prove that the a

umulation point x� is unique.3.5 Convergen
e to the analyti
 
enterIn this subse
tion we prove that the 
entral path has only one a

umulation point, i.e. it
onverges to a unique point, the so-
alled analyti
 
enter [26℄ of the optimal set SP �.De�nition 14 Let �x 2 SP �, �s = s(�x) maximize the produ
tYi2B xi Yi2N siover x 2 SP �. Then �x is 
alled the analyti
 
enter of SP �.13



Theorem 15 The limit point x� of the 
entral path is the analyti
 
enter of SP �.Proof: The same way as in the proof of Theorem 13 we deriveXi2B �xix�i +Xi2N �sis�i = n:Now we apply the arithmeti
-geometri
-mean inequality to derive Yi2B �xix�i Yi2N �sis�i ! 1n � 1n  Xi2B �xix�i +Xi2N �sis�i ! = 1:Hen
e, Yi2B �xi Yi2N �si � Yi2B x�i Yi2N s�iproving that x� is the analyti
 
enter of SP �. The proof is 
omplete. 23.6 Identifying the optimal partitionThe 
ondition numberIn order to give bounds on the size of the variables along the 
entral path we need to �nd aquantity that in some sense 
hara
terizes the set of optimal solutions. For an optimal solutionx 2 SP � we have xs(x) = 0; and x+ s(x) � 0:Our next question is about the size of the nonzero 
oordinates of optimal solutions. Followingthe de�nitions in [25, 34℄ we de�ne a 
ondition number of the problem (SP ) whi
h 
hara
terizesthe magnitude of the nonzero variables on the optimal set SP �.De�nition 16 Let us de�ne�x := mini2B maxx2SP �fxig �s := mini2N maxx2SP �fs(x)ig:Then the 
ondition number of (SP ) is de�ned as� = minf�x; �sg = mini maxx2SP �fxi + s(x)ig:To determine the 
ondition number � is in general more diÆ
ult then to solve the optimizationproblem itself. However, we 
an give an easily 
omputable lower bound for �. This bounddepends only on the problem data.Lemma 17 (Lower bound for �:) If M and q are integral6 and all the 
olumns of M arenonzero, then � � 1�(M) ;where �(M) = Qni=1 kMik.6If the problem data is rational, then by multiplying by the least joint multiple of the denominators anequivalent LO problem with integer data is obtained. 14



Proof: The proof is based on Cramer's rule and on the estimation of determinants by usingHadamard's inequality. Let (x; s) be an optimal solution. Without loss of generality we mayassume that the 
olumns of the matrixD = (�M;E) 
orresponding to the nonzero 
oordinates of(x; s) are linearly independent. If they are not independent, then by using Gaussian eliminationwe 
an redu
e the solution to get one with linearly independent 
olumns. Let us denote this indexset by J . Further, let the index set K be su
h that DKJ is a nonsingular square submatrix of D.Su
h K exists, be
ause the 
olumns in DK are linearly independent. Now we have DKJxJ = qK ,and hen
e, by Cramer's rule, xj = det�D(j)KJ�det (DKJ) ; 8j 2 J;where D(j)KJ denotes the matrix obtained when the j-th 
olumn in DKJ is repla
ed by qK .Assuming that xj > 0 then, be
ause the data is integral, the numerator in the quotient givenabove is at least one. Thus we obtain xj � 1det(DKJ ) . By Hadamard's inequality7 the lastdeterminant 
an be estimated by the produ
t of the norm of its 
olumns, what 
an further bebounded by the produ
t of the norms of all the 
olumns of the matrix M . 2The 
ondition that none of the 
olumns of the matrixM is a zero ve
tor is not restri
tive. Forthe general problem (SP ) a zero 
olumn Mi would imply that si = qi for ea
h feasible solution,thus the pair (xi; si) 
ould be removed. More important is that for our embedding problem(SP ) none of the 
olumns of the 
oeÆ
ient matrix0B� M r�rT 01CAis zero. By de�nition we have r = e�Me nonzero, be
ause eT r = eT e� eTMe = n. Moreover,if Mi = 0, then by using that the matrix M is skew symmetri
 we have ri = 1, thus the i-th
olumn of the 
oeÆ
ient matrix is again nonzero.The size of the variables along the 
entral pathNow, by using the 
ondition number � we are able to derive lower and upper bounds for thevariables along the 
entral path. Let (B;N) be the optimal partition of the problem (SP ).Lemma 18 For ea
h positive � one hasxi(�) � �n i 2 B; xi(�) � n�� i 2 N;si(�) � n�� i 2 B; si(�) � �n i 2 N:Proof: Let (x�; s�) be optimal, then by orthogonality we have(x(�)� x�)T (s(�)� s�) = 0;x(�)T s� + s(�)Tx� = n�;x(�)is�i � x(�)T s� � n�; 1 � i � n:7Hadamard's inequality: Let G be a nonsingular n� n matrix. Then the inequalitydet(G) � nYi=1 kGikholds. 15



Sin
e s�i � � and xi(�)si(�) = �, for i 2 N , we havexi(�) � n�s�i � n�� and si(�) � �n; i 2 N:The proofs of the other bounds are analogous. 2Identifying the optimal partitionThe bounds presented in Lemma 18 make it possible to identify the optimal partition (B;N),when � is suÆ
iently small. We just have to 
al
ulate the � value that ensures that the 
o-ordinates going to zero are 
ertainly smaller than the 
oordinates that 
onverge to a positivenumber.Corollary 19 If we have a 
entral solution x(�) 2 SP with� < �2n2then the optimal partition (B;N) 
an be identi�ed.The results of Lemma 18 and Corollary 19 
an be generalized to the situation when a ve
tor(x; s) is not on, but just in a 
ertain neighborhood of the 
entral path. In order to keep ourdis
ussion short, we do not go in those details. The interested reader is referred to [25℄.3.7 Rounding to an exa
t solutionOur next goal is to �nd a stri
tly 
omplementary solution. This 
ould be done by moving alongthe 
entral path as � ! 0. Here we show that we do not have to do that, we 
an stop ata suÆ
iently small � > 0, and round o� the 
urrent \almost optimal" solution to a stri
tly
omplementary optimal one. We need some new notation. Let the optimal partition be denotedby (B;N), let ! := kMk1 = max1�i�nPnj=1 jMij j and � := �(M) = Qni=1 kMik.Lemma 20 Let M and q be integral and all the 
olumns of M be nonzero. If (x; s) :=(x(�); s(x(�))) is a 
entral solution withxT s = n� < �2n 32 (1 + !)2� ; whi
h 
ertainly holds if n� � 1n 32 (1 + !)2�3 ;then by a simple rounding pro
edure a stri
tly 
omplementary optimal solution 
an be found inO(n3) arithmeti
 operations.Proof: Let x := x(�) > 0 and s := s(x) > 0 be given. Let we simply set the small variables xNand sB to zero. Then we will 
orre
t the so 
reated error and estimate the size of the 
orre
tion.For (x; s) we have MBBxB +MBNxN + qB = sB ; (2)but by rounding xN and sB to zero the error q̂B = sB �MBNxN o

urs. Similarly, we haveMNBxB +MNNxN + qN = sN (3)but by rounding xN and sB to zero the error q̂N = �MNNxN o

urs.16



Let us �rst estimate q̂B and q̂N by using the results of Lemma 18. For q̂B we havekq̂Bk � pnkq̂Bk1 � pnksB �MBNxNk1 � pnk(E;�MBN )k1 
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1� pn(1 + !)n�� = n 32 �(1+!)� : (4)We give a bound for the in�nity norm of q̂N as well:kq̂Nk1 = k �MNNxNk1 � kMNNk1kxNk1 � !n�� : (5)Now we are going to 
orre
t these errors by adjusting xB and sN . Let us denote the 
orre
tionby � for xB and by � for sN , further let (x̂; ŝ) be given by x̂B := xB + � > 0, x̂N = 0, ŝB = 0and ŝN := sN + � > 0.If we know the 
orre
tion � of xB , then from equation (3) the ne
essary 
orre
tion � of sN
an easily be 
al
ulated. Equation (2) does not 
ontain sN , thus by solving the equationMBB� = q̂Bthe 
orre
ted value x̂B = xB � � 
an be obtained.First we observe that the equation MBB� = q̂B is solvable, be
ause any optimal solution x�satis�es MBBx�B = �qB, thus we may writeMBB� = MBB(xB � x�B)= �qB + sB �MBNxN + qB= sB �MBNxN = q̂B :This equation system 
an be solved by Gaussian elimination. The size of � obtained this way
an be estimated by applying Cramer's rule and Hadamard's inequality, the same way as wehave estimated � in Lemma 17. If MBB is zero, then we have qB = 0 and MBNxN = sB, thusrounding xN and sB to zero does not produ
e any error here, hen
e we 
an 
hoose � = 0. IfMBB is not the zero matrix, then let MBB be a maximal nonsingular square submatrix of MBBand let �qB be the 
orresponding part of q̂B. By using the upper bounds on xN and sB by Lemma18 we have j�ij = jdet(M (i)BB)jjdet(MBB)j � jdet(M (i)BB)j � k�qBk jdet(MBB)j � n 32�(1 + !)� �;where (4) was used in the last estimation. This result, due to kxBk1 � �n , implies that x̂B =xB + � > 0 
ertainly holds if n� < �2n 32 (1+!)� .Finally, we simply 
orre
t sN by using (3), i.e. we de�ne � := �q̂N �MNB�. We still mustensure that ŝN := sN � q̂N �MNB� > 0:Using again the bounds given in Lemma 17, the bound (5) and the estimate on �, one easilyveri�es thatkq̂N+MNB�k1 � k(E;MNB)k1 
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1 � (1+!)max(!n�� ; n 32�(1 + !)�� ) = n 32�(1 + !)2�� :17



Thus, due to ksNk1 � �n , the ve
tor ŝN is 
ertainly positive if�n > n 32�(1 + !)2�� :This is exa
tly the �rst inequality given in the lemma. The se
ond inequality follows by observingthat �� � 1, by Lemma 17.The proof is 
ompleted by noting that the solution of an equation system by using Gaussianelimination, some matrix-ve
tor multipli
ations and ve
tor-ve
tor summations, all with a dimen-sion not ex
eeding n, is needed to perform our rounding pro
edure. Thus the 
omputational
omplexity of our rounding pro
edure is at most O(n3). 2Note, that this rounding results 
an also be generalized to the situation when a ve
tor (x; s) isnot on, but just in a 
ertain neighborhood of the 
entral path. For details the reader is referredagain to [25℄.84 Summary of the theoreti
al resultsLet us return to our general LO problem in 
anoni
al form(P ) minn
Tu : Au� z = b; u � 0; z � 0o(D) maxnbT v : AT v + w = 
; v � 0; w � 0o ;where the sla
k variables are already in
luded in the problem formulation. In what follows were
apitulate the results obtained so far.� In Se
tion 2 we have seen that to solve the LO problem it is suÆ
ient to �nd a stri
tly
omplementary solution to the Goldman-Tu
ker modelAu ��b �z = 0�AT v +�
 �w = 0bT v �
Tu �� = 0v � 0; u � 0; � � 0; z � 0; w � 0; � � 0:� This homogeneous system always admits the zero solution, but we need a solution forwhi
h � + � > 0 holds.� If (u�; z�) is optimal for (P ) and (v�; w�) for (D) then (v�; u�; 1; z�; w�; 0) is a solution forthe Goldman-Tu
ker model with the requested property � + � > 0. See Theorem 3.� Any solution of the Goldman-Tu
ker model (v; u; �; z; w; �) with � > 0 yields an optimalsolution pair (s
ale the variables (u; z) and (v; w) by 1� ) for LO. See Theorem 3.8This result makes 
lear that when one solves an LO problem by using an IPM, the iterative pro
ess 
an bestopped at a suÆ
iently small value �. At that point a stri
tly 
omplementary optimal solution 
an easily beidenti�ed. 18



� Any solution of the Goldman-Tu
ker model (u; z; v; w; �; �) with � > 0 provides a 
erti�
ateof primal or dual infeasibility. See Theorem 3.� If � = 0 in every solution (v; u; �; z; w; �) then (P ) and (D) have no optimal solutions withzero duality gap.� The Goldman-Tu
ker model 
an be transformed into a skew-symmetri
 self-dual problem(SP ) satisfying the IPC. See Se
tion 3.2.� If problem (SP ) satisfy the IPC then{ the 
entral path exists (see Theorem 12);{ the 
entral path 
onverges to a stri
tly 
omplementary solution (see Theorem 13);{ the limit point of the 
entral path is the analyti
 
enter of the optimal set (seeTheorem 15);{ if the problem data is integral and a solution on the 
entral path with a suÆ
ientlysmall � is given, then the optimal partition (see Corollary 19) and an exa
t stri
tly
omplementary optimal solution (see Lemma 20) 
an be found.� These results give a 
onstru
tive proof of Theorem 4.� This way, as we have seen in Se
tion 2, the Strong Duality Theorem 5 is proved.The above summary shows that we have 
ompleted our proje
t. The duality theory of LO isbuilt up by using only elementary 
al
ulus and fundamental 
on
epts of IPMs.In the rest of the paper a generi
 IP algorithm is presented.5 A general s
heme of IP algorithmsIn this se
tion a glimpse of the main elements of IPMs is given. We keep on working with ourmodel problem (SP ). In Se
tions 2 and 3.2 we have shown that a general LO problem 
an betransformed into a problem of the form (SP ), and that problem satis�es the IPC. Some notes aredue to the linear algebra involved. We know that the size of the resulting embedding problem(SP ) is more than doubled 
omparing to the size of the original LO problem. In spite of the sizein
rease the linear algebra 
an be organized so that the 
omputational 
ost of an IPM iterationstays essentially the same.Let us 
onsider the problem (
f. page 7)(SP ) min8><>:�# : �0B� M r�rT 01CA0B�x#1CA+0B�s�1CA = 0B�0�1CA ; 0B�x#1CA ; 0B�s�1CA � 09>=>; ; (6)where r = e�Me, � = n+1 and the matrix M is given by (1). This problem satis�es the IPC,be
ause the all one ve
tor (x0; #0; s0; �0) = (e; 1; e; 1) is a feasible solution, moreover it is alsoon the 
entral path by taking � = 1. In other words, it is a positive solution of the equation
19



system �0B� M r�rT 01CA0B�x#1CA+0B�s�1CA = 0B�0�1CA ; 0B�x#1CA ; 0B�s�1CA � 00B�x#1CA0B�s�1CA = 0B��e�1CA ; (7)whi
h de�nes the 
entral path of problem (SP ). As we have seen, for ea
h � > 0, this systemhas a unique solution. However, in general this solution 
annot be 
al
ulated exa
tly. Thereforewe are making Newton steps to get approximate solutions.Newton step:Let us assume that an interior point (x; #; s; �) > 0 is given. We want to �nd the solution of (7)for a given � � 0, in other words we want to determine the displa
ements(�x;�#;�s;��)so that �0B� M r�rT 01CA0B�x+�x#+�#1CA+0B�s+�s� +��1CA = 0B�0�1CA ; 0B�x+�x#+�#1CA ; 0B�s+�s� +��1CA � 00B�x+�x#+�#1CA0B�s+�s� +��1CA = 0B��e�1CA :By negle
ting the se
ond order terms �x�s and �#��, and the nonnegativity 
onstraints, theNewton equation system is obtained (
f. page 10)�M�x �r�# +�s = 0rT�x +�� = 0s�x +x�s = �e� xs��# +#�� = �� #�: (8)We start by making some observations. For any ve
tor (x; #; s; �) that satis�es the equality
onstraints of (6) we have xT s+ #� = #�:Applying this to the solution obtained after making a Newton step we may write(x+�x)T (s+�s) + (#+�#)T (� +��) = (#+�#)�:By rearranging the terms we have(xT s+ #�) + (�xT�s+�#��) + (xT�s+ sT�x+ #�� + ��#) = #�+�#�:As we mentioned above, the �rst term in the left hand side sum equals to #�, while from (8) wederive that the se
ond sum is zero. From the last equations of (8) one easily derives that the20



third expression equals to �(n+1)�xT s�#� = ���#�. This way the equation ���#� = �#�is obtained, i.e. an expli
it expression for �#,�# = �� #is derived. This value 
an be substituted in the last equation of (8) to derive the solution�� = �# � � � �(�� #)# ;i.e. �� = �(1� �)# :On the other hand, �s 
an be expressed from the third equation of (8) as�s = �X�1e� s�X�1S�x;where X and S are the diagonal matri
es 
ontaining the 
oordinates of the ve
tors x and s intheir respe
tive diagonals. Finally, substituting all these values in the �rst equation of (8) wehave M�x+X�1S�x = �X�1e� s� (�� #)r;i.e. �x is the unique solution of the positive de�nite system9(M +X�1S)�x = �X�1e� s� (�� #)r:Having determined the displa
ements, we 
an make a (possibly damped) Newton step toupdate our 
urrent iterate: x : = x+�x# : = #+�# = �s : = s+�s� : = � +��:We have seen that the 
entral path is our guide to a stri
tly 
omplementary solution. However,due to the nonlinearity of the equation system determining the 
entral path, we 
annot stay onthe 
entral path with our iterates, regardless that our initial interior point is perfe
tly 
entered.For this reason we need some 
entrality, or with other words proximity, measures that enable usto 
ontrol and keep our iterates in an appropriate neighborhood of the 
entral path.Proximity measuresLet the ve
tors �x and �s be 
omposed from x and #, and from s and � respe
tively. Note thaton the 
entral path all the 
oordinates of the ve
tor �x�s are equal. This observation indi
atesthat the proximity measure Æ
(�x�s) := max(�x�s)min(�x�s) ;9Observe, that although the dimensions of problem (SP ) are larger than problem (SP ), to determine theNewton step for both systems requires essentially the same 
omputational e�ort.Note also, that the spe
ial stru
ture of the matrix M (see (1)) 
an be utilized when one solves this positivede�nite linear system. For details the reader is referred to [2, 25, 31, 35℄.21



where max(�x�s) and min(�x�s) denotes the largest and smallest 
oordinate of the ve
tor �x�s, is anappropriate measure of 
entrality. In the literature of IPMs various 
entrality measures weredeveloped (see the books [11, 12, 25, 31, 35℄). Here we present just another one, extensivelyused in [25℄: Æ0(�x�s; �) := 12 




� �x�s� � 12 � � ��x�s� 12 




 :Both of these proximity measures allow us to design polynomial IPMs.Generi
 Interior Point Newton AlgorithmInput:A proximity parameter �;an a

ura
y parameter " > 0;a variable damping fa
tor �;update parameter �; 0 < � < 1;(�x0; �s0), �0 � 1 s.t. Æ(�x0�s0;�0) � �.begin�x := �x0; �s := �s0; � := �0;while (n+ 1)� � " dobegin� := (1� �)�;while Æ(�x; �s;�) � � dobegin�x := �x+ ���x;�s := �s+ ���s;endendendThe following 
ru
ial issues remain: how to 
hoose the 
entrality parameter �, how to update� and how to damp the Newton step when needed.To 
on
lude our dis
ussions, three sets of parameters are presented that ensure that theresulted IPMs are polynomial. The proofs of 
omplexity 
an e.g. be found in [25℄. Re
all that(SP ) admits the all one ve
tor as a perfe
tly 
entered initial solution with � = 1.The �rst algorithm is a primal-dual logarithmi
 barrier algorithm with full Newton steps,studied e.g. in [25℄. This IPM enjoys the best 
omplexity known to date. Let us make thefollowing 
hoi
e:� Æ(�x�s; �) := Æ0(�x�s; �), this measure is zero on the 
entral path;� �0 := 1;� � := 12pn+1 ;� � = 1p2 ;� (��x;��s) is the solution of 8;� � = 1. 22



Theorem 21 (Theorem II.52 in [25℄) With the given parameter set the full step Newtonalgorithm requires not more than �2pn+ 1 log n+ 1" �iterations to produ
e a feasible solution (�x; �s) for (SP ) su
h that Æ0(�x�s; �) � � and (n+1)# � ":The se
ond algorithm is a large update primal-dual logarithmi
 barrier algorithm, studied alsoe.g. in [25℄. Among our three algorithms, this is the most pra
ti
al. Let us make the following
hoi
e:� Æ(�x�s; �) := Æ0(�x�s; �), this measure is zero on the 
entral path;� �0 := 1;� 0 < � < n+1n+1+pn+1 ;� � = pR2p1+pR , where R = �pn+11�t ;� (��x;��s) is the solution of 8;� � is the result of a line sear
h, when along the sear
h dire
tion the primal-dual logarithmi
barrier fun
tion �xT �s� (n+ 1) n+1Xi=1 log �xi�siis minimized.Theorem 22 (Theorem II.74 in [25℄) With the given parameter set the large update primal-dual logarithmi
 barrier algorithm requires not more than266661� 2666620�1 +s�pn+ 11� t 1A437777 log n+ 1" 37777iterations to produ
e a feasible solution (�x; �s) for (SP ) su
h that Æ0(�x�s; �) � � and (n+1)# � ":When we 
hoose � = 12 , then the total 
omplexity be
omes O �n log n+1" �, while the 
hoi
e� = Kpn+1 , with any �xed positive value K gives O �pn log n+1" � 
omplexity.Other versions of this algorithm were studied in [23℄, where the analysis of large updatemethods was based purely on the use of the proximity Æ0(�x�s; �).The last algorithm is the Dikin step algorithm studied in [25℄. This is one of the simplestIPMs, with an extremely elementary 
omplexity analysis. The prize for simpli
ity is that thepolynomial 
omplexity result is not the best possible. Let us make the following 
hoi
es:� Æ(�x�s; �) := Æ
(�x�s), this measure is always larger than or equal to 1;� �0 := 0, this implies that � stays equal to zero, thus � is irrelevant;� � = 2;� (��x;��s) is the solution of (8) when the right hand sides of the last two equations arerepla
ed by �x2s2k�x�sk and � #�k�x�sk , respe
tively;23



� � = 12pn+1 .Theorem 23 (Theorem I.27 in [25℄) With the given parameter set the Dikin step algorithmrequires not more than �2(n+ 1) log n+ 1" �iterations to produ
e a feasible solution (�x; �s) for (SP ) su
h that Æ
(�x�s) � 2 and (n+ 1)# � ":A
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