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Scheduling
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® Schedule n tasks on m machines such that the sum of
completion times is minimum

e

Scheduling = assignment + ordering

# Additional constraints: given precedence on tasks,
delays under certain circumstances, time windows. . .

# Many industrial applications
L’ Similar problems arise in project management J
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Network design

® Break an existing telecom network such that the subnetworks
have as few interconnections as possible

# Happens when a huge telecom giant wants to sell off or
sublet some subnetworks

# Associate a variable to each vertex ¢ and partition h, arc
L presence can be modelled by quadratic term z;;,2 ;4 J
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Shortest paths
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® Find a shortest path between two geographical points

# Variants: find shortest paths from one point to all
others, find shortest paths among all pairs, find a set of
k paths such that total length is shortest, ...

# Additional constraints: arc weights as travelling times,
real time computation, dynamic arc weights evolve with

 traffic -
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Important concepts

#® Optimization: given a point set X and an objective function
f: X — R, find the optimal solution * attaining the
minimum (or maximum) value f* on X

X Is called the feasible region

Any point x € X Is a feasible point
Supposing X CR", x = (1,...,x,)
For i < n, x; IS a problem variable

© o o o 0

Any numerical constant on which f, X depend is a
problem parameter

o |

MPRI Scheduling and optimization: lecture 1 — p. 6/26



. Main optimization problem classes

-

® X is usually of the form R"—* x Z*

#® [k = 0: continuous problem, k£ = n: Integer program,;
otherwise, mixed-integer problem

o fFX={xeY |Vi<m(gi(x) <0)}, g :Y — Rarethe
constraints
s f,g; linear & k = 0: Linear Programming (LP)

s f,g; linear & k£ > 0: Mixed-Integer Linear Programming
(MILP)

s f,g; honlinear & k = 0: NonLinear Programming (NLP)

s f,g;nonlinear & k > 0: Mixed-Integer NonLinear
Programming (MINLP)

o |
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Transportation problem
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~ Letxy; be the (discrete) number of product units transported |

from plant i < m to customer 5 < n with respective unit
transportation cost c;; from plant ; to customer j.

Problem: find z minimizing the total cost, subject to pro-
duction limits /; at plant - and demand d; at customer ;.

\
ming 33 ey,
1=1 ] 1 Lgj
n
Vi<m wa < O %
j=1 > L
m . J
Vi<n Zfl?z'] > d; 7,
1=1
L Vi, Tij € Jiy ) J
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Facility Location problem
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=

Let z; = 1 If a servicing facility will be built on geographical
region : < m and 0 otherwise. The cost of building a facility
on region i IS ¢;, and a;; = 1 if a facility on region : can serve
town j <n, and O otherwise.

-
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Travelling Salesman problem

-

fA travelling salesman must visit n cities; each city must be
visited exactly once.
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TSP Formulation |

fLet c;; be the distance from city 7 to city 7, and z;; = 1 If the T

travelling salesman goes from city : to city j and O
otherwise.

mil’lx Z CijLij )
17#i<n
Vi<n wa =1
I1<n
Vi<n inj =1 >
1<n
VSC{l....n} > xy<|9-1
1£JES
Vi#£j5<n zi; € 40,1} )

Exponentially many constraints!
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TSP Formulation ||

min Z Cij T, )
i#J<n
Vi<n Z:ltq;j = 1
J<n
Vi<n inj = 1
1<n >
Vi#j<n, i,j#1 wj—uj+1 < (n—1)(1— )
VZ#]SH Tij € {071}
Vi>2 u; € {2,...,n}
uyp = 1.

Only polynomially many constraints
Is this a valid formulation? Does it describe Hamiltonian

Lcycles? J
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Testing TSP2

® 214 = T43 = X302 = To1 = 1, all other Tij = 0

°

set, for example: w1 =1, ug =4, ug = 3, uy = 2

o for (7,7) € {(4,3),(3,2)}, constraints reduce to
U — Uy < —1:

Uy — U3 =2 — 3 = —1, us —uo =3 —4=—1 10K

e for all other i, j constraints also valid o
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= Formulations and reformulations
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Defn. A formulation IS a pair (f, X)

-

Defn. A formulation (h,Y) Is a reformulation of (f, X) If there Is
a function ¢ : Y — X such that for each optimum y* of (h,Y)
there is a corresponding optimum z* = ¢(y*) of (f, X) and
h* = f*.

Thm. TSP2 reformulates TSP1.

o |
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Reformulation proof

|7Proof By contradiction, suppose 4 a point (z,u) feasible in
TSP2 s.t. x represents two disjoint cycles. Let C' = (V, A) be
the cycle not containing vertex 1, and let ¢ = |A| > 0. If all
constraints are satisfied, then arbitrary sums of constraints
must also be satisfied. Summing constraints

uj > u;+1—(n—1)(1— ;)

over A, since z;; = 1 for all (z,j) € A, we obtain

Z Uj 2 Z Ui + g,
2% icV
hence ¢ <. 0, contradictin her or every feasibl
|:\)/¥)|ntn|ne'l'%P2 represenlts Ia%)?cle of-\-eng e\in \t/heygr%a?'n ©
Since f = h, the function ¢ sending each point (z, u) In

TSP2 to the corresponding point x in TSP1 is a
Lreformulation. J
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Exercise 1
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Prove that TSP1 reformulates TSP2

(Hint: show that given an optimum x* for TSP1, there exists
uw* such that (z*, uv*) Is feasible in TSP2. Why is this
sufficient to show that TSP1 reformulates TSP2?)

o |
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Solution algorithms
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#® Exact (provide a guarantee of optimality or s-optimality
for given ¢ > 0 (in nonlinear continuous problems)

-

# Approximation algorithms (provide a guarantee on the
solution quality)

#® Heuristic algorithms (do not provide any guarantee, but
common sense suggests solution would be good)

o |
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Approximation algorithms

-

Let f be the objective function value at the solution z
provided by the appr. alg.

Alg. Is a k-approximation algorithm for a minimization
problem if f < kf*

How could we ever prove this without knowing f*?7??

Notation: given an undirected graph G = (V, E) let §(v)
be the set of edges in £ adjacenttov € V

|
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Christofides’ TSP Alg. |

f.ﬁ 2-approximation algorithm for the metric TSP T
(.e. distances obey a triangular inequality)

# Consider a complete graph G = (V, E') weighted by
¢: F — R, aim to find a “reasonably short” Hamiltonian

cycle in G

o |
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Christofides’ TSP Alg. Il
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(1) Let T'= (V, F') be a spanning tree of G (connected
subgraph covering V) of minimum cost

-




Christofides’ TSP Alg. Il

ﬁB) Let M = (V, H) be a matching of (V, E(V)) of minimum T
cost

4)LetL=FUH,and K=TUM = (V,L). Thisis a
Eulerian cycle (i.e. passing through each edge exactly
once) because by definition |§(v) N L] mod 2 =0

o |
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Christofides’ TSP Alg. IV

-

(5) For each v s.t. B(v) = |8(v) N L| > 2, pick 22 — 1 distinct
pairs of distinct vertices u, w adjacent to v and set
L — L~ {{u,v}, {v,w}} U{u,w}




Christofides’ TSP Alg. V
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The Hamiltonian cycle found with Christofides’
approximation algorithm (left) and the optimal one (right)

-




o Christofides’ TSP Alg.VI
| EEREIOEGEEG evse)

Proof. For a set of edges 5 C L, let f(S) = > _y; ineg cij-

Every Hamiltonian cycle (including the optimal one) can be
seen as a spanning tree union an edge. Since 7' is of
minimum cost, f(F') < f*. On the other hand, each
Hamiltonian cycle is also a 2-matching (each vertex is
adjacent to precisely two other vertices), and M is of
minimum cost, 2f(H) < f*. Therefore

f(FUH)=f(F)+ f(H) < f*+ 5 f*. By the triangular
iInequality, f(L) < f(F U H) (why? — exercise 3). [

L |
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Christofides’ TSP Alg.

Minimum cost spanning tree: polynomial algorithm
Minimum cost matching: polynomial algorithm
Rest of algorithm: polynomial number of steps

© o o o

= Polynomial approximation algorithm

o |
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Exercise 4
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Find a 2-approximation algorithm for the TSP

(Hint. Consider the algorithm: (i) let 7" be a min spanning
tree of G (ii) duplicate each edge of T' to obtain 7" (iii)
perform step (5) of Christofides’ algorithm on 7" to obtain L.
Show that L is a Hamiltonian cycle in GG of cost < 2f*)

o |
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