
Scheduling and Optimization
Course (MPRI)

Leo Liberti
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Scheduling

T1

T2 T4 T5T3

0 3 11 16 20

p

t

>=3

>=5

>=12
>=8P1

P2

Schedule n tasks on m machines such that the sum of
completion times is minimum

Scheduling = assignment + ordering

Additional constraints: given precedence on tasks,
delays under certain circumstances, time windows. . .

Many industrial applications

Similar problems arise in project management
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Network design
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Break an existing telecom network such that the subnetworks
have as few interconnections as possible

Happens when a huge telecom giant wants to sell off or
sublet some subnetworks

Associate a variable to each vertex i and partition h, arc
presence can be modelled by quadratic term xihxjk
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Shortest paths

Find a shortest path between two geographical points

Variants: find shortest paths from one point to all
others, find shortest paths among all pairs, find a set of
k paths such that total length is shortest, . . .

Additional constraints: arc weights as travelling times,
real time computation, dynamic arc weights evolve with
traffic
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Important concepts

Optimization: given a point set X and an objective function
f : X → R, find the optimal solution x∗ attaining the
minimum (or maximum) value f∗ on X

X is called the feasible region

Any point x ∈ X is a feasible point

Supposing X ⊆ Rn, x = (x1, . . . , xn)

For i ≤ n, xi is a problem variable

Any numerical constant on which f,X depend is a
problem parameter
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Main optimization problem classes

X is usually of the form Rn−k × Zk

k = 0: continuous problem, k = n: integer program;
otherwise, mixed-integer problem

If X = {x ∈ Y | ∀ i ≤ m (gi(x) ≤ 0)}, gi : Y → R are the
constraints

f, gi linear & k = 0: Linear Programming (LP)
f, gi linear & k > 0: Mixed-Integer Linear Programming
(MILP)
f, gi nonlinear & k = 0: NonLinear Programming (NLP)
f, gi nonlinear & k > 0: Mixed-Integer NonLinear
Programming (MINLP)
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Transportation problem
Let xij be the (discrete) number of product units transported
from plant i ≤ m to customer j ≤ n with respective unit
transportation cost cij from plant i to customer j.

Problem: find x minimizing the total cost, subject to pro-
duction limits li at plant i and demand dj at customer j.

minx
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Facility Location problem

Let xi = 1 if a servicing facility will be built on geographical
region i ≤ m and 0 otherwise. The cost of building a facility
on region i is ci, and aij = 1 if a facility on region i can serve
town j ≤ n, and 0 otherwise.
Problem: find x ∈ {0, 1}m so that each town is serviced by
at least one facility and the total cost is minimum.

minx
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Travelling Salesman problem

A travelling salesman must visit n cities; each city must be
visited exactly once.

Problem: find the visit order so
that the total distance is mini-
mized.
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TSP Formulation I
Let cij be the distance from city i to city j, and xij = 1 if the
travelling salesman goes from city i to city j and 0
otherwise.

minx

∑

i6=j≤n

cijxij

∀ i ≤ n
∑

j≤n

xij = 1

∀ j ≤ n
∑

i≤n

xij = 1

∀ S ( {1, . . . , n}
∑

i6=j∈S

xij ≤ |S| − 1

∀i 6= j ≤ n xij ∈ {0, 1}
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Exponentially many constraints!
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TSP Formulation II

min
∑

i6=j≤n

cijxij

∀ i ≤ n
∑

j≤n

xij = 1

∀ j ≤ n
∑

i≤n

xij = 1

∀ i 6= j ≤ n, i, j 6= 1 ui − uj + 1 ≤ (n− 1)(1− xij)

∀ i 6= j ≤ n xij ∈ {0, 1}

∀ i > 2 ui ∈ {2, . . . , n}

u1 = 1.
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Only polynomially many constraints

Is this a valid formulation? Does it describe Hamiltonian
cycles?
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Testing TSP2
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x14 = x43 = x32 = x21 = 1, all other xij = 0

set, for example: u1 = 1, u2 = 4, u3 = 3, u4 = 2

for (i, j) ∈ {(4, 3), (3, 2)}, constraints reduce to
ui − uj ≤ −1:

u4 − u3 = 2− 3 = −1, u3 − u2 = 3− 4 = −1 OK

for all other i, j constraints also valid
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Formulations and reformulations

Defn. A formulation is a pair (f,X)

Defn. A formulation (h, Y ) is a reformulation of (f,X) if there is
a function φ : Y → X such that for each optimum y∗ of (h, Y )
there is a corresponding optimum x∗ = φ(y∗) of (f,X) and
h∗ = f∗.

Thm. TSP2 reformulates TSP1.
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Reformulation proof
Proof. By contradiction, suppose ∃ a point (x, u) feasible in
TSP2 s.t. x represents two disjoint cycles. Let C = (V,A) be
the cycle not containing vertex 1, and let q = |A| > 0. If all
constraints are satisfied, then arbitrary sums of constraints
must also be satisfied. Summing constraints

uj ≥ ui + 1− (n− 1)(1− xij)

over A, since xij = 1 for all (i, j) ∈ A, we obtain
∑

j∈V

uj ≥
∑

i∈V

ui + q,

whence q ≤ 0, contradicting q > 0. Therefore every feasible
point in TSP2 represents a cycle of length n in the graph.
Since f ≡ h, the function φ sending each point (x, u) in
TSP2 to the corresponding point x in TSP1 is a
reformulation.
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Exercise 1

Prove that TSP1 reformulates TSP2

(Hint: show that given an optimum x∗ for TSP1, there exists
u∗ such that (x∗, u∗) is feasible in TSP2. Why is this
sufficient to show that TSP1 reformulates TSP2?)
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Solution algorithms

Exact (provide a guarantee of optimality or ε-optimality
for given ε > 0 (in nonlinear continuous problems)
Simplex Algorithm, Branch and Bound

Approximation algorithms (provide a guarantee on the
solution quality)
Christofides’ TSP Approximation Algorithm

Heuristic algorithms (do not provide any guarantee, but
common sense suggests solution would be good)
Variable Neighbourhood Search
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Approximation algorithms

Let f̄ be the objective function value at the solution x̄

provided by the appr. alg.

Alg. is a k-approximation algorithm for a minimization
problem if f̄ ≤ kf∗

How could we ever prove this without knowing f∗???

Notation: given an undirected graph G = (V,E) let δ̄(v)
be the set of edges in E adjacent to v ∈ V
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Christofides’ TSP Alg. I
3
2-approximation algorithm for the metric TSP
(i.e. distances obey a triangular inequality)

Consider a complete graph G = (V,E) weighted by
c : E → R, aim to find a “reasonably short” Hamiltonian
cycle in G
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Christofides’ TSP Alg. II

(1) Let T = (V, F ) be a spanning tree of G (connected
subgraph covering V ) of minimum cost
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(2) Let V̄ = {v ∈ V | |δ̄(v) ∩ F | mod 2 = 1}
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Christofides’ TSP Alg. III
(3) Let M = (V̄ , H) be a matching of (V̄ , E(V̄ )) of minimum
cost
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(4) Let L = F ∪H, and K = T ∪M = (V, L). This is a
Eulerian cycle (i.e. passing through each edge exactly
once) because by definition |δ̄(v) ∩ L| mod 2 = 0
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Christofides’ TSP Alg. IV

(5) For each v s.t. β(v) = |δ̄(v) ∩ L| > 2, pick β(v)
2 − 1 distinct

pairs of distinct vertices u,w adjacent to v and set
L← L r {{u, v}, {v, w}} ∪ {u,w}
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β(v) > 2
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Christofides’ TSP Alg. V

The Hamiltonian cycle found with Christofides’
approximation algorithm (left) and the optimal one (right)
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Christofides’ TSP Alg.VI
Lemma. L is a Hamiltonian cycle in G (Exercise 2)

Thm. Let f̄ be the cost of L and f∗ be the cost of an
optimal Hamiltonian cycle. Then f̄ ≤ 3

2f∗

Proof. For a set of edges S ⊆ E, let f(S) =
∑

{i,j}∈S cij.
Every Hamiltonian cycle (including the optimal one) can be
seen as a spanning tree union an edge. Since T is of
minimum cost, f(F ) ≤ f∗. On the other hand, each
Hamiltonian cycle is also a 2-matching (each vertex is
adjacent to precisely two other vertices), and M is of
minimum cost, 2f(H) ≤ f∗. Therefore
f(F ∪H) = f(F ) + f(H) ≤ f∗ + 1

2f∗. By the triangular
inequality, f(L) ≤ f(F ∪H) (why? — exercise 3). �
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Christofides’ TSP Alg.

Minimum cost spanning tree: polynomial algorithm

Minimum cost matching: polynomial algorithm

Rest of algorithm: polynomial number of steps

⇒ Polynomial approximation algorithm
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Exercise 4

Find a 2-approximation algorithm for the TSP

(Hint. Consider the algorithm: (i) let T be a min spanning
tree of G (ii) duplicate each edge of T to obtain T ′ (iii)
perform step (5) of Christofides’ algorithm on T ′ to obtain L.
Show that L is a Hamiltonian cycle in G of cost ≤ 2f∗)
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