Introduction to Integer Linear Programming

Leo Liberti, Ruslan Sadykov

LIX, École Polytechnique

liberti@lix.polytechnique.fr
sadykov@lix.polytechnique.fr
Definitions

- Mathematical programming formulation:

\[
\begin{align*}
\min_x & \quad c^T x + d^T y \\
\text{s.t.} & \quad Ax + By \leq b \\
& \quad x \geq 0, y \geq 0, \\
& \quad x \in \mathbb{Z}^n
\end{align*}
\]

\([P] \) (1)

- The linear (or continuous) relaxation \(R_P \) of \(P \) is obtained by \(P \) relaxing (i.e. removing) the integrality constraints

- Let \(F(P) \) be the feasible region of \(P \): we have \(F(P) \subseteq F(R_P) \)

- Let \((x^*, y^*)\) be the solution of \(P \) and \((\bar{x}, \bar{y})\) be the solution of \(R_P \); then \(c^T \bar{x} + d^T \bar{y} \leq c^T x^* + d^T y^* \): \(R_P \) is a lower bounding problem w.r.t. \(P \)
Consider example:

\[
\begin{aligned}
\min \quad & -2x_1 - 3x_2 \\
\text{s.t.} \quad & x_1 + 2x_2 \leq 3 \\
& 6x_1 + 8x_2 \leq 15 \\
& x_1 \in \mathbb{R}_+, \ x_2 \in \mathbb{Z}_+
\end{aligned}
\]
Maximum flow problem

Given a network on a directed graph $G = (V, A)$ with a source node s, a destination node t, and integer capacities u_{ij} on each arc (i, j). We have to determine the maximum amount of integral material flow that can circulate on the network from s to t. The variables $x_{ij} \in \mathbb{Z}$, defined for each arc (i, j) in the graph, denote the number of flow units.

$$\max_x \sum_{(s,i) \in A} x_{si}$$

$$\forall i \leq V, \quad i \neq s \quad \sum_{(i,j) \in A} x_{ij} = \sum_{(j,i) \in A} x_{ji}$$

$$\forall (i,j) \in A \quad 0 \leq x_{ij} \leq u_{ij} \quad x_{ij} \in \mathbb{Z}$$
Transportation problem

Let x_{ij} be the (discrete) number of product units transported from plant $i \leq m$ to customer $j \leq n$ with respective unit transportation cost c_{ij} from plant i to customer j. We model the problem of determining x minimizing the total cost, subject to production limits l_i at plant i and demand d_j at customer j, as follows:

\[
\min_x \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\
\forall \ i \leq m \quad \sum_{j=1}^{n} x_{ij} \leq l_i \\
\forall \ j \leq n \quad \sum_{i=1}^{m} x_{ij} \geq d_j \\
\forall \ i, j \quad x_{ij} \in \mathbb{Z}_+
\]
Set Covering problem

Let $x_i = 1$ if a servicing facility will be built on geographical region $i \leq m$ and 0 otherwise. The cost of building a facility on region i is f_i, and $a_{ij} = 1$ if a facility on region i can serve town $j \leq n$, and 0 otherwise. We need to determine $x \in \{0, 1\}^m$ so that each town is serviced by at least one facility and the total cost is minimum.

$$\min_x \sum_{i=1}^{m} f_i x_i \quad \text{subject to} \quad \forall j \leq n \quad \sum_{i=1}^{m} a_{ij} x_i \geq 1 \quad \forall i \leq m \quad x_i \in \mathbb{Z}^+$$
Good and ideal formulations

The smaller is $F(R_P)$, the bigger (better) is the lower bound produced by R_P. As $F(R_{P_3}) \subset F(R_{P_2})$ and $F(R_{P_1}) \subset F(R_{P_2})$, the formulation P_3 is better than P_1 and P_2.

Here P_3 is the best possible (ideal) formulation.

Formally, R_{P_3} defines the convex hull of P.

Let $P = \{x^1, \ldots, x^t\}$, then $\text{conv}(P) = \{x : x = \sum_{i=1}^{t} \lambda_i x^i, \sum_{i=1}^{t} \lambda_i = 1, \lambda_i \geq 0, \forall i = 1, \ldots, t\}$.
Uncapacitated Facility Location problem

Similar to the Set Covering Problem, except for the addition of the variable transportation costs c_{ij}, which arise if the demand of town j is fully served by facility i. Let y_{ij} be the fraction of demand of town j served by facility i.

\[
\begin{align*}
\min_{x, y} & \sum_{i=1}^{m} f_i x_i + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} y_{ij} \\
\forall j \leq n, & \sum_{i=1}^{m} y_{ij} = 1 \\
\forall i \leq m, & \sum_{j=1}^{n} y_{ij} \leq n x_i \\
\forall i \leq m, \forall j \leq n, & y_{ij} \geq 0, \\
\forall i \leq m, & x_i \in \{0, 1\}.
\end{align*}
\]
We can change constraints

\[\forall i \leq m, \sum_{j=1}^{m} y_{ij} \leq nx_i \quad [R_1] \]

to constraints

\[\forall i \leq m, \forall j \leq n, y_{ij} \leq x_i \quad [R_2] \]

Formulation \(R_2 \) is better than \(R_1 \) as \(F(R_2) \subset F(R_1) \). We can verify it by showing \(F(R_2) \subseteq F(R_1) \) and finding a point \((x, y) \in F(R_1) \setminus F(R_2)\).
Rounding heuristic

There is a strong relation between an integer program and its linear relaxation.

But just rounding the solution \bar{x} of the LP relaxation does not always produce good results. Consider the integer program:

$$\max 1.00x_1 + 0.64x_2$$
$$50x_1 + 31x_2 \leq 250$$
$$3x_1 - 2x_2 \geq -4$$
$$x_1, x_2 \in \mathbb{Z}_+$$
Main algorithmic ideas

- If we can say a priori that $\bar{x} \in \mathbb{Z}^n$ then can solve P by simply solving R_P (total unimodularity property).
- Add constraints to get P' such that $\bar{x}' \in \mathbb{Z}^n$ (cutting planes algorithm).
- Solve by “smart” enumeration of all solutions (Branch-and-Bound algorithm).
- Combine adding constraints and enumeration (Branch-and-Cut algorithm).
- Modern Integer Programming solvers (like Cplex) use the Branch-and-Cut algorithm.
Total unimodularity I

- Consider system $Bx = b$ where $B = (b_{ij})$ is invertible $n \times n$ s.t. $b_{ij} \in \mathbb{Z}$ for all i, j
- Solve for x, get $B^{-1}b$
- From inverse matrix formula, infer $B^{-1} = \frac{1}{|B|}C$ with C integral
- If $|B| \in \{1, -1\}$ then $x = B^{-1}b = \pm Cb \in \mathbb{Z}^n$
- A square invertible matrix B s.t. $|B| = \pm 1$ is unimodular
- An $m \times n$ matrix A s.t. every square submatrix has determinant in $\{-1, 0, 1\}$ is totally unimodular (TUM)
- Theorem: if A is TUM, then for all $b \in \mathbb{R}^n$, every vertex of the polyhedron $\{x \in \mathbb{R}^n \mid Ax \leq b\}$ is integral. Intuititively, every vertex can be written as $B^{-1}b$ for B square submatrix of A
Total unimodularity II

- If A is TUM, A^\top and $(A|I)$ are TUM

TUM Sufficient conditions. An $m \times n$ matrix A is TUM if:

1. for all $i \leq m, j \leq n$ we have $a_{ij} \in \{0, 1, -1\}$;
2. each column of A contains at most 2 nonzero coefficients;
3. there is a partition R_1, R_2 of the set of rows such that for each column j, $\sum_{i \in R_1} a_{ij} - \sum_{i \in R_2} a_{ij} = 0$.

- Example: take $R_1 = \{1, 3, 4\}, R_2 = \{2\}$

\[
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & -1 & 1 \\
-1 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 & -1 & 0
\end{pmatrix}
\]
Consider digraph $G = (V, A)$ and a nonnegative flow $x_{ij} \in \mathbb{R}_+$ on each arc; the flow conservation equations

$$\forall i \in V \sum_{(i,j) \in A} x_{ij} - \sum_{(j,i) \in A} x_{ji} = 0$$

yield a TUM matrix (partition: $R_1 = \text{all rows}, R_2 = \emptyset$).

Maximum flow problem can be solved to integrality by simply solving the continuous relaxation with the simplex algorithm.

Constraints of the transportation problem also form a TUM matrix. Partition: $R_1 = \{\sum_{j=1}^{n} x_{ij} \leq l_i\}_{i \leq m}$, $R_2 = \{\sum_{i=1}^{m} x_{ij} \geq d_j\}_{j \leq n}$.

Constraints of the set covering problem do not form a TUM. To prove this, you just need to find a counterexample.
A constraint $C \equiv \pi^T x \leq \pi_0$ is valid for P if $\forall x' \in F(P)$ ($\pi^T x' \leq \pi_0$)
Let P' be problem P with the added valid constraint C. C is a cutting plane for P if $F(R_{P'}) \subseteq F(R_P)$.
Let f be the optimal objective function value for R_P and f' for $R_{P'}$. A cutting plane $C: \pi^T x \leq \pi_0$ is a valid cut for $\bar{x} \in R_P$ if $\pi^T \bar{x} > \pi_0$.

![Diagram showing cutting planes and optimal solutions]
Convex hull

To have a description of the convex hull of $F(P)$, we need a finite number of valid constraints for P.

Computing the convex hull for $F(P)$ is in general harder than solving P.

The idea of the cutting plane algorithm is to add valid cuts progressively and resolve the LP relaxation each time until we obtain an integer solution. Doing this way, we add only those cuts we need.
Cutting Plane Algorithm

- Overall strategy:
 1. Solve R_P, get relaxed solution \bar{x}
 2. If $\bar{x} \in \mathbb{Z}^n$ problem is solved, exit
 3. Use solution \bar{x} of R_P to construct a valid cut C for P
 4. Add the constraint C to the formulation of P
 5. Go back to 1

- The most important step of the algorithm: step 3 (separation problem).

- Cutting Plane algorithms may depend on the particular problem structure or be completely general.

- Independent of problem structure: Gomory cutting planes.

- Problem structure: Row generation for the TSP.
Here we use the “divide and conquer” approach. If we cannot solve a problem, we break it into easier subproblems. We do it using an enumeration tree.

\[UB_1 \text{ (heuristic)} \]

\[P_1 \]

\[\bar{x}_j \notin \mathbb{Z} \]

\[x_j \leq \lfloor x_j \rfloor \]

\[LB_1 = f \]

\[x_j \geq \lceil x_j \rceil \]

\[UB_2 \]

\[LB_2 \]

\[P_2 \]

\[UB_4 = LB_4 \]

\[P_4 \]

Prunned by optimality

\[UB_3 \]

\[LB_3 \]

\[P_3 \]

\[LB_5 \geq f^* \]

\[P_5 \]

Prunned by bound

\[UB_6 \]

\[INF \]

\[P_6 \]

Prunned by infeasibility

\[P_7 \]

...
1. Initialize list problem \(L = \{P\} \), best objective function value \(f^* = \infty \), \(x^* = \text{"infeasible"} \)

2. If \(L = \emptyset \), terminate with solution \(x^* \)

3. Select a subproblem \(Q \) from \(L \) and remove it from \(L \)

4. (Bound) Solve \(R_Q \) to find solution \(\bar{x} \) with objective value \(\bar{f} \)

5. If \(R_Q \) is infeasible, back to 2 (prune by infeasibility)

6. If \(\bar{f} \geq f^* \), \(Q \) cannot contain optimal solution, back to 2 (prune by bound)

7. If \(\bar{x} \) is integral and \(\bar{f} < f^* \): update \(x^* = \bar{x}, f^* = \bar{f} \), back to 2 (prune by optimality)

8. (Branch) Select a fractional component \(\bar{x}_j \), generate two subproblems from \(Q \) with added constraints \(x_j \leq \lfloor \bar{x}_j \rfloor \) and \(x_j \geq \lceil \bar{x}_j \rceil \) respectively, add them to \(L \), then back to 2
Branch-and-Bound III

- How do we choose a subproblem Q from L (step 3)?
- How do we select a fractionary component \bar{x}_j from \bar{x} (step 8)?
- No “best answer”, depends on problem structure.
- Choice of subproblem: associate $LB = \bar{f}$ to each generated problem, then choose subproblem with minimum LB.
- Choice of fractionary component: choose the component with fractionary value closest to 0.5.
Consider simple example:

\[
\begin{align*}
\text{min } & \quad -2x_1 - 3x_2 \\
& \quad x_1 + 2x_2 \leq 3 \\
& \quad 6x_1 + 8x_2 \leq 15 \\
& \quad x_1, x_2 \in \mathbb{Z}_+
\end{align*}
\]

Solution of \(R_P \) is at \(\bar{x} = (3/2, 3/4) \) with \(\bar{f} = -21/4 \)
\(\bar{x}^i = \text{solution of } R_{P_i}, \bar{f}_i = \text{optimal objective value of } R_{P_i}, \forall i \)
In the Branch-and-Bound algorithm, before branching, we generate valid cuts for the current fractional solution \(\bar{x} \).

The cuts are generated until there is no much progress on the value \(\bar{f} \) of the objective function.

Cuts can be general or problem specific.

Solvers, like Cplex generate cuts by default.

Most used classes of general cuts: Gomory cuts, (flow) cover cuts.
Gomory inequalities

- Let $X = P \cap \mathbb{Z}^n$, where $P = \{x \in \mathbb{R}^n_+ : Ax \leq b\}$, A is an $m \times n$ matrix with columns (a_1, \ldots, a_n), and $u \in \mathbb{R}^m_+$.

- $\sum_{j=1}^{n} u a_j x_j \leq ub$ is valid for P as $u \geq 0$;

- $\sum_{j=1}^{n} \lfloor u a_j \rfloor x_j \leq ub$ is valid for P, as $x \geq 0$;

- $\sum_{j=1}^{n} \lfloor u a_j \rfloor x_j \leq \lfloor ub \rfloor$ is valid for X, as x is integer.

- Using this procedure, we can generate all valid inequalities for an integer program.
Cover inequalities

- Let $X = \left\{ x \in \{0, 1\}^n : \sum_{j=1}^{n} a_j x_j \leq b \right\}$,
 $a_j \geq 0, \forall j \leq n, b \geq 0, N = \{1, 2, \ldots, n\}$.

- Set $C \subseteq N$ is a cover if $\sum_{j \in C} a_j > b$.

- If $C \subseteq N$ is a cover, then the cover inequality

 $$\sum_{j \in C} x_j \leq |C| - 1$$

 is valid for X.

Course material