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Introduction
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Example: Set covering
There are 12 possible geographical positions A1, . . . , A12 where some
discharge water filtering plants can be built. These plants are supposed to
service 5 cities C1, . . . , C5; building a plant at site j (j ∈ {1, . . . , 12}) has
cost cj and filtering capacity (in kg/year) fj ; the total amount of discharge
water produced by all cities is 1.2× 1011 kg/year. A plant built on site j can
serve city i if the corresponding (i, j)-th entry is marked by a ‘*’ in the
table below.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

C1 * * * * * *
C2 * * * * * *
C3 * * * * *
C4 * * * * * *
C5 * * * * * * *

cj 7 9 12 3 4 4 5 11 8 6 7 16

fj 15 39 26 31 34 24 51 19 18 36 41 34

What is the best placement for the plants?
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Example: Sudoku

Given the Sudoku grid below, find a solution or prove that
no solution exists

2 1
4 1 9 2 8 6

5 8 2 7

5 1 3
9

7 8 6

3 2 6 4 9
1 9 4 5 2 8

8 6
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Example: Kissing Number

How many unit balls with disjoint interior can be placed
adjacent to a central unit ball in Rd?

In R2

2 1 0 -1 -2210-1-2

-2

-1

0

1

2

In R3

(D = 3: problem proposed by Newton in 1694, settled by
[Schütte and van der Waerden 1953] and [Leech 1956])
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Mathematical programming

The above three problems seemingly have nothing in
common!

Yet, there is a formal language that can be used to
describe all three: mathematical programming (MP)

Moreover, the MP language comes with a rich supply of
solution algorithms so that problems can be solved right
away

Problem
formulation
in MP

→
Reformulation
and choice of so-
lution algorithm

→ Solution process

AMPL → Human intelligence

(for now)
→ Solver
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Modelling questions
Asking yourself the following questions should help you get started with
your MP model

The given problem is usually a particular instance of a
problem class; you should model the whole class, not just
the instance (replace given numbers by parameter
symbols)

What are the decisions to be taken? Are they logical,
integer or continuous?

What is the objective function? Is it to be minimized or
maximized?

What constraints are there in the problem? Beware —
some constraints may be “hidden” in the problem text

If expressing objective and constraints is overly difficult, go
back and change your variable definitions
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Set covering 1

Let us now consider the Set Covering problem

What is the problem class?

We replace the number 12 by the parameter symbol n,
the number 5 by m and the number 1.2× 1011 by d

We already have symbols for costs (cj) and capacities
(fj), where j ≤ n and i ≤ m

We represent the asterisks by a 0-1 matrix A = (aij)

where aij = 1 if there is an asterisk at row i, column j of
the table, and 0 otherwise
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Set covering 2
What are the decisions to be taken?

The crucial text in the problem is what is the best placement
for the plants?; i.e. we need to place each plant at some
location

1. geographical placement on a plane? (continuous
variables)

2. yes/no placement? (“should the j-th plant be placed
here?” — logical 0-1 variables)

Because the text also says there are n possible geographical
positions. . . , it means that for each position we have to
decide whether or not to build a plant there

For each of geographical position, introduce a binary
variable (taking 0-1 values):

∀j ≤ n xj ∈ {0, 1}
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Set covering 3

What is the objective function?

In this case we only have the indication best placement in
the text

Given our data, two possibilities exist: cost
(minimization) and filtering capacity (maximization)

However, because of the presence of the parameter d, it
wouldn’t make sense to have more aggregated filtering
capacity than d kg/year

Hence, the objective function is the cost, which should
be minimized:

min
∑

j≤n

cjxj
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Set covering 4

What are the constraints?

The total filtering capacity must be at least d:
∑

j≤n

fjxj ≥ d

Each city must be served by at least one plant:

∀i ≤ m
∑

j≤n

aijxj ≥ 1

Because there are no more constraints in the text, this
concludes the first modelling phase
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Analysis

What category does this mathematical program belong
to?

Linear Programming (LP)
Mixed-Integer Linear Programming (MILP)
Nonlinear Programming (NLP)
Mixed-Integer Nonlinear Programming (MINLP)

Does it have any notable mathematical property?
If an NLP, are the functions/constraints convex?
If a MILP, is the constraint matrix Totally Unimodular
(TUM)?
Does it have any apparent symmetry?

Can it be reformulated to a form for which a fast solver is
available?
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Set covering 5
The objective function and all constraints are linear forms

All the decision variables are binary

Hence the problem is a MILP

Good solutions can be obtained via heuristics (e.g. local branching,
feasibility pump, VNS, Tabu Search)

Exact solution via Branch-and-Bound (solver: CPLEX)

No need for reformulation: CPLEX is a fast enough solver

CPLEX 11.0.1 solution: x4 = x7 = x11 = 1, all the rest 0 (i.e. build
plants at positions 4,7,11)

Notice the paradigm model & solver→ solution

Since there are many solvers already available,
solving the problem reduces to modelling the problem
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AMPL Basics
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AMPL

AMPL means “A Mathematical Programming
Language”

AMPL is an implementation of the Mathematical
Programming language

Many solvers can work with AMPL

AMPL works as follows:
1. translates a user-defined model to a low-level

formulation (called flat form) that can be understood
by a solver

2. passes the flat form to the solver
3. reads a solution back from the solver and interprets

it within the higher-level model (called structured form)
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Model, data, run
AMPL usually requires three files:

the model file (extension .mod ) holding the MP formulation

the data file (extension .dat ), which lists the values to be
assigned to each parameter symbol

the run file (extension .run ), which contains the (imperative)
commands necessary to solve the problem

The model file is written in the MP language

The data file simply contains numerical data together with the
corresponding parameter symbols

The run file is written in an imperative C-like language (many notable
differences from C, however)

Sometimes, MP language and imperative language commands can
be mixed in the same file (usually the run file)

To run AMPL, type ampl < problem.run from the command line
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An elementary run file

Consider the set covering problem, suppose we have
coded the model file (setcovering.mod ) and the data
file (setcovering.dat ), and that the CPLEX solver is
installed on the system

Then the following is a basic setcovering.run file

# basic run file for setcovering problem
model setcovering.mod; # specify model file
data setcovering.dat; # specify data file
option solver cplex; # specify solver
solve; # solve the problem
display cost; # display opt. cost
display x; # display opt. soln.
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Set covering model file
# setcovering.mod

param m integer, >= 0;

param n integer, >= 0;

set M := 1..m;

set N := 1..n;

param c{N} >= 0;

param a{M,N} binary;

param f{N} >= 0;

param d >= 0;

var x{j in N} binary;

minimize cost: sum{j in N} c[j] * x[j];

subject to capacity: sum{j in N} f[j] * x[j] >= d;

subject to covering{i in M}: sum{j in N} a[i,j] * x[j] >= 1;
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Set covering data file
param m := 5;

param n := 12;

param : c f :=

1 7 15

2 9 39

3 12 26

4 3 31

5 4 34

6 4 24

7 5 51

8 11 19

9 8 18

10 6 36

11 7 41

12 16 34 ;

param a: 1 2 3 4 5 6 7 8 9 10 11 12 :=

1 1 0 1 0 1 0 1 1 0 0 0 0

2 0 1 1 0 0 1 0 0 1 0 1 1

3 1 1 0 0 0 1 1 0 0 1 0 0

4 0 1 0 1 0 0 1 1 0 1 0 1

5 0 0 0 1 1 1 0 0 1 1 1 1 ;
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AMPL+CPLEX solution
liberti@nox$ cat setcovering.run | ampl

ILOG CPLEX 11.010, options: e m b q use=2

CPLEX 11.0.1: optimal integer solution; objective 15

3 MIP simplex iterations

0 branch-and-bound nodes

cost = 15

x [ * ] :=

1 0

2 0

3 0

4 1

5 0

6 0

7 1

8 0

9 0

10 0

11 1

12 0

;
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Formal definition of MP language
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Formal languages

An alphabet is any well-defined set A

A word is any finite sequence of letters of A; the empty
word is denoted by ǫ

The set of words is denoted by A∗

A formal language is a subset L of A∗

The main problem linked to formal languages is: given a
word ℓ, does it belong to L? (i.e. determine whether a
given “sentence” is correctly formulated w.r.t. the
language)

Main tool: context-free grammars (CFGs)
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Grammars
Informally A grammar is a set of rules used to break
down a sentence in its constituent parts

For example, the English language:
sentence : subj_obj predicate

subj_obj : article noun

noun

predicate : verb complements

: verb

complements : complement complements

: complement

complement : subj_obj

: time_complement

: space_complement

: . . .
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Grammars
article : the

: a

noun : aardvark

: Aalto

: . . .

: zulu

Potentially, each English
sentence can be decom-
posed in its logical com-
ponents

The sentence a zulu watches the aardvark would be anal-
ysed as:

sentence → subj obj predicate →
article noun verb complements →
a zulu watches complement →
a zulu watches subj obj →
a zulu watches article noun →
a zulu watches the aardvark
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Grammars
Aim Given a sentence, decide whether it belongs to a
language via a grammar

For example, the sentence aardvark zulu a the watches is
made up of English words but is not English

The grammar allows us to decide this:

zulu would be classified as a verb because it appears in
the predicate after subj obj — but then no rule verb → zulu
exists

the procedure stops before all words have been
analysed

⇒ the sentence does not belong to the language

If letters in strings represent stored states, a grammar is like a set of im-
perative statements whose application does not follow a fixed succession
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Context free grammars
A CFG is a quadruplet (N, Σ, R, S)

Σ ⊆ L is a finite set of terminal symbols

N is a finite set of nonterminal symbols s.t. Σ ∩N = ∅ and S ∈ N

R is a relation of N × (N ∪ Σ)∗ such that ∃w ∈ (N ∪ Σ)∗ ((S, w) ∈ R)

(ν, w) is written ν : w for all ν ∈ N , and w is a parsing expression (PEs);
these are defined recursively as follows:

1. terminal or nonterminal symbols and empty string ǫ (atomic PEs):

2. given any PE ē, ẽ, the following are PEs:
ēẽ (sequence), ē|ẽ (or)
ē∗ (zero-or-more) equivalent to ē µ|ǫ (for µ ∈ Σ),
ē+ (one-or-more) equivalent to ē ē∗
ē? (optional) equivalent to ē|ǫ
&ē (and), !ē (not)
square brackets are used to indicate precedence when
necessary
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Non-atomic parsing expressions

Assume Σ = {a, . . . , z, _}
(Sequence) ν : cat matches ν = cattle but not tomcat

(Or) ν : cat|dog matches ν ∈ {catalysis, dogbert} but not
my cat is a dog

(Zero-or-more) ν : ca[t]∗ matches
ν ∈ {cane, catalogue, cattle}, but not copper

(One-or-more) ν : ca[t]+ matches ν ∈ {catalogue, cattle}
but not cane or copper

(Optional) ν : ca[t]?e matches ν ∈ {case, category} but not
catters or cars

(And) ν : cat&ego matches ν = category but not cattle

(Not) ν : cat!ego matches ν = cattle but not category
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Mathematical expressions
Assume Σ = {[0-9], [a-zA-Z], ., (, ), *, /, +, -},
N = {float, variable, leaf, value, product, sum, expression}.
The following CFG (call it A) recognizes arithmetical expressions with
the operators +,-,*,/ acting on floating point numbers and variables of
the form name number (such as e.g. x1)

integer : [0-9]+

float : [0-9]∗ .[0-9]+

number : integer|float

variable : [a-z]+ [0-9] ∗

leaf : number|variable

value : leaf| ’(’ expression ’)’

product : value[[ ’*’ | ’/’ ]value] ∗

sum : product[[ ’+’ | ’-’ ]product] ∗

expression : sum

It is easy to extend A to also recognize the power operator and
transcendental functions such as exp, log, sin, cos

INF572/ISC610A – p. 30



Quantified expressions
Assume Σ = {∑,

∏

,∀,∈, ↓,≤, =,≥, :} ∪ A,
N = {index, set, param, ivar, ileaf, prod1, sum1, iprod, isum, iexpr,
qatom, qlist, catom, clist, quantifier}
The following CFG (call it B) recognizes mathematical expressions
quantified over given sets

indexatom : [a-zA-Z]∗ [↓ integer]? !ǫ

index : [index ’,’]? indexatom

set : [a-zA-Z]+ [↓ index]?

param : [a-zA-Z]+ [↓ index]?

ivar : variable[↓ index]?

ileaf : float|param|ivar

ival : ileaf|[’(’]? iexpr [’)’]?

prod1 : ival[[ ’*’ | ’/’ ]ival]∗

sum1 : prod1[[ ’+’ | ’-’ ]prod1]∗

iprod :
Y

↓ quantifier ival|prod1

isum :
X

↓ quantifier ival|sum1

iexpr : isum

catom : iexpr [≤ | = | ≥] iexpr

clist : [clist [∧|∨]]? catom

qatom : ∀ index ∈ set

qlist : [qlist ’,’]? qatom

quantifier : qlist [’:’ clist]?

An iexpr f ↓ q is written xq

Extension to power and transcendental functions equally easy
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MP Language

Σ = {Z, min, max} ∪B, N =
{objective, constraint, integrality, objlist, conlist, intlist}
The following CFG (call it M) recognizes mathematical
programming formulations

objective : [quantifier]? [min |max] iexpr
objlist : objlist objective

constraint : [quantifier]? catom
conlist : conlist constraint

integrality : [quantifier]? ivar ∈ Z

intlist : intlist integrality
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Example: set covering

min
∑

j∈N

cjxj

∑

j∈N

fjxj ≥ d

∀i ∈M
∑

j∈N

aijxj ≥ 1

∀j ∈ N xj ≥ 0
∀j ∈ N xj ≤ 1
∀j ∈ N xj ∈ Z















































M = {1, . . . , m}, N = {1, . . . , n}

∀j ∈ N : quantifier

cjxj : iexpr
∑

j∈N cjxj : iexpr

xj ≥ 0 : catom

∀j ∈ Nxj ≤ 1 : constraint

∀j ∈ Nxj ∈ Z : integrality

objlist only has one objective which has an empty
quantifier and a fairly simple iexpr consisting of a
quantified sum whose argument is a product

conlist has two constraints, the second of which is
quantified

intlist only has one (quantified) integrality element
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MP language implementations
Software packages implementing (sub/supersets of the) MP language:

AMPL (our software of choice, mixture of MP and near-C langua ge)

commercial, but student version limited to 300 vars/constrs is
available from www.ampl.com

quite a lot of solvers are hooked to AMPL

GNU MathProg (subset of AMPL)

free, but only the GLPK solver (for LPs and MILPs) can be used

it is a significant subset of AMPL but not complete

GAMS (can do everything AMPL can, but looks like COBOL — ugh!)

commercial, limited demo available from www.gams.com

quite a lot of solvers are hooked to GAMS

Zimpl (free, C++ interface, linear modelling only)

LINDO, MPL, . . . (other commercial modelling/solution packages)
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AMPL Grammar
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AMPL MP Language
There are 5 main entities: sets, parameters, variables, objectives and
constraints

In AMPL, each entity has a name and can be quantified

set name [{quantifier}] attributes ;

param name [{quantifier}] attributes ;

var name [{quantifier}] attributes ;

minimize | maximize name [{quantifier}]: iexpr ;

subject to name [{quantifier}]: iexpr <= | = | >= iexpr ;

Attributes on sets and parameters is used to validate values read
from data files

Attributes on vars specify integrality (binary , integer ) and limit
constraints (>= lower , <= upper )

Entities indices: square brackets (e.g. y[1] , x[i,k] )

The above is the basic syntax — there are some advanced options
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AMPL data specification

In general, syntax is in map-like form; a

param p {i in S } integer;

is a map S → Z, and each pair (domain, codomain) must be
specified:

param p :=
1 4
2 -3
3 0;

The grammar is simple but tedious, best way is
learning by example or trial and error
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AMPL imperative language
model model filename.mod ;

data data filename.dat ;

option option name literal string, ... ;

solve ;

display [{quantifier}]: iexpr ; / printf (syntax similar to C)

let [{quantifier}] ivar := number;

if ( clist) then { commands } [else {commands}]
for {quantifier} {commands} / break; / continue;

shell ’ command line’; / exit number; / quit;

cd dir name; / remove file name;

In all output commands, screen output can be redirected to a file by
appending > output filename.txt before the semicolon

These are basic commands, there are some advanced ones
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Reformulation commands

fix [{quantifier}] ivar [:= number];

unfix [{quantifier}] ivar;

delete entity name;

purge entity name;

redeclare entity declaration;

drop /restore [{quantifier}] constr or obj name;

problem name[{quantifier}] [: entity name list] ;

This list is not exhaustive
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Solvers
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Solvers
In order of solver reliability / effectiveness:

1. LPs : use an LP solver (O(106) vars/constrs, fast, e.g. CPLEX, CLP,
GLPK)

2. MILPs : use a MILP solver (O(104) vars/constrs, can be slow,
e.g. CPLEX, Symphony, GLPK)

3. NLPs : use a local NLP solver to get a local optimum (O(104)

vars/constrs, quite fast, e.g. SNOPT, MINOS, IPOPT)

4. NLPs/MINLPs : use a heuristic solver to get a good local optimum
(O(103), quite fast, e.g. BONMIN, MINLP_BB)

5. NLPs : use a global NLP solver to get an (approximated) global
optimum (O(103) vars/constrs, can be slow, e.g. COUENNE, BARON)

6. MINLPs : use a global MINLP solver to get an (approximated) global
optimum (O(103) vars/constrs, can be slow, e.g. COUENNE, BARON)

Not all these solvers are available via AMPL
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Solution algorithms (linear)

LPs : (convex)

1. simplex algorithm (non-polynomial complexity but
very fast in practice, reliable)

2. interior point algorithms (polynomial complexity,
quite fast, fairly reliable)

MILPs : (nonconvex because of integrality)

1. Local (heuristics): Local Branching, Feasibility Pump
[Fischetti&Lodi 05], VNS [Hansen et al. 06] (quite
fast, reliable)

2. Global: Branch-and-Bound (exact algorithm,
non-polynomial complexity but often quite fast,
heuristic if early termination, reliable)
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Solution algorithms (nonlinear)

NLPs : (may be convex or nonconvex)

1. Local: Sequential Linear Programming (SLP), Sequential
Quadratic Programming (SQP), interior point methods
(linear/polynomial convergence, often quite fast, unreliable)

2. Global: spatial Branch-and-Bound [Smith&Pantelides 99]
(ε-approximate, nonpolynomial complexity, often quite slow,
heuristic if early termination, unreliable)

MINLPs : (nonconvex because of integrality and terms)

1. Local (heuristics): Branching explorations [Fletcher&Leyffer 99],
Outer approximation [Grossmann 86], Feasibility pump [Bonami
et al. 06] (nonpolynomial complexity, often quite fast, unreliable)

2. Global: spatial Branch-and-Bound [Sahinidis&Tawarmalani 05]
(ε-approximate, nonpolynomial complexity, often quite slow,
heuristic if early termination, unreliable)
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LP example: .mod
# lp.mod

param n integer, default 3;

param m integer, default 4;

set N := 1..n;

set M := 1..m;

param a{M,N};

param b{M};

param c{N};

var x{N} >= 0;

minimize objective: sum{j in N} c[j] * x[j];

subject to constraints{i in M} :

sum{j in N} a[i,j] * x[j] <= b[i];
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LP example: .dat
# lp.dat

param n := 3; param m := 4;

param c :=

1 1

2 -3

3 -2.2 ;

param b :=

1 -1

2 1.1

3 2.4

4 0.8 ;

param a : 1 2 3 :=

1 0.1 0 -3.1

2 2.7 -5.2 1.3

3 1 0 -1

4 1 1 0 ;
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LP example: .run

# lp.run

model lp.mod;
data lp.dat;
option solver cplex;
solve;
display x;
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LP example: output

CPLEX 11.0.1: optimal solution; objective -11.30153846
0 dual simplex iterations (0 in phase I)
x [ * ] :=
1 0
2 0.8
3 4.04615
;
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MILP example: .mod
# milp.mod

param n integer, default 3;

param m integer, default 4;

set N := 1..n;

set M := 1..m;

param a{M,N};

param b{M};

param c{N};

var x{N} >= 0, <= 3, integer;

var y >= 0;

minimize objective: sum{j in N} c[j] * x[j];

subject to constraints{i in M} :

sum{j in N} a[i,j] * x[j] - y <= b[i];
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MILP example: .run

# milp.run

model milp.mod;
data lp.dat;
option solver cplex;
solve;
display x;
display y;
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MILP example: output

CPLEX 11.0.1: optimal integer solution; objective -15.6
0 MIP simplex iterations
0 branch-and-bound nodes
x [ * ] :=
1 0
2 3
3 3
;
y = 2.2
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NLP example: .mod

# nlp.mod

param n integer, default 3;

param m integer, default 4;

set N := 1..n;

set M := 1..m;

param a{M,N};

param b{M};

param c{N};

var x{N} >= 0.1, <= 4;

minimize objective:

c[1] * x[1] * x[2] + c[2] * x[3]ˆ2 + c[3] * x[1] * x[2]/x[3];

subject to constraints{i in M diff {4}} :

sum{j in N} a[i,j] * x[j] <= b[i]/x[i];

subject to constraint4 : prod{j in N} x[j] <= b[4];
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NLP example: .run
# nlp.run

model nlp.mod;

data lp.dat;

## only enable one of the following methods

## 1: local solution

option solver minos;

# starting point

let x[1] := 0.1;

let x[2] := 0.2; # try 0.1, 0.4

let x[3] := 0.2;

## 2: global solution (heuristic)

#option solver bonmin;

## 3: global solution (guaranteed)

#option solver boncouenne;

solve;

display x;
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NLP example: output

MINOS 5.51: optimal solution found.
47 iterations, objective -38.03000929
Nonlin evals: obj = 131, grad = 130, constrs = 131,
x [ * ] :=
1 2.84106
2 1.37232
3 0.205189
;
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MINLP example: .mod
# minlp.mod

param n integer, default 3;

param m integer, default 4;

set N := 1..n;

set M := 1..m;

param a{M,N};

param b{M};

param c{N};

param epsilon := 0.1;

var x{N} >= 0, <= 4, integer;

minimize objective:

c[1] * x[1] * x[2] + c[2] * x[3]ˆ2 + c[3] * x[1] * x[2]/x[3] +

x[1] * x[3]ˆ3;

subject to constraints{i in M diff {4}} :

sum{j in N} a[i,j] * x[j] <= b[i]/(x[i] + epsilon);

subject to constraint4 : prod{j in N} x[j] <= b[4];
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MINLP example: .run
# minlp.run

model minlp.mod;

data lp.dat;

## only enable one of the following methods:

## 1: global solution (heuristic)

#option solver bonmin;

## 2: global solution (guaranteed)

option solver boncouenne;

solve;

display x;
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MINLP example: output

bonmin: Optimal
x [ * ] :=
1 0
2 4
3 4
;
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Sudoku
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Sudoku: problem class

What is the problem class?

The class of all sudoku grids

Replace {1, . . . , 9} with a set K

Will need a set H = {1, 2, 3} to define 3× 3 sub-grids

An “instance” is a partial assignment of integers to
cases in the sudoku grid

We model an empty sudoku grid, and then fix certain
variables at the appropriate values
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Modelling the Sudoku
Q: What are the decisions to be taken?

A: Whether to place an integer in K = {1, . . . , 9} in the
case at coordinates (i, j) on the square grid (i, j ∈ K)

We might try integer variables yij ∈ K

Q: What is the objective function?

A: There is no “natural” objective; we might wish to
employ one if needed

Q: What are the constraints?

A: For example, the first row should contain all numbers
in K; hence, we should express a constraint such as:

if y11 = 1 then y1ℓ 6= 1 for all ℓ ≥ 1;
if y11 = 2 then y1ℓ 6= 2 for all ℓ ≥ 2;
. . . (for all values, column and row indices)
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Sudoku constraints 1
In other words,

∀i, j, k ∈ K, ℓ 6= j (yij = k → yiℓ 6= k)

Put it another way: a constraint that says “all values should
be different”

In constraint programming (a discipline related to MP) there
is a constraint

∀i ∈ K AllDiff(yij | j ∈ K)

that asserts that all variables in its argument take
different values: we can attempt to implement it in MP

A set of distinct values has the pairwise distinctness property:
∀i, p, q ∈ K yip 6= yiq, which can also be written as:

∀i, p < q ∈ K |yip − yiq| ≥ 1
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Sudoku constraints 2
We also need the same constraints in each column:

∀j, p < q ∈ K |ypj − yqj | ≥ 1

. . . and in some appropriate 3× 3 sub-grids:
1. let H = {1, . . . , 3} and α = |K|/|H|; for all h ∈ H

define Rh = {i ∈ K | i > (h− 1)α ∧ i ≤ hα} and
Ch = {j ∈ K | j > (h− 1)α ∧ j ≤ hα}

2. show that for all (h, l) ∈ H ×H, the set Rh × Cl

contains the case coordinates of the (h, l)-th 3× 3
sudoku sub-grid

Thus, the following constraints must hold:

∀h, l ∈ H, i < p ∈ Rh, j < q ∈ Cl |yij − ypq| ≥ 1
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The Sudoku MINLP

The whole model is as follows:
min 0

∀i, p < q ∈ K |yip − yiq| ≥ 1

∀j, p < q ∈ K |ypj − yqj | ≥ 1

∀h, l ∈ H, i < p ∈ Rh, j < q ∈ Cl |yij − ypq| ≥ 1

∀i ∈ K, j ∈ K yij ≥ 1

∀i ∈ K, j ∈ K yij ≤ 9

∀i ∈ K, j ∈ K yij ∈ Z















































This is a nondifferentiable MINLP

MINLP solvers (BONMIN, MINLP_BB, COUENNE) can’t
solve it
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Absolute value reformulation
This MINLP, however, can be linearized:

|a− b| >= 1 ⇐⇒ a− b >= 1 ∨ b− a >= 1

For each i, j, p, q ∈ K we introduce a binary variable
wpq

ij = 1 if yij − ypq ≥ 1 and 0 if ypq − yij ≥ 1

For all i, j, p, q ∈ K we add constraints
1. yij − ypq ≥ 1−M(1− wpq

ij )

2. ypq − yij ≥ 1−Mwpq
ij

where M = |K|+ 1

This means: if wpq
ij = 1 then constraint 1 is active and 2

is always inactive (as ypq − yij is always greater than
−|K|); if wpq

ij = 0 then 2 is active and 1 inactive

Transforms problematic absolute value terms into
added binary variables and linear constraints
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The reformulated model
The reformulated model is a MILP:

min 0

∀i, p < q ∈ K yip − yiq ≥ 1−M(1− wiq
ip)

∀i, p < q ∈ K yiq − yip ≥ 1−Mwiq
ip

∀j, p < q ∈ K ypj − yqj ≥ 1−M(1− wqj
pj)

∀j, p < q ∈ K yqj − ypj ≥ 1−Mwqj
pj

∀h, l ∈ H, i < p ∈ Rh, j < q ∈ Cl yij − ypq ≥ 1−M(1− wpq
ij )

∀h, l ∈ H, i < p ∈ Rh, j < q ∈ Cl ypq − yij ≥ 1−Mwpq
ij

∀i ∈ K, j ∈ K yij ≥ 1

∀i ∈ K, j ∈ K yij ≤ 9

∀i ∈ K, j ∈ K yij ∈ Z































































































It can be solved by CPLEX; however, it has O(|K|4) binary variables
on a |K|2 cases grid with |K| values per case (O(|K|3) in total) —
often an effect of bad modelling
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A better model
In such cases, we have to go back to variable definitions

One other possibility is to define binary variables
∀i, j, k ∈ K (xijk = 1) if the (i, j)-th case has value k, and 0
otherwise

Each case must contain exactly one value

∀i, j ∈ K
∑

k∈K

xijk = 1

For each row and value, there is precisely one column
that contains that value, and likewise for cols

∀i, k ∈ K
∑

j∈K

xijk = 1 ∧ ∀j, k ∈ K
∑

i∈K

xijk = 1

Similarly for each Rh × Ch sub-square

∀h, l ∈ H, k ∈ K
∑

i∈Rh,j∈Cl

xijk = 1
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The Sudoku MILP
The whole model is as follows:

min 0

∀i ∈ K, j ∈ K
∑

k∈K

xijk = 1

∀i ∈ K, k ∈ K
∑

j∈K

xijk = 1

∀j ∈ K, k ∈ K
∑

i∈K

xijk = 1

∀h ∈ H, l ∈ H, k ∈ K
∑

i∈Rh,j∈Cl

xijk = 1

∀i ∈ K, j ∈ K, k ∈ K xijk ∈ {0, 1}



























































This is a MILP with O(|K|3) variables

Notice that there is a relation ∀i, j ∈ K yij =
∑

k∈K

kxijk between the

MINLP and the MILP

The MILP variables have been derived by the MINLP ones by “disaggregation”
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Sudoku model file
param Kcard integer, >= 1, default 9;

param Hcard integer, >= 1, default 3;

set K := 1..Kcard;

set H := 1..Hcard;

set R{H};

set C{H};

param alpha := card(K) / card(H);

param Instance {K,K} integer, >= 0, default 0;

let {h in H} R[h] := {i in K : i > (h-1) * alpha and i <= h * alpha};

let {h in H} C[h] := {j in K : j > (h-1) * alpha and j <= h * alpha};

var x{K,K,K} binary;

minimize nothing: 0;

subject to assignment {i in K, j in K} : sum{k in K} x[i,j,k] = 1;

subject to rows {i in K, k in K} : sum{j in K} x[i,j,k] = 1;

subject to columns {j in K, k in K} : sum{i in K} x[i,j,k] = 1;

subject to squares {h in H, l in H, k in K} :

sum{i in R[h], j in C[l]} x[i,j,k] = 1;
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Sudoku data file

param Instance :=

1 1 2 1 9 1 2 2 4 2 3 1 2 4 9

2 6 2 2 7 8 2 8 6 3 1 5 3 2 8

3 8 2 3 9 7 4 4 5 4 5 1 4 6 3

5 5 9 6 4 7 6 5 8 6 6 6 7 1 3

7 2 2 7 3 6 7 8 4 7 9 9 8 2 1

8 3 9 8 4 4 8 6 5 8 7 2 8 8 8

9 1 8 9 9 6 ;
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Sudoku run file

# sudoku

# replace "/dev/null" with "nul" if using Windows

option randseed 0;

option presolve 0;

option solver_msg 0;

model sudoku.mod;

data sudoku-feas.dat;

let {i in K, j in K : Instance[i,j] > 0} x[i,j,Instance[i,j]] : = 1;

fix {i in K, j in K : Instance[i,j] > 0} x[i,j,Instance[i,j]];

display Instance;

option solver cplex;

solve > /dev/null;

param Solution {K, K};

if (solve_result = "infeasible") then {

printf "instance is infeasible\n";

} else {

let {i in K, j in K} Solution[i,j] := sum{k in K} k * x[i,j,k];

display Solution;

}
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Sudoku AMPL output

liberti@nox$ cat sudoku.run | ampl

Instance [ * , * ]

: 1 2 3 4 5 6 7 8 9 :=

1 2 0 0 0 0 0 0 0 1

2 0 4 1 9 0 2 8 6 0

3 5 8 0 0 0 0 0 2 7

4 0 0 0 5 1 3 0 0 0

5 0 0 0 0 9 0 0 0 0

6 0 0 0 7 8 6 0 0 0

7 3 2 6 0 0 0 0 4 9

8 0 1 9 4 0 5 2 8 0

9 8 0 0 0 0 0 0 0 6

;

instance is infeasible
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Sudoku data file 2

But with a different data file. . .
param Instance :=

1 1 2 1 9 1 2 2 4 2 3 1 2 4 9

2 6 2 2 7 8 2 8 6 3 1 5 3 2 8

3 8 2 3 9 7 4 4 5 4 5 1 4 6 3

5 5 9 6 4 7 6 5 8 6 6 6 7 1 3

7 2 2 7 8 4 7 9 9 8 2 1

8 3 9 8 4 4 8 6 5 8 7 2 8 8 8

9 1 8 9 9 6 ;
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Sudoku data file 2 grid

. . . corresponding to the grid below. . .

2 1
4 1 9 2 8 6

5 8 2 7

5 1 3
9

7 8 6

3 2 4 9
1 9 4 5 2 8

8 6
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Sudoku AMPL output 2

. . . we find a solution!
liberti@nox$ cat sudoku.run | ampl

Solution [ * , * ]

: 1 2 3 4 5 6 7 8 9 :=

1 2 9 6 8 5 7 4 3 1

2 7 4 1 9 3 2 8 6 5

3 5 8 3 6 4 1 9 2 7

4 4 7 8 5 1 3 6 9 2

5 1 6 5 2 9 4 3 7 8

6 9 3 2 7 8 6 1 5 4

7 3 2 7 1 6 8 5 4 9

8 6 1 9 4 7 5 2 8 3

9 8 5 4 3 2 9 7 1 6

;
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Kissing Number Problem
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KNP: problem class

What is the problem class?

There is no number in the problem definition:
How many unit balls with disjoint interior can be placed

adjacent to a central unit ball in Rd?

Hence the KNP is already defined as a problem class

Instances are given by assigning a positive integer to
the only parameter D
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Modelling the KNP
Q: What are the decisions to be taken?

A: How many spheres to place, and where to place them

For each sphere, two types of variables

1. a logical one: yi = 1 if sphere i is present, and 0 otherwise

2. a D-vector of continuous ones: xi = (xi1, . . . , xiD), position of
i-th sphere center

Q: What is the objective function?

A: Maximize the number of spheres

Q: What are the constraints?

A: Two types of constraints

1. the i-th center must be at distance 2 from the central sphere if the
i-th sphere is placed (center constraints)

2. for all distinct (and placed) spheres i, j, for their interior to be
disjoint their centers must be at distance ≥ 2 (distance constraints)
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Assumptions
1. Logical variables y

Since the objective function counts the number of placed
spheres, it must be something like

∑

i yi

What set N does the index i range over?

Denote k∗(d) the optimal solution to the KNP in Rd

Since k∗(d) is unknown a priori, we cannot know N a priori;
however, without N , we cannot express the objective function

Assume we know an upper bound k̄ to k∗(d); then we can define
N = {1, . . . , k̄} (and D = {1, . . . , d})

2. Continuous variables x

Since any sphere placement is invariant by translation, we assume

that the central sphere is placed at the origin

Thus, each continuous variable xik (i ∈ N, k ∈ D) cannot attain
values outside [−2, 2] (why?)

Limit continuous variables: −2 ≤ xik ≤ 2
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Problem restatement

The above assumptions lead to a problem restatement

Given a positive integer k̄, what is the maximum
number (smaller than k̄) of unit spheres with dis-
joint interior that can be placed adjacent to a unit

sphere centered at the origin of Rd?

Each time assumptions are made for the sake of modelling, one
must always keep track of the corresponding changes to the
problem definition

The Objective function can now be written as:

max
∑

i∈N

yi
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Constraints

Center constraints:

∀i ∈ N ||xi|| = 2yi

(if sphere i is placed then yi = 1 and the constraint
requires ||xi|| = 2, otherwise ||xi|| = 0, which implies
xi = (0, . . . , 0))

Distance constraints:

∀i ∈ N, j ∈ N : i 6= j ||xi − xj || ≥ 2yiyj

(if spheres i, j are both are placed then yiyj = 1 and the
constraint requires ||xi − xj || ≥ 2, otherwise
||xi − xj || ≥ 0 which is always by the definition of norm)

INF572/ISC610A – p. 79



KNP model

max
∑

i∈N

yi

∀i ∈ N
√

∑

k∈D

x2
ik = 2yi

∀i ∈ N, j ∈ N : i 6= j
√

∑

k∈D

(xik − xjk)2 ≥ 2yiyj

∀i ∈ N yi ≥ 0

∀i ∈ N yi ≤ 1

∀i ∈ N, k ∈ D xik ≥ −2

∀i ∈ N, k ∈ D xik ≤ 2

∀i ∈ N yi ∈ Z











































































For brevity, we shall write yi ∈ {0, 1} and xik ∈ [−2, 2]
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Reformulation 1

Solution times for NLP/MINLP solvers often also
depends on the number of nonlinear terms

We square both sides of the nonlinear constraints, and
notice that since yi are binary variables, y2

i = yi for all
i ∈ N ; we get:

∀i ∈ N
∑

k∈D

x2
ik = 4yi

∀i 6= j ∈ N
∑

k∈D

(xik − xjk)
2 ≥ 4yiyj

which has fewer nonlinear terms than the original
problem
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Reformulation 2
Distance constraints are called reverse convex (because if
we replace ≥ with ≤ the constraints become convex);
these constraints often cause solution times to lengthen
considerably

Notice that distance constraints are repeated when i, j
are swapped

Change the quantifier to i ∈ N, j ∈ N : i < j reduces the
number of reverse convex constraints in the problem;
get:

∀i ∈ N
∑

k∈D

x2
ik = 4yi

∀i < j ∈ N
∑

k∈D

(xik − xjk)
2 ≥ 4yiyj
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KNP model revisited

max
∑

i∈N

yi

∀i ∈ N
∑

k∈D

x2
ik = 4yi

∀i ∈ N, j ∈ N : i < j
∑

k∈D

(xik − xjk)
2 ≥ 4yiyj

∀i ∈ N, k ∈ D xik ∈ [−2, 2]

∀i ∈ N yi ∈ {0, 1}











































This formulation is a (nonconvex) MINLP
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KNP model file

# knp.mod

param d default 2;

param kbar default 7;

set D := 1..d;

set N := 1..kbar;

var y{i in N} binary;

var x{i in N, k in D} >= -2, <= 2;

maximize kstar : sum{i in N} y[i];

subject to center{i in N} : sum{k in D} x[i,k]ˆ2 = 4 * y[i];

subject to distance{i in N, j in N : i < j} :

sum{k in D} (x[i,k] - x[j,k])ˆ2 >= 4 * y[i] * y[j];
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KNP data file

Since the only data are the parameters d and k̄ (two
scalars), for simplicity we do not use a data file at all, and
assign values in the model file instead
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KNP run file

# knp.run
model knp.mod;
option solver boncouenne;
solve;
display x,y;
display kstar;
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KNP solution (?)

We tackle the easiest possible KNP instance (d = 2),
and give it an upper bound k̄ = 7

It is easy to see that k∗(2) = 6 (place 6 circles adjacent
to another circle in an exagonal lattice)

Yet, after several minutes of CPU time COUENNE has not
made any progress from the trivial feasible solution
y = 0, x = 0

Likewise, heuristic solvers such as BONMIN and
MINLP BB only find the trivial zero solution and exit
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What do we do next?

In order to solve the KNP and deal with other difficult
MINLPs, we need more advanced techniques
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Some useful MP theory
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Canonical MP formulation

minx f(x)

s.t. l ≤ g(x) ≤ u

xL ≤ x ≤ xU

∀i ∈ Z ⊆ {1, . . . , n} xi ∈ Z



















[P ] (1)

where x, xL, xU ∈ Rn; l, u ∈ Rm; f : Rn → R; g : Rn → Rm

F(P ) = feasible region of P , L(P ) = set of local optima,
G(P ) = set of global optima

Nonconvexity⇒ G(P ) ( L(P )

min
x∈[−3,6]

1
4x + sin(x) −3

60 x
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Open sets

In general, MP cannot directly model problems involving
sets which are not closed in the usual topology (such as
e.g. open intervals)

The reason is that the minimum/maximum of a
non-closed set might not exist

E.g. what is min
x∈(0,1)

x? Since (0, 1) has no minimum (for

each δ ∈ (0, 1), δ
2 < δ and is in (0, 1)), the question has

no answer

This is why the MP language does not allow writing constraints that
involve the <, > and 6= relations

Sometimes, problems involving open sets can be
reformulated exactly to problems involving closed sets
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Best fit hyperplane 1
Consider the following problem:

Given m points p1, . . . , pm ∈ Rn, find the hyperplane
w1x1 + · · ·+ wnxn = w0 minimizing the piecewise linear form
f(p, w) =

∑

i∈P

| ∑
j∈N

wjpij − w0|

Mathematical programming formulation:

1. Sets : P = {1, . . . , m}, N = {1, . . . , n}
2. Parameters: ∀i ∈ P pi ∈ Rn

3. Decision variables : ∀j ∈ N wj ∈ R, w0 ∈ R

4. Objective : minw f(p, w)

5. Constraints : none

Trouble: w = 0 is the obvious, trivial solution of no interest

We need to enforce a constraint (w1, . . . , wn, w0) 6= (0, . . . , 0)

Bad news: Rn+1 r {(0, . . . , 0)} is not a closed set
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Best fit hyperplane 2
We can implicitly impose such a constraint by transforming the
objective function to minw

f(p,w)
||w|| (for some norm || · ||)

This implies that w is nonzero but the feasible region is Rn+1, which
is both open and closed

Obtain fractional objective — difficult to solve

Suppose w
∗ = (w∗, w∗

0) ∈ Rn+1 is an optimal solution to the above
problem

Then for all d > 0, f(dw∗, p) = df(w∗, p)

Hence, it suffices to determine the optimal direction of w∗, because the
actual vector length simply scales the objective function value

Can impose constraint ||w|| = 1 and recover original objective

Solve reformulated problem:

min{f(w, p) | ||w|| = 1}
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Best fit hyperplane 3
The constraint ||w|| = 1 is a constraint schema: we must
specify the norm

Some norms can be reformulated to linear constraints,
some cannot

max-norm (l∞) 2-sphere (square), Euclidean norm (l2)
2-sphere (circle), abs-norm (l1) 2-sphere (rhombus)

max- and abs-norms are piecewise linear, they can be
linearized exactly by using binary variables (see later)
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Convexity
A function f(x) is convex if the following holds:

∀x0, x1 ∈ dom(f) ∀λ ∈ [0, 1]

f(λx0 + (1− λ)x1) ≤ λf(x0) + (1− λ)f(x1)

x

f

x0 x1

f(x0)

f(x1)

λx0 + (1 − λ)x1

f(λx0 + (1 − λ)x1)

λf(x0) + (1 − λ)f(x1)

A set C ⊆ Rn is convex if ∀x0, x1 ∈ C, λ ∈ [0, 1] (λx0 + (1− λ)x1 ∈ C)

If g : Rm → Rn are convex, then {x | g(x) ≤ 0} is a convex set

If f, g are convex, then every local optimum of min
g(x)≤0

f(x) is global

A local NLP solver suffices to solve the NLP to optimality
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Convexity in practice
Recognizing whether an arbitrary function is convex is
an undecidable problem

For some functions, however, this is possible
Certain functions are known to be convex (such as all
affine functions, cx2n for n ∈ N and c ≥ 0, exp(x),
− log(x))
Norms are convex functions
The sum of two convex functions is convex

Application of the above rules repeatedly sometimes
works (for more information, see Disciplined Convex
Programming [Grant et al. 2006])

Warning: problems involving integer variables are in general not
convex; however, if the objective function and constraints are convex

forms, we talk of convex MINLPs
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Recognizing convexity 1

Consider the following mathematical program

min
x,y∈[0,10]

8x2 − 17xy + 10y2

x− y ≥ 1

xy ≥ 1

x

Objective function and constraints contain nonconvex
term xy

Constraint 2 is ≤ 1
x ; the function 1

x is convex (only in
x ≥ 0) but constraint sense makes it reverse convex

Is this problem convex or not?
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Recognizing convexity 2
The objective function can be written as (x, y)TQ(x, y)

where Q =

(

8 −8

−9 10

)

The eigenvalues of Q are 9±
√

73 (both positive), hence
the Hessian of the objective is positive definite, hence
the objective function is convex

The affine constraint x− y ≥ 1 is convex by definition

xy ≤ 1
x can be reformulated as follows:

1. Take logarithms of both sides: log xy ≤ log 1
x

2. Implies log x + log y ≥ − log x⇒ −2 log x− log y ≤ 0

3. − log is a convex function, sum of convex functions is
convex, convex ≤ affine is a convex constraint

Thus, the constraint is convex
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Recognizing convexity 3
model;

var x <= 10, >= -10;

var y <= 10, >= -10;

minimize f: 8 * xˆ2 -17 * x* y + 10 * yˆ2;

subject to c1: x-y >= 1;

subject to c2: xˆ2 * y >= 1;

option solver_msg 0;

printf "solving with sBB (couenne)\n";

option solver boncouenne; solve > /dev/null;

display x,y;

printf "solving with local NLP solver (ipopt)\n";

option solver ipopt; let x := 0; let y := 0;

solve > /dev/null; display x,y;

Get same solution (1.5, 0.5) from COUENNE and IPOPT
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Total Unimodularity

A matrix A is Totally Unimodular (TUM) if all invertible
square submatrices of A have determinant ±1
Thm.
If A is TUM, then all vertices of the polyhedron

{x ≥ 0 | Ax ≤ b}

have integral components

Consequence: if the constraint matrix of a given MILP is
TUM, then it suffices to solve the relaxed LP to get a
solution for the original MILP

An LP solver suffices to solve the MILP to optimality
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TUM in practice 1

If A is TUM, AT and (A|I) are TUM

TUM Sufficient conditions. An m× n matrix A is TUM if:
1. for all i ≤ m, j ≤ n we have aij ∈ {0, 1,−1};
2. each column of A contains at most 2 nonzero

coefficients;
3. there is a partition R1, R2 of the set of rows such that

for each column j,
∑

i∈R1
aij −

∑

i∈R2
aij = 0.

Example: take R1 = {1, 3, 4}, R2 = {2}










1 0 1 1 0 0

0 −1 0 1 −1 1

−1 −1 0 0 0 1

0 0 −1 0 −1 0










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TUM in practice 2

Consider digraph G = (V,A) with nonnegative variables
xij ∈ R+ defined on each arc

Flow constraints ∀i ∈ V
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi yield a

TUM matrix (partition: R1 = all rows, R2 = ∅— prove it)

Maximum flow problems can be solved to integrality by
simply solving the continuous relaxation with an LP
solver

The constraints of the set covering problem do not form a TUM. To
prove this, you just need to find a counterexample
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Maximum flow problem

Given a network on a directed graph G = (V,A) with a
source node s, a destination node t, and integer capacities
uij on each arc (i, j). We have to determine the maximum
integral amount of material flow that can circulate on the
network from s to t. The variables xij ∈ Z, defined for each
arc (i, j) in the graph, denote the number of flow units.

maxx

∑

(s,i)∈A

xsi

∀ i ≤ V,
i 6= s

i 6= t

∑

(i,j)∈A

xij =
∑

(j,i)∈A

xji

∀(i, j) ∈ A 0 ≤ xij ≤ uij

∀(i, j) ∈ A xij ∈ Z







































3
1

4

i

xji

xij
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Max Flow Example 1

1 2 3

4 5 6 7

4

5

21

7

6

5

1

1
3

2

7

arc capacities as shown in italics: find the maximum flow
between node s = 1 and t = 7
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Max Flow: MILP formulation

Sets : V = {1, . . . , n}, A ⊆ V × V

Parameters : s, t ∈ V , u : A→ R+

Variables : x : A→ Z+

Objective : max
∑

(s,i)∈A

xsi

Constraints : ∀i ∈ V r {s, t} ∑

(i,j)∈A

xij =
∑

(j,i)∈A

xji
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Max Flow: .mod file
# maxflow.mod
param n integer, > 0, default 7;
param s integer, > 0, default 1;
param t integer, > 0, default n;
set V := 1..n;
set A within {V,V};
param u{A} >= 0;

var x{(i,j) in A} >= 0, <= u[i,j], integer;

maximize flow : sum{(s,i) in A} x[s,i];

subject to flowcons{i in V diff {s,t}} :
sum{(i,j) in A} x[i,j] = sum{(j,i) in A} x[j,i];
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Max Flow: .dat file

# maxflow.dat
param : A : u :=

1 2 5
1 4 4
1 5 1
2 4 2
3 2 1
3 4 1
3 7 2
4 5 7
5 3 6
5 6 5
6 2 3
6 7 7 ;
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Max Flow: .run file

# maxflow.run
model maxflow.mod;
data maxflow.dat;
option solver_msg 0;
option solver cplex;
solve;
for {(i,j) in A : x[i,j] > 0} {

printf "x[%d,%d] = %g\n", i,j,x[i,j];
}
display flow;
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Max Flow: MILP solution

5 units of flow

6 units of flow

1 2 3

4 5 6 7

4

5

21

7

6

5

1

1
3

2

7

1unit of flow

2 units of flow

4 units of flow maximum flow = 7

x[1,2] = 2
x[1,4] = 4
x[1,5] = 1
x[2,4] = 2
x[3,7] = 2

x[4,5] = 6
x[5,3] = 2
x[5,6] = 5
x[6,7] = 5
flow = 7
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Max Flow: LP solution

Relax integrality constraints (take away integer keyword)

5 units of flow

6 units of flow

1 2 3

4 5 6 7

4

5

21

7

6

5

1

1
3

2

7

1unit of flow

2 units of flow

4 units of flow maximum flow = 7

Get the same solution
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Reformulations
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Reformulations

If problems P,Q are related by a computable function f
through the relation f(P,Q) = 0, Q is an auxiliary problem
with respect to P .

Opt-reformulations : preserve all optimality properties

Narrowings : preserve some optimality properties

Relaxations : provide bounds to the optimal objective
function value

Approximations : formulation Q depending on a
parameter k such that “ lim

k→∞
Q(k)” is an

opt-reformulation, narrowing or relaxation
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Opt-reformulations
P

Q

F

F LL

GG

φ

φ|L

φ|G

Main idea: if we find an optimum of Q, we can map it back to the same
type of optimum of P , and for all optima of P , there is a correspond-
ing optimum in Q. Also known as exact reformulation
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Narrowings
P

Q

F

F

G

G

φ

φ|G

Main idea: if we find a global optimum of Q, we can map
it back to a global optimum of P . There may be optima
of P without a corresponding optimum in Q.
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Relaxations

A problem Q is a relaxation of P if the globally optimal
value of the objective function min fQ of Q is a lower
bound to that of P .
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Approximations
Q is an approximation of P if there exist: (a) an auxiliary problem
Q∗ of P ; (b) a sequence {Qk} of problems; (c) an integer ℓ > 0;
such that:

1. Q = Qℓ

2. ∀ objective f∗ in Q∗ there is a sequence of objectives fk of Qk

converging uniformly to f∗;

3. ∀ constraint l∗i ≤ g∗i (x) ≤ u∗
i of Q∗ there is a sequence of constraints

lki ≤ gk
i (x) ≤ uk

i of Qk such that gk
i converges uniformly to g∗i , lki

converges to l∗i and uk
i to u∗

i

There can be approximations to opt-reformulations, narrowings,
relaxations.

 Q1, Q2, Q3, Qℓ, Q∗ P. . .. . .

approximation of P

〈auxiliary problem of〉
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Fundamental results
Opt-reformulation, narrowing, relaxation, approximation
are all transitive relations

An approximation of any type of reformulation is an approximation

A reformulation consisting of opt-reformulations,
narrowings, relaxations is a relaxation

A reformulation consisting of opt-reformulations and narrowings is a
narrowing

A reformulation consisting of opt-reformulations is an
opt-reformulation

opt-reformulations narrowings relaxations approximations
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Reformulations in practice

Reformulations are used to transform problems into
equivalent (or related) formulations which are somehow
“better”

Basic reformulation operations :

1. adding / deleting variables / constraints
2. replacing a term with another term (e.g. a product xy

with a new variable w)
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Product of binary variables
Consider binary variables x, y and a cost c to be added
to the objective function only of xy = 1

⇒ Add term cxy to objective

Problem becomes mixed-integer (some variables are
binary) and nonlinear

Reformulate “xy” to MILP form (PRODBIN reform.):

replace xy by z

add z ≤ y , z ≤ x

z ≥ 0, z ≥ x + y − 1

x, y ∈ {0, 1} ⇒
z = xy
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Application to the KNP
In the RHS of the KNP’s distance constraints we have 4yiyj , where
yi, yj are binary variables

We apply PRODBIN (call the added variable wij):

min
P

i∈N

yi

∀i ∈ N
P

k∈D

x2
ik

= 4yi

∀i ∈ N, j ∈ N : i < j
P

k∈D

(xik − xjk)2 ≥ 4wij

∀i ∈ N, j ∈ N : i < j wij ≤ yi

∀i ∈ N, j ∈ N : i < j wij ≤ yj

∀i ∈ N, j ∈ N : i < j wij ≥ yi + yj − 1

∀i ∈ N, j ∈ N : i < j wij ∈ [0, 1]

∀i ∈ N, k ∈ D xik ∈ [−2, 2]

∀i ∈ N yi ∈ {0, 1}

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

Still a MINLP, but fewer nonlinear terms

Still numerically difficult (2h CPU time to find k∗(2) ≥ 5)
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Product of bin. and cont. vars.
PRODBINCONT reformulation

Consider a binary variable x and a continuous variable
y ∈ [yL, yU ], and assume product xy is in the problem

Replace xy by an added variable w

Add constraints:

w ≤ yUx

w ≥ yLx

w ≤ y + yL(1− x)

w ≥ y − yU (1− x)

Exercise 1 : show that PRODBINCONT is indeed a reformulation

Exercise 2 : show that if y ∈ {0, 1} then PRODBINCONT is equivalent to
PRODBIN
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Prod. cont. vars.: approximation
BILINAPPROX approximation

Consider x ∈ [xL, xU ], y ∈ [yL, yU ] and product xy

Suppose xU − xL ≤ yU − yL, consider an integer d > 0

Replace [xL, xU ] by a finite set

D = {xL + (i− 1)γ | 1 ≤ i ≤ d}, where γ = xU−xL

d−1

→
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BILINAPPROX

Replace the product xy by a variable w

Add binary variables zi for i ≤ d

Add assignment constraint for zi’s

∑

i≤d

zi = 1

Add definition constraint for x:

x =
∑

i≤d

(xL + (i− 1)γ)zi

(x takes exactly one value in D)

Add definition constraint for w

w =
∑

i≤d

(xL + (i− 1)γ)ziy (2)

Reformulate the products ziy via PRODBINCONT
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BILINAPPROX2

BILINAPPROX2 : problem P has a term xy where x ∈
[xL, xU ], y ∈ [yL, yU ] are continuous; assume xU −
xL ≤ yU − yL

1. choose integer k > 0; add q = {qi | 0 ≤ i ≤ k}
to P so that q0 = xL, qk = xU , qi < qi+1 for all i

2. add continuous variable w ∈ [wL, wU ] (com-
puted from ranges of x, y by interval arithmetic)
and replace term xy by w

3. add binary variables zi for 1 ≤ i ≤ k and con-
straint

∑

i≤k zi = 1

4. for all 1 ≤ i ≤ k add constraints:

k →∞: get identity
opt-reformulation

k
∑

j=1

qj−1zj ≤ xi ≤
k
∑

j=1

qjzj

qi+qi−1

2 y − (wU − wL)(1− zi) ≤ w ≤ qi+qi−1

2 y + (wU − wL)(1− zi),










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Relaxing bilinear terms
RRLTRELAX : quadratic problem P with terms xixj (i < j) and constrs

Ax = b (x can be bin, int, cont); perform opt-reformulation RRLT first:

1. add continuous variables wij (let wi = (wi1, . . . , w1n))

2. replace product xixj with wij (for all i, j)

3. add the reduced RLT (RRLT) system ∀k Awk − bxk = 0

4. find a partition (B, N) of basic/nonbasic variables of ∀k Awk = 0

such that B corresponds to variables with smallest range

5. for all (i, j) ∈ N add constraints wij = xixj (†)
then replace nonlinear constraints (†) with McCormick’s envelopes

wij ≥ max{xL
i xj + xL

j xi − xL
i xL

j , xU
i xj + xU

j xi − xU
i xU

j }

wij ≤ min{xU
i xj + xL

j xi − xU
i xL

j , xL
i xj + xU

j xi − xL
i xU

j }
A

B
C

D

−1
−0.5

 0
 0.5

 1 −1
−0.5

 0
 0.5

 1
−1

−0.5

 0

 0.5

 1

The effect of RRLT is that of using information in Ax = b to eliminate
some of the problematic product terms (those with indices in B)

INF572/ISC610A – p. 125



Linearizing the l∞ norm

INFNORM [Coniglio et al., MSc Thesis, 2007]. P has
vars x ∈ [−1, 1]d and constr. ||x||∞ = 1,
s.t. x∗ ∈ F(P )↔ −x∗ ∈ F(P ) and f(x∗) = f(−x∗).
1. ∀k ≤ d add binary var uk

2. delete constraint ||x||∞ = 1

3. add constraints:

∀k ≤ d xk ≥ 2uk − 1
∑

k≤d

uk = 1.

Narrowing INFNORM(P ) cuts away all optima having
maxk |xk| = 1 with xk < 1 for all k ≤ d
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Approximating squares
INNERAPPROXSQ : P has a continuous variable

x ∈ [xL, xU ] and a term x2 appearing as a
convex term in an objective or constraint

1. add parameters n ∈ N, ε = xU−xL

n−1 ,
x̄i = xL + (i− 1)ε for i ≤ n

2. add a continuous variable w ∈ [wL, wU ],
where wL = 0 if xLxU ≤ 0 or
min((xL)2, (xU )2) otherwise and
wU = max((xL)2, (xU )2)

3. replace all occurrences of term x2 with w

4. add constraints
∀i ≤ n w ≥ (x̄i + x̄i−1)x− x̄ix̄i−1.

Replace convex term by piecewise linear ap-
proximation
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x

s

n → ∞: get
identity opt-
reformulation

INF572/ISC610A – p. 127



Conditional constraints
Suppose ∃ a binary variable y and a constraint g(x) ≤ 0
in the problem

We want g(x) ≤ 0 to be active iff y = 1

Compute maximum value that g(x) can take over all x,
call this M

Write the constraint as:

g(x) ≤M(1− y)

This sometimes called the “big M ” modelling technique

Example:
Can replace constraint (2) in BILINAPPROX as follows:

∀i ≤ d −M(1− zi) ≤ w − (xL + (i− 1)γ)y ≤M(1− zi)

where M s.t. w − (xL + (i− 1)γ)y ∈ [−M, M ] for all w, x, y
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Symmetry
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Example
Consider the problem

min x1 + x2

3x1 + 2x2 ≥ 1

2x1 + 3x2 ≥ 1

x1, x2 ∈ {0, 1}



















AMPL code:
set J := 1..2;

var x{J} binary;

minimize f: sum{j in J} x[j];

subject to c1: 3 * x[1] + 2 * x[2] >= 1;

subject to c2: 2 * x[1] + 3 * x[2] >= 1;

option solver cplex;

solve;

display x;

The solution (given by
CPLEX) is x1 = 1, x2 = 0

If you swap x1 with x2, you

obtain the same problem, with

swapped constraints

Hence, x1 = 0, x2 = 1 is
also an optimal solution!
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Permutations

We can represent permutations by maps N→ N

The permutation of our example is
0

@

1 2
↓ ↓
2 1

1

A

Permutations are usually written as cycles: e.g. for a

permutation
0

@

1 2 3
↓ ↓ ↓
3 1 2

1

A, which sends 1→ 3, 3→ 2 and

2→ 1, we write (1, 3, 2) to mean 1→ 3→ 2(→ 1)

The permutation of our example is (1, 2) — a cycle of
length 2 (also called a transposition, or swap)
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Cycles
Cycles can be multiplied together, but the multiplication
is not commutative: (1, 2, 3)(1, 2) = (1, 3) and
(1, 2)(1, 2, 3) = (2, 3)

The identity permutation e fixes all N

Notice (1, 2)(1, 2) = e and (1, 2, 3)(1, 3, 2) = e, so
(1, 2) = (1, 2)−1 and (1, 3, 2) = (1, 2, 3)−1

Cycles are disjoint when they have no common element

Thm. Disjoint cycles commute

Thm. Every permutation can be written uniquely (up to
order) as a product of disjoint cycles

For each permutation π, let Γ(π) be the set of its disjoint
cycles
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Groups
A group is a set G together with a multiplication
operation, an inverse operation, and an identity element
e ∈ G, such that:
1. ∀g, h ∈ G (gh ∈ G) (multiplication closure)

2. ∀g ∈ G (g−1 ∈ G) (inverse closure)
3. ∀f, g, h ∈ G ((fg)h = f(gh)) (associativity)
4. ∀g ∈ G (eg = g) (identity )

5. ∀g ∈ G (g−1g = e) (inverse)

The set {e} is a group (denoted by 1) called the trivial
group

The set of all permutations over {1, . . . , n} is a group,
called the symmetric group of order n, and denoted by Sn

For all B ⊆ {1, . . . , n} define SB as the symmetric group
over the symbols of B
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Generators

Given any subset T ⊆ Sn, the smallest group containing
the permutations in T is the group generated by T , denoted
by 〈T 〉
For example, if T = {(1, 2), (1, 2, 3)}, then 〈T 〉 is
{(1), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)} = S3

For any n ∈ N, 〈(1, . . . , n)〉 is the cyclic group of order n,
denoted by Cn

Cn is commutative, whereas Sn is not

Commutative groups are also called abelian

Thm. 〈(1, 2), (1, . . . , n)〉 = 〈(i, i + 1) | 1 ≤ i < n〉 = Sn
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Subgroups and homomorphisms

A subgroup of a group G is a subset H of G which is also a group
(denoted by H ≤ G); e.g. C3 = {e, (1, 2, 3), (1, 3, 2)} is a subgroup of
S3

Given two groups G, H, a map φ : G→ H such that
∀f, g ∈ G ( φ(fg) = φ(f)φ(g) ) is a homomorphism

Kerφ = {g ∈ G | φ(g) = e} is the kernel of φ (Kerφ ≤ G)

Imφ = {h ∈ H | ∃g ∈ G (h = φ(g))} is the image of φ (Imφ ≤ H)

If φ is injective and surjective (i.e. if Kerφ = 1 and Imφ = H), then φ is
an isomorphism, denoted by G ∼= H

Thm.[Lagrange] For all groups G and H ≤ G, |H| divides |G|

Thm.[Cayley] Every finite group is isomorphic to a subgroup of Sn for
some n ∈ N
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Normal subgroups

Let H ≤ G; for all g ∈ G, gH = {gh | h ∈ H} and
Hg = {hg | h ∈ H} are in general subsets (not
necessarily subgroups) of G, and in general gH 6= Hg

If ∀g ∈ G (gH = Hg) then H is a normal subgroup of G,
denoted by H ⊳ G (e.g. C3 ⊳ S3)

If H ⊳ G, then {gH | g ∈ G} is denoted by G/H and has
a group structure with multiplication (fH)(gH) = (fg)H,
inverse (gH)−1 = (g−1)H and identity eH = H

For every group homomorphism φ, Kerφ ⊳ G and
G/Kerφ ∼= Imφ

INF572/ISC610A – p. 136



Group actions
Given a group G and a set X, the action of G on X is a set of
mappings αg : X → X for all g ∈ G, such that αg(x) = (gx) ∈ X for
all x ∈ X

Essentially, the action of G on X is the definition of what happens to
x ∈ X when g is applied to it

For example, if X = Rn and G = Sn, a possible action of G on X is
given by gx being the vector x with components permuted according
to g (e.g. if x = (0.1,−2,

√
2) and g = (1, 2), then gx = (−2, 0.1,

√
2))

Convention: left multiplication if x is a column vector (αg(x) = gx), right
if x is a row vector (αg(x) = xg): treat g as a matrix

For Y ⊆ X and H ≤ G, HY = {hy | h ∈ H, y ∈ Y } and
Y H = {yh | h ∈ H, y ∈ Y } are the left and right orbits of Y in H (also
denoted orb(Y, H)); notice orb(Y, H) ⊆ X

stab(Y, G) = {g ∈ G | gY ⊆ Y } is the stabilizer of Y in G; notice
stab(Y, G) ≤ G
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Groups and graphs
Given a digraph G = (V,A) with V = {v1, . . . , vn}, the
action of π ∈ Sn on G is the natural action of π on V

π is a graph automorphism if ∀(i, j) ∈ A (π(i), π(j)) ∈ A

For example:

G1

1 2

34
G2

2

14

3

G3
2

1

3

4

G2 = (1, 3)G1 is a graph automorphism of G1

G3 = (1, 2, 3, 4)G1 is not an automorphism of G1: (4, 2) ∈ A but
(π(4), π(2)) = (1, 3) 6∈ A

The automorphism group of G1 is 〈e, (1, 3)〉 ∼= C2 (denoted
by Aut(G1))
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Back to MP: Symmetries and BB

Symmetries are bad for Branch-and-Bound techniques:
many branches will contain (symmetric) optimal
solutions and therefore will not be pruned by bounding
⇒ deep and large BB trees

-Inf

1.5 2

2 2

← BB tree for symmetric
problem

BB tree for “problem
modulo symmetries”→

-Inf

2 2

How do we write a “mathematical programming formu-
lation modulo symmetries”?
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Solution symmetries
The set of solutions of the following problem:

min x11 +x12 +x13 +x21 +x22 +x23

x11 +x12 +x13 ≥ 1

x21 +x22 +x23 ≥ 1

x11 +x21 ≥ 1

x12 +x22 ≥ 1

x13 +x23 ≥ 1

is G(P ) =
{(0, 1, 1, 1, 0, 0), (1, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 0),

(1, 1, 0, 0, 0, 1), (1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 1)}

G∗ = stab(G(P ), Sn) is the solution group (variable permutations keeping

G(P ) fixed)

For the above problem, G∗ is
〈(2, 3)(5, 6), (1, 2)(4, 5), (1, 4)(2, 5)(3, 6)〉 ∼= D12

For all x∗ ∈ G(P ), G∗x∗ = G(P )⇒ ∃ only 1 orbit⇒ ∃ only one

solution in G(P ) (modulo symmetries)

How do we find G∗ before solving P?
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Formulation symmetries
The cost vector cT = (1, 1, 1, 1, 1, 1) is fixed by all (column)
permutations in S6

The vector b = (1, 1, 1, 1, 1) is fixed by all (row) permutations in S5

Consider P ’s constraint matrix:




















1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1





















Let π ∈ S6 be a column permutation such that ∃ a row permutation
σ ∈ S5 with σ(Aπ) = A

Then permuting the variables/columns in P according to π does not
change the problem formulation (the constraint order is not important)
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The formulation group

For a MILP with binary variables only,

GP = {π ∈ Sn | cπ = c ∧ ∃σ ∈ Sm (σAπ = A ∧ σb = b)}

is called the formulation group of P

In the example above, we get GP
∼= D12

∼= G∗

Thm.
GP ≤ G∗.

Result can be extended to all MILPs [Margot 02, 03, 07]
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Symmetries in MINLPs
Consider a MINLP P

min f(x)

g(x) ≤ 0

x ∈ X.











(3)

where the set X may contain integrality constraints on x

For a row permutation σ ∈ Sm and a column
permutation π ∈ Sn, we define σPπ as follows:

min f(xπ)

σg(xπ) ≤ 0

xπ ∈ X.











(4)

Define GP = {π ∈ Sn | ∃σ ∈ Sm (σPπ = P )}
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Representingg(xπ)

In the linear case, writing Axπ is easy — how do we deal with g(xπ)?

How do we decide whether gi(x) = gh(xπ) for i, h ≤ m?

Answer : consider the expression DAG (DAG=Directed Acyclic Graph)
representation of g

3
∑

i=1

xiyi − log(x4/y4)

List of expressions ≡ expres-

sion DAG sharing variable leaf

nodes

−

+

×

x1 y1

×

x2 y2

×

x3 y3

log

/

x4 y4

Every function g : Rn → Rm is represented by a DAG whose leaf nodes are

variables and constants and whose intermediate nodes are mathematical operators

Look for relationships between the DAGs representing g(x) and
σg(xπ)
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Example

c0 : x6x7 + x8x9 = 1

c1 : x6x8 + x7x9 = 1

x6
6 x7

7 x8
8 x9

9

+0

×2 ×3

+1

×4 ×5

GDAG = group of automorphisms of expression DAG fixing: (a)
root node set having same constr. direction and
coeff. (constraint permutations) , (b) operators with same label
and rank and (c) leaf node set (variable permutations)

GDAG = 〈(45)(67)(89), (23)(68)(79), (01)(24)(35)(78)〉
GP is the projection of GDAG to variable indices
〈(6, 7)(8, 9), (6, 8)(7, 9), (7, 8)〉 ∼= D8
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Node colors
Let DP = (V,A) be the union of all objective and constraint DAGs in
the MINLP (a.k.a the DAG of P )
Colors on the DAG nodes V are used to identify those subsets of nodes which can

be permuted (e.g. variable and operator nodes can’t be permuted)
1. Root nodes (i.e. constraints) can be permuted if they have th e same RHS

2. Operator nodes (including root nodes) can be permuted if the y have the

same DAG rank and label; if an operator node is non-commutati ve, then

the order of the children node must be maintained

3. Constant nodes can be permuted if they have the same DAG rank l evel

and value

4. Variable nodes can be permuted if they have the same bounds an d inte-

grality constraints

The relation (u ∼ v ⇐⇒ u, v have the same color) is an equivalence

relation on V (reflexive, symmetric, transitive)
∼ partitions V into a disjoint union V/ ∼ of equivalence classes V1, . . . , Vp
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MINLP formulation groups
Let P be a MINLP and D = (V ,A) be the DAG of P

Let GDAG be the group of automorphisms of D that fix
each color class in V/ ∼
Define φ : GDAG → Sn by φ(π) =projection of π on
variable indices; then
Thm.
φ is a group homomorphism and Imφ ∼= GP

Hence can find GP by computing Imφ

Although the complexity status (P/NP-complete) of the
GRAPH ISOMORPHISM problem is currently unknown,
nauty is a practically efficient software for computing
GDAG

So now we have GP , how do we write “ P modulo GP ”?
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Symmetry-breaking reformulation
Consider our first example P :

min x1 + x2

3x1 + 2x2 ≥ 1
2x1 + 3x2 ≥ 1

x1, x2 ∈ {0, 1}















P has G(P ) = {(0, 1), (1, 0)}, G∗ = 〈(1, 2)〉 ∼= C2 and
GP = G∗

The orbit GP{(0, 1)} is the whole of G(P )

We look for a reformulation of P where only one
representative of each orbit is feasible

Let Q be the reformulation of P consisting of P with the
added constraint x1 ≤ x2

We have G(Q) = {(0, 1)} and G∗ = GQ = 1
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Breaking orbital symmetries 1
Every group G ≤ Sn acting on the variable indices N = {1, . . . , n}
partitions N into disjoint orbits (all subsets of N )

This follows from the equiv. rel. i ∼ j ⇔ ∃g ∈ G (g(i) = j)

Let Ω be the set of nontrivial orbits (ω ∈ Ω ⇐⇒ |ω| > 1)

Thm. G acts transitively on each of its orbits

This means that ∀ω ∈ Ω ∀i 6= j ∈ ω ∃g ∈ G (g(i) = j)

Applied to MP, if i, j are distinct variable indices belonging to the same orbit

of GP acting on N , then there is π ∈ GP sending xi to xj

Pick x ∈ G(P ); if P is bounded, for all ω ∈ Ω ∃i ∈ ω s.t. xi is a
component having minimum value over all components of x

By theorem above, ∃π ∈ GP sending xi to xmin ω

Hence x̄π is s.t. x̄min ω is minimum over all other components of x̄,
and since GP ≤ G∗, x̄ ∈ G(P )
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Breaking orbital symmetries 2
Thus, for all ω ∈ Ω there is at least one optimal solution
of P which is feasible w.r.t. the constraints
∀j ∈ ω (xmin ω ≤ xj)

Such constraints are called (orbit-based) symmetry
breaking constraints (SBCs)

Adding these SBCs to P yields a reformulation Q of P
of the narrowing type (prove it!)

Thm. If gω(x) ≤ 0 are SBCs for each orbit ω with “ap-
propriate properties”, then ∀ω ∈ Λ (gω(x) ≤ 0) are also
SBCs

Thus we can combine orbit-based SBCs for
“appropriate properties”

Yields narrowings with fewer symmetric optima
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Breaking the symmetric group

The above SBCs work with any group GP , but their
extent is limited (they may not break all that many
symmetries)

If we find Λ′ ⊆ Λ such that ∀ω ∈ Λ′ the action of GP on ω
is Sω, then there are much tighter SBCs

For all ω ∈ Λ′ let ω− = ω r {max ω} and for all j ∈ ω− let
j+ be the successor of j in ω

The following are valid SBCs:

∀ω ∈ Λ′ ∀j ∈ ω− xj ≤ xj+

which are likely to break many more symmetries
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The final attack on the KNP
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Decision KNP

Recall the binary KNP variables are used to count the
number of spheres

Suggests simply considering whether a fixed number of
spheres can be placed around a central sphere in a
kissing configuration, or not

This is the decision version of the KNP (dKNP):
Given positive integers n, d, can n unit spheres with disjoint
interior be placed adjacent to a unit sphere centered at the

origin of Rd?

Should eliminate binary variables, yielding a
(nonconvex) NLP, simpler than the original MINLP

In order to find the maximum value for n, we proceed by
bisection on n and solve the dKNP repeatedly
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The dKNP formulation

Let N = {1, . . . , n}; the following formulation P correctly
models the dKNP:

max 0

∀i ∈ N
∑

k∈D

x2
ik = 4

∀i ∈ N, j ∈ N : i < j
∑

k∈D

(xik − xjk)
2 ≥ 4

∀i ∈ N, k ∈ D xik ∈ [−2, 2]



























If F(P ) 6= ∅ then the answer to the dKNP is YES,
otherwise it is NO

However, solving nonconvex feasibility NLPs is
numerically extremely difficult
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Feasibility tolerance

We therefore add a feasibility tolerance variable α:

max α

∀i ∈ N
∑

k∈D

x2
ik = 4

∀i ∈ N, j ∈ N : i < j
∑

k∈D

(xik − xjk)
2 ≥ 4α

∀i ∈ N, k ∈ D xik ∈ [−2, 2]

α ≥ 0







































The above formulation Q is always feasible (why?)

Much easier to solve than P , numerically

Q also solves the dKNP: if the optimal α∗ is ≥ 1 then the
answer is YES, otherwise it is NO
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The KNP group
The dKNP turns out to have group Sd (i.e. each spatial dimension
can be swapped with any other)

Rewriting the distance constraints as follows:

||xi − xj ||2 =
∑

k∈D

(xik − xjk)2

=
∑

k∈D

(x2
ik + x2

jk + 2xikxjk)

= 2(d +
∑

k∈D

xikxjk)

(for i < j ≤ n) yields an opt-reformulation Q′ of Q (prove it)

The formulation group GQ′ turns out to be Sd × Sn (pairs of distinct
spatial dimensions can be swapped, and same for spheres), much
larger than Sd

Yields more effective SBC narrowings
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Results

Instance Solver Without SBC With SBC
D N Time Nodes OI Gap Time Nodes OI Gap

2 6 Couenne 4920.16 516000

110150
1 0.04% 100.19 14672 1 0%

2 6 BARON 1200∗ 45259

6015
1 10% 59.63 2785 131 0%

2 7 Couenne 7200† 465500

127220
1 41.8% 7200† 469780

38693
1 17.9%

2 7 BARON 10800 259800

74419
442 83.2% 16632 693162 208 0%

OI: Iteration where optimum was found
†: default Couenne CPU time limit
∗: default BARON CPU time limit
nodes: total nodes

still on tree

Thus, we finally established by MP that k∗(2) = 6

Actually, solutions for k∗(3) and k∗(4) can be found by using MINLP
heuristics (VNS)
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The end
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