
Optimization problems arising in software architecture

Leo Liberti

LIX, École Polytechnique, F-91128 Palaiseau, France

Email:liberti@lix.polytechnique.fr

November 15, 2006

Abstract

Software architecture is the process of planning and designing a large-scale software, and a funda-

mental industrial discipline within the field of software engineering. The current body of knowledge

in software architecture is a mixture of personal experience and precise methods. In this paper we

move a step towards the formalization of this discipline by describing some optimization problems

that arise in the field.

1 Introduction

Software architecture involves the detailed planning of several aspects of a large-scale software, such as
the flowsheet, the data model, the data exchange process, the modularization, the interfaces between the
modules, and the resource utilization. The architecture of a software is intertwined with its engineer-
ing cycle, which also includes requirement analysis, commercial offers, legal contracts, documentation,
social interactions, project planning, integration, verification, validation, deployment, maintenance and
decommissioning [Som07]. Of these processes, verification and validation rely on a significant proportion
of mathematics-based methods for their dispatch cite, whereas the rest are more in a grey area between
experience and science. Project planning is often carried out by using scheduling tools cite. Some
Computer-Aided Software Engineering (CASE) tools also exist for software architecture, such as UML
cite. Producing a sound software architecture must necessarily rely on a creative process which may
well be impossible to formalize; however, every effort should be made to ensure that mathematics-based
tools and precise methods are used whenever possible. The object of this paper is to move a step in this
direction by formalizing some problems of combinatorial nature which may arise during the construction
phase of the architecture of a software.

CASE tools based on UML (or UML-like) offer a variety of diagrams, such as the activity diagram,
the class diagram and so on cite, as a modelling device. These diagrams are supposed to clarify thought
in the eye of the beholder (the software architect), to communicate ideas effectively, and sometimes
even to produce code cite. We can convey the information in UML-type diagrams by means of graph
theory: diagrams may also be represented as either directed or undirected graphs where the diagram
objects are the vertices and the links are either (undirected) edges or (directed) arcs. Different object or
link types may be formalized as colours, and quantitative indices as weights on vertices and edges/arcs.
This representation allows the system architect to perform operations on the diagrams by means of
mathematical programming techniques and combinatorial optimization algorithms. Typically, the system
architecture design process starts from the analysis of requirements, and attempts to add details and
synthesize relations in an iterative manner; this stops when the system architect is satisfied with the level
of details present in the architecture. Whilst a part of this process is creative and thus appears impossible
to formalize precisely at the current state of affairs, another part involves a diagram reformulation (such
as clustering certain entities into subsystems or interfaces, or simplifying the flow path) which can clearly
be cast as a series of precisely formulated combinatorial optimization problems.

2 THE NETWORK VIEW 2

1.1 The optimization techniques used in this paper

Most (if not all) optimization problems can be precisely cast as mathematical programs, i.e. mathematical
problem formulations consisting of a set of numerical parameters (whose value is known and defines the
“problem data”), a set of decision variables, whose value will be the output of the solution algorithm, one
or more objective functions to be minimized or maximized by the solution(s) and a set of constraints which
the solution(s) should satisfy. Objective functions and constraints are expressed in terms of mathematical
functions / relations among parameters and variables. The set of solutions which satisfy the problem
constraints is called the feasible region. The size of a formulation is given by the number of decision
variables summed to the number of constraints.

1.1 Example

As an example, we cast a typical combinatorial optimization problem as a mathematical program.

Minimum Vertex Cover. Given an undirected graph G = (V,E), find a vertex subset
C ⊂ V of minimum cardinality such that for each edge is incident to at least one vertex in C.

The parameters of this problem are V and E. As decision variables, we select x : V → {0, 1} to express
membership in C (x(v) = 1 if v ∈ C and 0 otherwise). We seek to minimize the cardinality of C:
min

x

∑

v∈V x(v). The edge adjacency condition can be expressed as follows: ∀ {u, v} ∈ E x(u)+x(v) ≥ 1.

The reason for casting all (or most) combinatorial problems described in this paper as mathemat-
ical programs is that there exists several very efficient computer programs for solving mathematical
programming formulations exhibiting special properties (such as linearity or convexity in the objective
function and feasible region, with continuous or integer-valued variables) [FG02, ILO02]. Furthermore,
it is sometimes possible to apply symbolic manipulation techniques to mathematical programs to alter
their linearity/convexity properties, e.g. formulations with quadratic terms consisting of binary variables
may be recast to linear formulations of higher size [For60, Lib04].

2 The network view

In this section we shall present a unified diagram (which we call the network view) to help create a
software architecture. A network view N consists in a sequence of directed graphs Gi = (Vi, Ai) (with
i ≤ |N |) and procedures Pi : Gi−1 → Gi. The procedures Pi are composed of two parts P ′

i , P
′′
i where P ′

i

(the reformulation) can be formalized precisely whilst P ′′
i (the analysis) relies on a creative process on

the part of the software architect. Depending on how Pi is implemented, many different network views
may arise. The set of all the network views should be a significant help to the software break-down and
architecture design processes. Note that the construction of G0 is also a creative process.

2.1 Vertex types

For each network view N and each i ≤ |N |, the vertex set Vi represents entities of different types
(formalized as colours in the graph), such as (but not limited to):

• program functionality

• program module

• test

• data source

2 THE NETWORK VIEW 3

• server

• workstation

• hardware unit

• person

• team.

Vertices may be weighted by several quantitative indices, such as the security/safety/reliability/importance
of a program functionality or module and so on.

2.2 Arc types

For each network view N and each i ≤ |N |, the arc set Ai represents relations of different types (formalized
as colours in the graph), such as (but not limited to):

• program flow

• data exchange

• assignment

• membership

• inheritance.

Arcs may be weighted by several quantitative indices, such as the amount of data to be exchanged, the
speed of the communication line and so on.

2.3 Iterative procedure

Each procedure Pi : Gi−1 → Gi follows the general schema below:

1. Apply P ′
i (reformulation) as described in Section 3 below.

2. Apply P ′′
i (analysis): for each v ∈ Vi−1 consider a graph H = (V̄ , Ā) which describes the proper-

ties/functions of v in more details. Let Vi → Vi ∪ V̄ and Ai → Ai ∪ Ā.

3. If a termination condition is verified, terminate.

4. Iterate from 1.

The termination condition in Step 3 is usually defined by personal experience. When the software
architecture is sufficiently detailed, we stop. Pi is not unique at each step. Implementing different Pi’s
gives rise to a family of network views.

3 REFORMULATION 4

3 Reformulation

The reformulation procedure at the i-th step (denoted by P ′
i above) consists of a series of graph transfor-

mations on Gi−1 which can be carried out algorithmically. Its overall effect is to facilitate the following
analysis, which will eventually give rise to Gi. Such transformations include adding, deleting, replacing
(sets of) vertices and/or edges, modifying vertex and/or edge colours and weights; their number is infinite,
and the decision to deploy them will depend on the problem at hand. In this section we shall list some
of what we think are the most useful and generally applicable such transformations: interface creation
and clustering.

3.1 Interface creation

Interface creation has a tremendous impact in the reduction of flow or data arcs in the graph. An interface
ι is a software, or hardware, interconnection component. Given an edge colouring µ : Ai−1N of Gi−1 and
subgraph H = (U,F) of Gi−1 such that µ(e) = µ(f) for all e, f ∈ F , Gi is defined as Gi−1 with the
subgraph H replaced by a subgraph H ′ = (U ′, F ′) where U ′ = U ∪ {ι}; (u, ι), (ι, v) ∈ F ′ if and only if
(u, v) ∈ F . The aim of this reformulation is to simplify a set of interconnections of the same type. In the
extreme case where H is a complete subgraph, the reformulation replaces it with a complete star around
ι, which reduces the number of interconnections by a factor |U |. Naturally, in order for this reformulation
to be worthwhile, we require |F ′| < |F |. As |F ′| is bounded above by 2|U |, it is interesting to study the
problem of finding a (not necessarily induced) subgraph H = (U,F) of Gi−1 whose arcs have the same
colour and such that |F | − |U | is maximum.

Let {1, . . . ,K} be the set of arc colours in G. For all v ∈ Vi−1 consider binary variables xv = 1 if
v ∈ U and 0 otherwise. For any colour k ≤ K, the problem of finding the “densest” proper uniformly
coloured subgraph Hk = (U,F) of G can be formulated as follows.

max
x,y

∑

(u,v)∈Ai−1

xuxv −
∑

v∈Vi−1

xv (1)

∀ (u, v) ∈ Ai−1 xuxv ≤ min(max(0, µuv − k + 1),max(0, k − µuv + 1)) (2)

x ∈ {0, 1}|Vi−1|. (3)

3.2 Clustering

Modules in a software architecture need to be clustered for at least two good reasons: (a) to give an
idea of the different independent (or nearly independent) “streams” in the architecture; (b) to be able to
assign separate sets of modules to separate teams.

One of the most common ways to bootstrap a software architecture design process is to construct the
initial graph G0 by means of a brainstorming session: this will almost always give rise to a very “tangled”
architecture. Modules will roughly correspond to the requirements list, and will be heavily interconnected.
Further, each (creative) analytical procedure P ′′

i is likely to produce a similar situation. Clustering these
modules in an arbitrary way according to their perceived semantics may give rise to clusters whose degree
of inter-dependency is not minimal, which will greatly complicate team interactions and possibly impair
the whole development process.

In its most basic form, the clustering procedure acts on a weighted, undirected graph G = (V,E, c)
(where G = Gi for some i, E = {{u, v} | (u, v) ∈ Ai ∨ (v, u) ∈ Ai} and w : E → R), ignoring vertex
and edge colours, and outputs an assignment of vertices in V to a set of clusters such that the weights of
inter-cluster edges is minimized. Such a problem is known in the combinatorial optimization literature
as the Graph Partitioning Problem (GPP) [BB99, JAMS89, FMdS+96, BEP06].

4 BOOTSTRAPPING THE NETWORK VIEW 5

Its formulation in terms of mathematical programming is as as follows: given the weighted undirected
graph G and an integer K ≤ |V |, the problem consists of finding a partition of k subsets (clusters) of V

minimizing the total weight of edges {u, v} where u, v belong to different clusters. To each vertex v ∈ V

and for each cluster k ≤ K, we associate a binary variable xvk which is 1 if vertex v is in cluster h and 0
otherwise. We formulate the problem as follows:

min
x

1

2

∑

k 6=l≤K

∑

{u,v}∈E

cuvxukxvl (4)

∀ v ∈ V
∑

k≤K

xvk = 1 (5)

∀ k ≤ K
∑

v∈V

xvk ≥ 1 (6)

∀ v ∈ V, k ≤ K xvk ∈ {0, 1}. (7)

As can be easily ascertained, it relies on binary variables and includes many (nonconvex) quadratic terms.
Various ways to linearize the formulation have been suggested [Bou04, Lib05]. The objective function
(4) tends to minimize the total weight of edges with adjacent vertices in different clusters. Constraints
(5) make sure that each vertex is assigned to exactly one cluster. Constraints (6) excludes the trivial
solution (all the vertices in one cluster) and ensures each cluster exists. Further conditions, such as the
clusters not exceeding a “balanced” cardinality, may also be imposed:

∀ k ≤ K
∑

v∈V

xvk ≤

⌈

|V |

2

⌉

. (8)

A useful variant of the problem asks for all adjacent vertices with like colours to be clustered together.
The vertex colours are defined by an integer-valued function λ : V → N (we denote λ(u) by λu). For all
u, v ∈ V (with u 6= v) we introduce binary parameters γuv = 1 if u, v have different colours. We must
then add the following constraints:

∀ u 6= v ∈ V, k 6= l ≤ K xukxvl ≤ γuv. (9)

Should these constraints be too restrictive, we may want to relax them to a degree. We can do this by
removing (9) and adding the term

∑

u6=v∈V

∑

k 6=l≤K

|xukxvl − γuv| to the objective function (4).

Another useful variant allows the optimization process to determine the number of clusters actually
used. For all k ≤ K we introduce binary variables zk = 1 if cluster k is non-empty and 0 otherwise. We
change constraints (6) to

∀ k ≤ K
∑

v∈V

xvk ≥ zk, (10)

to ensure that a cluster that does not exist need not have any vertices assigned to it, and then we add
the term

∑

k≤K zk to the objective function to be minimized, thus ensuring that the maximum number
of clusters should be empty.

Once the set of clusters K have been identified, the current graph Gi−1 may be replaced in the network
view by a graph Gi = (Vi, Ai) where Vi is the set of clusters K and (u, v) ∈ Ai if there are w ∈ u, z ∈ v

(recall u, v are subsets of Vi−1) such that (w, u) ∈ Ai−1.

4 Bootstrapping the network view

The construction of the initial graph G0 must necessarily be led by human insight and personal experience.
From the analysis of requirements, the software architect must construct a directed graph of the type

REFERENCES 6

described above with as many details as possible. All the same, we shall describe a set of procedures
which usually facilitate this task. Each step in the procedures is marked [a] if it can be performed by a
computer, or [h] otherwise. Note that [h] steps contain some vague notions that can only be interpreted
by a person, or require some creative thought.

4.1 Computation modules

Our first procedure synthesizes many of the necessary computation modules starting with the software
requirement list (as well as the available input data).

1. [h] List the input parameter vector ι = (ι1, . . . , ιn) and output parameter vector ω = (ω1, . . . , ωm)
using the software requirement list.

2. [h] Draw a data computation diagram formalized as a graph G = (V,A) where each v ∈ V represents
a piece of data, and (u, v) ∈ A if the value of u is necessary to the computation of the value of
v. Let τ : V → N be the size (in bits) of the data (thus, for example, if v represents a boolean
parameter, τ(v) = 1). This graph must be such that ιi ∈ V for all i ≤ n, ωj ∈ V for all j ≤ m, and

∀ v ∈ V
∑

u∈δ−(v)

τ(u) ≥ τ(v). (11)

Let α : A → N be a colouring on the arcs such that “similar” data computations have the same
colour.

3. [a] Perform the interface creation process (see Section 3.1) on G using the arc colouring α. Each
subgraph Hk (where k is a colour), as well as all arcs (u, v) not belonging to any Hk, correspond
to a computation module in the software.

Some practical considerations on the data computation diagram construction. First, we believe it is
easier to build this diagram working backwards from the outputs. Secondly, instead of associating the τ

vertex colouring with data sizes, it may be easier to consider data types. Although it becomes somewhat
more difficult to enforce Eq. (11), there are at least two advantages: (a) treating with qualitative instead
of quantitative data is easier for a person; (b) the output of the procedure will also provide the exact
specifications (i.e. input/output argument types) of each computation module.

References

[BB99] R. Battiti and A. Bertossi. Greedy, prohibition and reactive heuristics for graph partitioning.
IEEE Transactions on Computers, 48(4):361–385, 1999.

[BEP06] A. Billionnet, S. Elloumi, and M.-C. Plateau. Quadratic convex reformulation: a compu-
tational study of the graph bisection problem. Technical Report RC1003, Conservatoire
National des Arts et Métiers, Paris, 2006.

[Bou04] M. Boulle. Compact mathematical formulation for graph partitioning. Optimization and
Engineering, 5:315–333, 2004.

[FG02] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[FMdS+96] C.E. Ferreira, A. Martin, C. Carvalho de Souza, R. Weismantel, and L.A. Wolsey. Formula-
tions and valid inequalities for the node capacitated graph partitioning problem. Mathemat-
ical Programming, 74:247–266, 1996.

REFERENCES 7

[For60] R. Fortet. Applications de l’algèbre de boole en recherche opérationelle. Revue Française de
Recherche Opérationelle, 4:17–26, 1960.

[ILO02] ILOG. ILOG CPLEX 8.0 User’s Manual. ILOG S.A., Gentilly, France, 2002.

[JAMS89] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simulated
annealing: An experimental evaluation; part i, graph partitioning. Operations Research,
37:865–892, 1989.

[Lib04] L. Liberti. Reformulation and convex relaxation techniques for global optimization. 4OR,
2:255–258, 2004.

[Lib05] L. Liberti. Compact linearization for binary quadratic problems. 4OR, pages DOI
10.1007/s10288–006–0015–3, 2005.

[Som07] I. Sommerville. Software Engineering. Addison-Wesley, London, 2007.

