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Abstract

Given a set of entities, Cluster Analysis aims at finding subsets, called
clusters, which are homogeneous and/or well separated. As many types of
clustering and criteria for homogeneity or separation are of interest, this is a
vast field. A survey is given from a mathematical programming viewpoint.
Steps of a clustering study, types of clustering and criteria are discussed. Then
algorithms for hierarchical, partitioning, sequential, and additive clustering are
studied. Emphasis is on solution methods, i.e., dynamic programming, graph
theoretical algorithms, branch-and-bound, cutting planes, column generation
and heuristics.

Résumé

Étant donné un ensemble d’objets, la classification automatique a pour
but de trouver des sous-ensembles, ou classes, homogènes et/ou bien séparées.
Comme de nombreux types de classification et critères d’homogénéité et de
séparation sont dignes d’intéret, ce domaine est varié. On en présente une
revue, d’un point de vue de programmation mathématique. On discute les
étapes d’une étude de classification, les types de classigication et les critères.
On étudie ensuite les algorithmes de classification hiérarchique, de partition-
nement, de classification séquentielle et additive. On insiste sur les méthodes
de résolution, c’est-à-dire la programmation dynamique, les algorithmes de
graphes, les procédures d’optimisation par séparation, la génération de colonnes
et les heuristiques.

Acknoledgment: Corresponding author. Research supported by ONR grant
N00014-95-1-0917, FCAR grant 95-ER-1048 and NSERC grants GP0105574
and GP0036426.

State-of-the-art survey to be presented at the XVIth Mathematical Programming
Symposium, Lausanne August 25–29 1997, to appear in Mathematical Program-
ming, B.



1 Introduction

Consider a set of entities together with observations or measurements describing them.

Cluster Analysis deals with the problem of finding subsets of interest called clusters,

within such a set. Usually, clusters are required to be homogeneous and/or well sepa-

rated. Homogeneity means that entities within the same cluster should resemble one

another and separation that entities in different clusters should differ one from the

other [15]. This problem is old. It can be traced back to Aristotle and was already

much studied by xviiith century naturalists such as Buffon, Cuvier and Linné. It

is also ubiquitous, with applications in the natural sciences, psychology, medicine,

engineering, economics, marketing and other fields. As a consequence, the cluster

analysis literature is vast and heterogeneous (the yearly Classification Literature Au-

tomated Search Service lists many books and hundreds of papers on that topic in each

issue). Cluster analysis algorithms draw upon statistics, mathematics and computer

science. Closely related fields are pattern recognition, computer vision, computational

geometry and subfields of operations research such as location theory and scheduling.

Given a cluster analysis problem, the following questions should be answered:

• what is the aim of the clustering — the question of criterion (or criteria);

• are we justified in pursuing that aim — the question of axiomatics;

• what constraints should be considered — the question of choice of clustering

type;

• how difficult is it to perform the clustering — the question of complexity;

• how should the clustering be done — the question of algorithm design;

• is the clustering obtained meaningful — the question of interpretation.

While each of these questions has been studied, sometimes extensively, only some

chapters of cluster analysis (mainly agglomerative hierarchical clustering) appear to

be thoroughly explored, i.e., expressed as well developed mathematical theories. A

fruitful way to address the questions listed above (except possibly the last one) is

to adopt a mathematical programming viewpoint. While a few clustering problems

were expressed as mathematical programs before, systematic use of that approach

was only advocated about 25 years ago [114, 102]. The purpose of the present paper

is to review the mathematical programming approach to cluster analysis since that

time. No attempt will be made to be exhaustive. We will focus on the large class of

methods which use dissimilarities. We hope, however, to give a fairly representative

view of the main classes of clustering problems within that paradigm and of the most

efficient tools to solve them. The paper is organized as follows. Ingredients of cluster
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analysis are reviewed in the next section: steps of a cluster analysis study, types of

clusterings and criteria. Section 3 is devoted to hierarchical clustering. Agglomera-

tive and divisive algorithms are reviewed. Section 4 addresses partitioning problems,

and is organized by solution technique. Six of them are considered: dynamic pro-

gramming, graph theoretical algorithms, branch-and-bound, cutting planes, column

generation and heuristics. Other less frequently used clustering paradigms are ex-

amined in Section 5: sequential clustering, additive clustering and representation of

dissimilarities by trees. Brief conclusions are drawn in Section 6.

2 Ingredients of Cluster Analysis

2.1 Steps of a cluster analysis study

Most cluster analysis methods rely upon dissimilarities (or similarities, or proximi-

ties) between entities, i.e., numerical values either directly observed or, more often,

computed from the data before clustering. A general scheme for dissimilarity-based

clustering is the following:

(a) Sample. Select a sample O = {O1, O2, . . . , ON} of N entities among which

clusters are to be found.

(b) Data. Observe or measure p characteristics of the entities of O. This yields

a N × p data matrix X.

(c) Dissimilarities. Compute from the matrix X a N ×N matrix D = (dk`) of

dissimilarities between entities. Such dissimilarities (usually) satisfy the properties

dk` ≥ 0, dkk = 0, dk` = d`k for k, ` = 1, 2, . . . , N . They need not satisfy the triangle

inequality, i.e., be distances.

(d) Constraints. Choose the type of clustering desired (hierarchy of partitions,

partition, . . . ). Specify also further constraints on the clusters, if any (maximum

weight or cardinality, connectedness, . . . ).

(e) Criterion. Choose a criterion (or possibly two criteria) to express homogene-

ity and/or separation of the clusters in the clustering to be found.

(f) Algorithm. Choose or design an algorithm for the problem defined in (d),

(e). Obtain or write the corresponding software.
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(g) Computation. Apply the chosen algorithm to matrix D = (dk`) thus obtain-

ing clusters, and clusterings of the chosen type.

(h) Interpretation. Apply formal or informal tests to select the best cluster-

ing(s) among those obtained in (g). Describe clusters by their lists of entities and

descriptive statistics. Proceed to a substantive interpretation of the results.

Steps (d) and (e) define a clustering problem as a mathematical program. Steps (a)

to (c) and (h) correspond to a statistical viewpoint on clustering. They are in many

ways delicate and discussed at length in the literature [111, 73, 48, 83]. We focus here

on steps (d) to (g) which correspond to a mathematical programming viewpoint.

Several remarks are in order. First, dissimilarities may be computed from other

sources than a matrix of measurements X, for instance when comparing biological

sequences or partitions. Second, for some methods only the order of the dissimilarities

matters. This information can be obtained by questions such as “ are these two

entities more similar than these two other ones”. Third, cluster analysis is not the

only way to study dissimilarities or distances between entities in the field of data

analysis. Another much used technique is principal component analysis (e.g. [99]).

Fourth, few assumptions are made on the clusters in the above scheme and they are

usually in set-theoretic terms. In some circumstances, more knowledge is available.

For instances, the set of entities may be associated with a mixture of distributions, the

number and parameters of which are to be found (e.g. [96] chap. 3). Or yet clusters

may correspond to given objects such as characters, to be recognized. This last case

pertains to pattern recognition, a field close to but different from cluster analysis.

Fifth, instead of computing dissimilarities, direct clustering may be performed on the

matrix X. An early example is maximization of the bond-energy or sum for all cells

of products of their values with the values of adjacent cells [92]. Heuristics are based

on permuting rows and columns, and an exact solution is obtained by solving two

associated traveling salesman problems [89]. Clusters found by direct clustering may

be interpreted in conceptual terms. Recently, conceptual clustering has become a

very active field of research (e.g. [34, 106]).

2.2 Types of clustering

Cluster analysis algorithms are designed to find various types of clusterings, e.g.,

(i) Subset C of O;
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(ii) Partition PM = {C1, C2, . . . , CM} of O into M clusters;

(ii a) Cj 6= ∅ j = 1, 2, . . . , M ;

(ii b) Ci ∩ Cj = ∅ i, j = 1, 2, . . . , M and i 6= j;

(ii c)
M∪
i=1

Cj = O;

(iii) Packing PaM = {C1, C2, . . . , CM} of O with M clusters:

as (ii) but without (ii c);

(iv) Covering CoM = {C1, C2, . . . , CM} of O by M clusters:

as (ii) but without (ii b);

(v) Hierarchy H = {P1, P2, . . . , Pq} of q ≤ N partitions of O.

Set of partitions P1, P2, . . . , Pq of O such that Ci ∈ Pk, Cj ∈ P` and k > ` imply

Ci ⊂ Cj or Ci ∩ Cj = ∅ for all i, j 6= i, k, ` = 1, 2, . . . , N .

By far the most used types of clustering are the partition and the complete hierar-

chy of partitions, i.e., that one containing N partitions. This last hierarchy can also

be defined as a set of 2N − 1 clusters which are pairwise disjoint or included one into

the other. Recently, weakenings of hierarchies are also increasingly studied. They

include hierarchies of packings [91], weak hierarchies [2] and pyramids [35]. Work has

also been done on fuzzy clustering, in which entities have a degree of membership in

one or several clusters [10].

In constrained clustering, additional requirements are imposed on the clusters.

The most frequent are bounds on their cardinality, bounds on their weight, assuming

entities to be weighted, or connectedness, assuming an adjacency matrix between

entities is given.

2.3 Criteria

We first consider dissimilarity-based criteria used to express separation or homogene-

ity of a single cluster Cj. Separation of Cj can be measured by:

(i) the split s(Cj) of Cj, or minimum dissimilarity between an entity of Cj and one

outside Cj:

s(Cj) = Min
k:Ok∈Cj , `:O` 6∈Cj

dk`;
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(ii) the cut c(Cj) of Cj, or sum of dissimilarities between entities of Cj and entities

outside Cj:

c(Cj) =
∑

k:Ok∈Cj

∑

`:O` 6∈Cj

dk`

and one might also consider a normalized cut, which corrects the previous measure

to eliminate the effect of the cluster’s size by dividing c(Cj) by |Cj|
(
N − |Cj|

)
.

Homogeneity of Cj can be measured by:

(i) the diameter d(Cj) of Cj, or maximum dissimilarity between entities of Cj:

d(Cj) = Max
k,`:Ok,O`∈Cj

dk`;

(ii) the radius r(Cj) of Cj or minimum for all entities Ok of Cj of the maximum

dissimilarity between Ok and another entity of Cj:

r(Cj) = Min
k:Ok∈Cj

Max
`:O`∈Cj

dk`;

(iii) the star st(Cj) of Cj or minimum for all entities Ok of Cj of the sum of dissimi-

larities between Ok and the other entities of Cj:

st(Cj) = Min
k:Ok∈Cj

∑

`:O`∈Cj

dk`;

(iv) the clique c`(Cj) of Cj or sum of dissimilarities between entities of Cj;

c`(Cj) =
∑

k,`:Ok,O`∈Cj

dk`;

and one might also consider a normalized star and a normalized clique defined as

st(Cj) divided by |Cj| − 1 and c`(Cj) divided by |Cj|
(
|Cj| − 1

)
respectively.

If the entities Oj are points x of a p-dimensional Euclidean space, further concepts

are useful. Homogeneity of Cj is then measured by reference to a center of Cj which

is no more a point of Cj, as in the definitions of r(Cj) and st(Cj). One can then use

(i) the sum-of-squares ss(Cj) of Cj or sum of squared Euclidean distances between

entities of Cj and its centroid x:

ss(Cj) =
∑

k:Ok∈Cj

(
||xk − x||2

)2
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where || · ||2 denotes Euclidean distance and

x =
1

|Cj|
∑

k:Ok∈Cj

xk;

(ii) the variance v(Cj) of Cj defined as ss(Cj) divided by |Cj|;
(iii) the continuous radius cr(Cj) of Cj defined by

cr(Cj) = Min
x∈Rp

Max
k:Ok∈Cj

||xk − x||2;

(iv) the continuous star cst(Cj) of Cj defined by

cst(Cj) = Min
x∈Rp

∑

k:Ok∈Cj

||xk − x||2.

Next, consider partitions P of O into M clusters. The concepts defined above

yield, in a straightforward way, two families of criteria, to be maximized for separation

and minimized for homogeneity. They correspond to focusing on the worst cluster

or considering all clusters (or average values) respectively. So the split s(PM) of

partition PM is the smallest split of its clusters, the diameter d(PM) of PM is the

largest diameter of its clusters, and so on. The average split av(PM) of PM is the sum

of splits of its clusters divided by M , the average diameter ad(PM) of PM is the sum

of diameters of its clusters divided by M , and the like.

Similar definitions can be given for packings, coverings and hierarchies (viewed as

sets of 2N − 1 clusters).

Again, several remarks are in order. First, not all criteria are independent. For

instance, minimizing average clique is equivalent to maximizing average cut. Second,

a few criteria express both homogeneity and separation. This is the case for minimiz-

ing the within-clusters sum-of-squares, a criterion of homogeneity, which is equivalent

to maximizing the between-clusters sum of squares, a criterion of separation. Third,

values of s(PM), r(PM) and d(PM) are equal to a single dissimilarity value. Hence,

there are few potential values. Moreover, the optimal partitions are not modified by a

monotone transformation of the dissimilarities. Fourth, criteria such as r(Cj), st(Cj),

ss(Cj) and v(Cj) make use of a cluster center. This center may be usefully consid-

ered as representative of the cluster in some applications. Fifth, criteria defined for

partitions can be used in several ways: they can be optimized globally (exactly or ap-

proximately) in partitioning or locally in hierarchical clustering, where changes from a
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partition to the next are subject to constraints. Sixth, asymmetric dissimilarities may

be reduced to symmetric dissimilarities, e.g. by taking minimum or maximum val-

ues associated to opposite directions for each pair of entities. Alternately, definitions

given above may be adapted [76].

Criteria used in additive clustering differ form those described here, and will be

examined in Section 5.

3 Hierarchical Clustering

3.1 Agglomerative hierarchical clustering algorithms

Agglomerative hierarchical clustering algorithms are among the oldest and still most

used methods of cluster analysis [23, 49]. They proceed from an initial partition in

N single-entity clusters by successive mergings of clusters until all entities belong to

the same cluster. Thus, they fit into the following scheme:

Initialization

PN = {C1, C2, . . . , CN};
Cj = {Oj} j = 1, 2, . . . , N ;

k = 1;

Current step:

While N − k > 1 do

select Ci, Cj ∈ PN−k+1 following a local criterion;

CN+k = Ci ∪ Cj;

PN−k =
(
PN−k+1 ∪ {CN+k}

)
\ {Ci, Cj};

k = k + 1

EndWhile

By a local criterion, we mean a criterion which uses only the information given

in D and the current partition. Thus the algorithm uses no memory about how this

partition was reached or look-ahead feature about other partitions than the next one.

Many local criteria have been considered. They correspond to criteria for the

partitions obtained, sometimes defined in an implicit way. This is the case for the

single-linkage algorithm, which merges at each step the two clusters for which the

smallest inter-cluster dissimilarity is minimum. Indeed, a well-known graph theoretic
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result of [105] can be reformulated as follows. Let G = (V, E) denote a complete

graph, with vertices vk associated with entities Ok, for k = 1, 2, . . . , N and edges

{vk, v`} weighted by the dissimilarities dk`. Let MST denote a minimum spanning

tree of G.

Proposition 1 [105] The values of the split for all subsets of entities of O, and

hence for all partitions of O, belong to the set of dissimilarity values associated with

the edges of MST .

Corollary 1 [28] The single-linkage algorithm provides maximum split partitions at

all levels of the hierarchy.

For other criteria, the partitions obtained after several steps of an agglomerative

algorithm are not necessary optimal. For instance, the complete-linkage algorithm

merges at each step the two clusters for which the resulting cluster, as well as the

resulting partition, has smallest diameter. After two steps or more this partition may

not have minimum diameter. An algorithm to find minimum diameter partitions is

discussed in the next section.

An interesting updating scheme for dissimilarities in agglomerative hierarchical

clustering has been proposed in [87] and extended in [79, 80]. A parametric formula

gives new dissimilarity values between cluster Ck and Ci, Cj when these last two are

merged:

dk,i∪j = αidik + αjdjk + βdij + δ|dik − djk|.

Values of the parameters, a few examples of which are given in Table 1, correspond

to single-linkage, complete-linkage and other methods. Clusters to be merged at each

iteration are those corresponding to the smallest updated dissimilarity. Using heaps,

an O(N2 log N) uniform implementation of agglomerative hierarchical clustering is

obtained [26].

Better results can be derived in a few cases: finding the MST of G, ranking its

edges by non-decreasing values and merging entities at endpoints of successive edges

yields a θ(N2) implementation of the single-linkage algorithm [50]. At each iteration,

clusters correspond to connected components of a graph with the same vertex set

as G and as edges those of MST considered. A θ(N2) algorithm based on similar

principles has also been obtained [112] for clustering with asymmetric dissimilarities

and strongly connected components as clusters.
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Table 1: Coefficients in updating formula for agglomerative hierarchical clustering

Method αi αj β δ
Single linkage 1/2 1/2 0 −1/2
Complete linkage 1/2 1/2 0 1/2

Average linkage |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj | 0 0

Centroid |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj |

−|Ci||Cj |
(|Ci|+|Cj |)2 0

Ward’s method |Ci|+|Ck|
|Ci|+|Cj |+|Ck|

|Cj |+|Ck|
|Ci|+|Cj |+|Ck|

−|Ck|
|Ci|+|Cj |+|Ck| 0

The following reducibility property has been studied in [13]:

d(Ci, Cj) ≤ min
{

d(Ci, Ck), d(Cj, Ck)
}

implies

min
{

d(Ci, Ck), d(Cj, Ck)
}
≤ d(Ci ∪ Cj), Ck) ∀ i, j, k;

in words, merging two clusters Ci and Cj less dissimilar between themselves than

with another cluster Ck cannot make the resulting dissimilarity with Ck smaller than

the smallest initial one. Dissimilarities D = (dk`) induce a nearest neighbor relation,

with one or more pairs of reciprocal near neighbors. When the reducibility prop-

erty holds, each pair of reciprocal near neighbors will be merged before merging with

other clusters. Updating chains of nearest neighbors yields a θ(N2) agglomerative

hierarchical clustering algorithm for the (average) variance criterion [7]. This result

extends to the single-linkage, complete-linkage and average-linkage algorithms [98].

When entities of O belong to a low-dimensional Euclidean space and dissimilarities

are equal to distances between them, techniques from computational geometry can be

invoked, to get even faster algorithms. Extensions of agglomerative hierarchical clus-

tering algorithms to weak hierarchies or pyramids have been much studied recently,

e.g., in [2, 9].

3.2 Divisive hierarchical clustering algorithms

Divisive hierarchical clustering algorithms are less frequently used than agglomerative

ones. They proceed from an initial cluster containing all entities by successive bipar-

titions of one cluster at a time until all entities belong to different clusters. Thus,

they fit into the following scheme:
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Initialization

P1 = {C1} =
{
{O1, O2, . . . , ON}

}
;

k = 1;

Current step:

While k < N do

select Cj ∈ Pk following a first local criterion;

partition Cj into C2k and C2k+1 following a second local criterion;

Pk+1 =
(
Pk ∪ {C2k} ∪ {C2k+1}

)
\ {Cj};

k = k + 1

EndWhile

The role of the first local criterion is not crucial, as it only determines the order

in which clusters will be bipartitioned. The real difficulty lies in bipartitioning the

chosen cluster according to the second criterion, a problem which requires a specific

algorithm for each case, and which may be NP-hard. Only a few divisive clustering

algorithms have, as yet, been proposed.

For the minimum diameter criterion one exploits a property of any maximum

spanning tree MST ′ of the graph G defined above:

Proposition 2 [53, 97] The unique bicoloring of MST ′ defines a minimum diameter

bipartition of O.

Note that the diameter of this bipartition is equal to the largest dissimilarity of

an edge outside MST ′ closing an odd cycle with the other edges in MST ′.

Using Proposition 2 at all levels yields an O(N3) divisive hierarchical algorithm [102,

75]. A more careful implementation, building simultaneously maximum spanning

trees at all levels, takes O(N2 log N) time [55].

It follows from Proposition 2 and the remark following it that there are at most

O(N) candidate values for the diameter of a bipartition. This property can be used

in a divisive algorithm for hierarchical clustering with the average diameter criterion.

Candidate values for the largest diameter are considered in sequence and minimum

values for the smallest diameter sought for by dichotomous search. Existence of

a bipartition with given diameters is tested by solving a quadratic boolean equa-

tion [59] or by a specialized labelling algorithm [97, 46]. The resulting algorithm

takes O(N3 log N) time. It is more difficult to build an algorithm for average linkage
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divisive hierarchical clustering: bipartitioning O to maximize the average between

clusters dissimilarity is strongly NP-hard [60]. However, moderate size problems

(N ≤ 40) can be tackled, using hyperbolic and quadratic 0–1 programming. For

several criteria, when entities are points in R2, there are hyperplanes separating the

clusters. This property is exploited in an algorithm for hierarchical divisive minimum

sum-of-squares clustering in low-dimensional spaces [72] which solves instances with

N ≤ 20000 in R2, N ≤ 500 in R3 and N ≤ 150 in R4.

3.3 Global criteria

As mentioned in the previous section, a complete hierarchy of partitions can be viewed

as a set of 2N − 1 clusters. Optimizing an objective function defined on this set of

clusters is still unexplored, except for the average split criterion (where the split of O

itself is assumed to be 0): the single-linkage algorithm maximizes this value [61].

Results of hierarchical clustering can be represented graphically on a dendro-

gram [23] or an espalier [69] as shown in Figure 1. Then vertical lines correspond
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Figure 1: A dendrogram and an espalier, from [69]

to entities or clusters and horizontal lines joining endpoints of vertical lines to merg-

ings of clusters. The height of the horizontal lines corresponds to the value of the

updated dissimilarity between the clusters merged. This is a measure of separation

or homogeneity of the clusters obtained. In espaliers the length of the horizontal lines

is used to represent a second measure of homogeneity or separation of the clusters. If

the reducibility condition holds the updated dissimilarities d′k` satisfy the ultrametric

inequality [88]:
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d′k` ≤ max(d′kj, d
′
j`) ∀ j, k, `.

Thus a hierarchical clustering algorithm transforms a dissimilarity D = (dk`) into an

ultrametric D′ = (d′k`). This suggests further criteria: one can minimize

∑

k,`

(dk` − d′k`)
2

or ∑

k,`

|dk` − d′k`|.

In the former case, which is NP-hard [86], a combination of the average linkage

algorithm with branch-and-bound solves small instances (N ≤ 20) [17]; in the lat-

ter case a branch-and-bound method solves slightly larger instances. Heuristics use

penalty methods [30], in which violations of the ultrametric inequality are penalized,

or iterative projection strategies [77]. They can be extended to the case where some

data are missing [31] and to more general problems discussed in Section 5.

4 Partitioning

4.1 Dynamic Programming

In one-dimensional clustering problems, entities O1, O2, . . . , ON correspond to points

x1, x2, . . . , xN on the Euclidean line. Such problems are best solved by dynamic

programming, e.g., [6, 109]. This method works well when clusters have the string

property, i.e., consist of consecutive points on the line. Assume O1, O2, . . . , ON are

indexed in order of non-decreasing values of x1, x2, . . . , xN . Let f(Cj) denote the con-

tribution of cluster Cj to the objective function (assumed to be additive in the clusters

and to be minimized) and F `
m the optimal value of a clustering of O1, O2, . . . , Om into

` clusters. The recurrence equation may be written:

F `
m = Min

{k∈`,`+1,...,m}

{
F `−1

k−1 + f(Cm)
}

where

Cm = {Ok, Ok+1, . . . , Om}.
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Using updating to compute the f(Cj) for all potential clusters yields O(N2) algo-

rithms for various criteria [102, 109]. Note that the string property does not always

hold. Optimal clusters for one-dimensional clique partitioning do not necessarily sat-

isfy it [11]. However, they enjoy a weaker nestedness property: let [Cj] denote the

range of the entities Ok, . . . , O` of Cj, i.e., [xk, x`]. Then for any two clusters Ci and

Cj in the set of optimal partitions

[Ci] ∩ [Cj] = ∅ or [Ci] ⊆ [Cj] or [Cj] ⊆ [Ci].

So, ranges of any two clusters are either disjoint or included one into the other.

Exploiting this property leads to a polynomial algorithm for one-dimensional clique

partitioning, also based on dynamic programming [70]. A detailed discussion of nest-

edness and related properties is given in [78].

When clustering entities in higher-dimensional spaces, there does not seem to be an

equivalent of the string property. In a few particular cases, the recurrence equation

can be extended [81, 38]. Several authors, e.g. [110], have proposed to impose an

order on the entities, for instance the order of points on a Peano curve or the order

of traversal in a traveling salesman tour, and then to apply dynamic programming

to the resulting one-dimensional problem. Such a procedure quickly gives an optimal

solution to an approximation of the given problem. Its proximity to the optimal

solution of the problem itself depends on the first step, which is somewhat arbitrary.

To obtain an optimal solution in the general case, nonserial dynamic program-

ming [8] must be used. Let F `
S denote the optimal value of a clustering of the entities

of subset S into ` clusters. The recurrence relation then becomes

F `
S = Min

C`CS

|C`|≤|S|−`+1

{
F `−1

S\Cm
+ f(Cm)

}
.

Applying this equation takes time exponential in N , so only small sets of entities

(N ≤ 20) may be considered. Sometimes, constraints accelerate the computations,

e.g., if all clusters must be small.

4.2 Graph-theoretical algorithms

As mentioned in the previous section, the single-linkage algorithm provides optimal

partitions for the split criterion at all levels of the hierarchy. So it is also a θ(N2)

algorithm for maximizing the split of a partition of O into M clusters. The problem
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of maximizing the average split, or the sum-of-splits, of such a partition is related

but different. Its solution relies on the following result:

Proposition 3 [61] Let C = {C1, C2, . . . , C2N−1} denote the set of clusters obtained

when applying the single-linkage algorithm to O. Then for all M there exists a parti-

tion P ∗
M which maximizes the average split and consists solely of clusters of C.

Consider then the dual graph of the single-linkage dendrogram, as defined in [61].

It is easy to show that any partition of O into M clusters of C corresponds to a

source-sink path with M arcs in that graph. Then, weight the arcs of the dual graph

by the splits of the clusters associated with the edges of the dendrogram they cross.

Using dynamic programming to find a cardinality constrained longest path yields a

partition P ∗
M with maximum average split in θ(N2) time.

The relationship between graph coloring and finding a bipartition with minimum

diameter was also mentioned in the previous section. In fact, this relationship extends

to the general case.

Proposition 4 [22, 58] Let t be the smallest dissimilarity value such that the partial

graph Gt = (V, Et) of G with Et =
{
{vk, v`}; dk` ≥ t

}
is M-colorable. Then the color

classes in any optimal coloring of Gt define a minimum diameter partition of O into

M clusters.

This relationship can be exploited in the reverse direction to show minimum di-

ameter partitioning is NP-hard for M ≥ 3 [13, 58], and adapted to prove further

NP-hardness results [115]. Updating may be used to exploit Proposition 4 efficiently.

Consider graph Gt to which is added an edge. If the vertices of this edge do not have

the same color, or if local recoloring (e.g., by bichromatic interchange) gives a coloring

with no more colors than previously one can proceed to the next graph. When there

is some structure in the set O under study, it will be reflected in the graphs Gt, which

are easier to color than random ones, and instances with N ≤ 600 could indeed be

solved.

Minimum diameter partitions are not unique. Enumerating them is discussed

in [54]. Alternately, one can adapt the coloring algorithm to find a partition mini-

mizing the second largest cluster diameter, subject to the first being minimum, then

the third largest and so on [27].
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Partitions obtained with the single-linkage algorithm may suffer from the chain-

ing effect: dissimilar entities at the ends of a long chain of pairwise similar entities

are assigned to the same cluster. Partitions obtained by the coloring algorithm for

minimum diameter may suffer from the dissection effect [23]: similar entities may

be assigned to different clusters. To avoid both effects one may seek compromise

solutions, i.e., efficient partitions for the split and diameter criteria. The resulting

bicriterion cluster analysis algorithm [28] is based on Propositions 1 and 4. To impose

a minimum value on the split it suffices to merge the vertices of G at endpoints of

successive edges of MST . Then the resulting reduced graph GR of G can be colored

as described above. Splits and diameters of the efficient partitions may be represented

graphically on a diameter-split map. It can be used to evaluate whether the set O

possesses some structure or not and which partitions appear to be the most natural

ones. A single efficient partition for a value of M is a good indication.

Some clustering algorithms apply to graphs, which may be viewed as partial graphs

Gt as defined above, for a given t. Clusters may then be defined as maximal com-

ponents with minimum degree at least δ [91]; a O(N + |E|) algorithm provides a

hierarchy of packings corresponding to successive values of δ. When clustering points

in R2, geometric properties may be exploited to obtain low-order polynomial algo-

rithms. For instance, minimum average diameter bipartitioning in the plane can be

done in O(n log2 n/ log log n) time [74] and minimizing any monotone function of

the diameters of an M cluster partition can be performed in O(n5M) time [16].

4.3 Branch-and-bound

Branch-and-bound algorithms have been applied, with some success, to several par-

titioning problems of cluster analysis. Their efficiency depends on sharpness of the

bounds used, availability of a good heuristic solution and efficient branching, i.e.,

rules which improve bounds for all subproblems obtained in a fairly balanced way.

An algorithm for minimum sum-of-squares partitioning [85, 36] exploits bounds

based on assignments of entities to clusters already made, and additivity of bounds for

separate subsets of entities. It solves problems with N ≤ 120 and a few well-separated

clusters of points of R2, but its performance deteriorates in higher dimensional spaces.

Another algorithm [84], for minimum sum-of-cliques partitioning, uses bounds based

on ranking dissimilarities, which are not very sharp. Problems with N ≤ 50, M ≤ 5

can be solved.
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Better results are obtained when bounds result form solution of a mathemati-

cal program. For minimum sum-of-stars partitioning (the M -median problem) the

well-known DUALOC algorithm [42] combined with Lagrangian relaxation of the car-

dinality constraint [57] is very efficient. Problems with N ≤ 900 are solved exactly

and the dimension of the space considered does not appear to be an obstacle.

A variant of the minimum sum-of-cliques partitioning problem arises when one

seeks a consensus partition, i.e., one which is at minimum total distance of a given

set of partitions [104], distance between two partitions being measured by the number

of pairs of entities in the same cluster in one partition and in different clusters in the

other. Dissimilarities may then be positive or negative and the number of clusters is

not fixed a priori. This problem can be expressed as follows [90]:

Minimize
N−1∑

k=1

N∑

`=k+1

dk` yk`

subject to:

yk` + y`q − ykq ≤ 1 k = 1, 2, . . . , N − 2

−yk` + y`q + ykq ≤ 1 ` = k + 1, k + 2, . . . , N − 1

yk` − y`q + ykq ≤ 1 q = ` + 1, ` + 2, . . . , N

and

yk` ∈ {0, 1} k = 1, 2, . . . , N − 1, ` = k + 1, k + 2, . . . , N.

where yk` = 1 if Ok and O` belong to the same cluster and yk` = 0 otherwise. Problems

with N ≤ 72 could be solved [90] by applying the revised simplex method to the dual

of the continuous relaxation of the above formulation. No duality gap was observed

(nor a branching rule specified for the case where there would be one). A direct

branch-and-bound approach is proposed in [39]. A first bound equal to the sum of

negative dissimilarities is improved upon be using logical relations between the yk`

variables (or, in other words, exploiting consequences of the triangle inequalities).

For instance is variable yk` is equal to 1 then for all indices q either both yk` and y`q

are equal to 1 or both are equal to 0 in any feasible solution. If these variables are

free, the bound may be increased by

min
{

max {dk`, 0}+ max {d`q, 0}, max {−dkq, 0}+ max {−d`q0}
}

.

Many further consequences are taken into account and the resulting bounds are quite

sharp. Instances with N ≤ 158 could be solved, more quickly than with a cutting-
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plane approach, but less quickly than with a combination of heuristic, cutting planes

and branch-and-bound (see next subsection).

4.4 Cutting planes

Until recently, few papers of cluster analysis advocated the cutting-plane approach.

The minimum sum-of-cliques partitioning problem has attracted the most attention.

Therefore, the convex hull H of integer solutions to the problem defined in the pre-

vious section is studied.

Proposition 5 [52] (i) The dimension of H is N(N − 1)/2;

(ii) for all k, ` yk` ≥ 0 and yk` ≤ 1 are valid inequalities; the former are always facets

and the latter never;

(iii) for all k, `, q the triangle inequalities define facets;

(iv) for every two disjoint subsets U, V of O, the 2-partition inequality induced by

U, V , i.e.,

y(U : V )− y(U)− y(V ) ≤ min
{
|U |, |V |

}
,

where y(U : V ) denotes the sum of the variables corresponding to pairs of entities one

in U and the other in V , y(U) = y(U : U) and y(V ) = y(V : V ), is valid and a facet

if and only if |U | 6= |V |.

Several further families of facets are given. These results are used in a cutting plane

algorithm [51] to solve instances with N ≤ 158. It appears that the triangle inequal-

ities suffice in almost all cases. Facets of the polytope obtained when a cardinality

constraint is added have also been studied [19].

Recently, cutting planes have been combined with heuristics, relocalization of the

best known solution at the origin (which eases the separation problem) and branch-

and-bound. [101]. Minimum sum-of-cliques problems of the literature with N ≤ 158

are solved very quickly.

Cutting-planes were also used in [82] to solve, in moderate time, the auxiliary

problem in a column generation approach (see next subsection) to a constrained

minimum-sum-of-cuts partitioning problem (called min-cut clustering).

The cutting plane approach does not seem to be easy to adapt to clustering prob-

lems with objectives which are not sums of dissimilarities or to problems in which the
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number of clusters is fixed. Further work on cutting-planes for clustering or related

problem is [19, 20, 43].

4.5 Column generation methods

The generic partitioning problem of cluster analysis may be expressed as a standard

partitioning problem, plus one constraint on the number of clusters, by considering

all possible clusters, i.e., subsets of O. This gives a number of columns exponential

in N :

Min
2N−1∑
t=1

f(Ct) yt

subject to:
2N−1∑
t=1

ajt yt = 1 j = 1, 2, . . . , N

2N−1∑
t=1

yt = M,

and

yt ∈ {0, 1} t = 1, 2, . . . , 2N − 1,

and where ajt is equal to 1 if entity Oj belongs to cluster Ct and 0 otherwise. Despite

its enormous size this formulation turns out to be one of the most useful. In order

to solve this problem one needs (i) to solve efficiently its continuous relaxation and

(ii) to proceed efficiently to a branch-and-bound phase in case the solution of the

relaxation is not in integers. We discuss these two aspects in turn.

The standard way to solve linear programs with an exponential number of columns

is to use column generation [47, 21]. In this extension of the revised simplex method,

the entering column is obtained by solving an auxiliary problem, where the unknowns

are the coefficients aj of the column:

Min f(Cj)−
N∑

j=1

aj uj − uN+1

subject to:

aj ∈ {0, 1} j = 1, 2, . . . , N
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where (u1, . . . , uN , uN+1) are the dual variables at the current iteration. Difficulty

varies depending on the form of f(Cj) as a function of the aj. For minimum sum-

of-stars clustering (or the M -median problem), the first clustering problem solved

by column generation [44], solving the auxiliary problem is straightforward: for each

potential cluster center k in turn set aj = 1 if dkj < uj and aj = 0 otherwise. If∑
j/aj=1 (dkj−uj)−uN+1 < 0 the column so defined is a candidate to enter the basis.

For the capacitated version of this problem the auxiliary problem reduces to

a knapsack problem. For the sum of cliques problem the subproblem reduces to

quadratic 0–1 programming:

Min
N−1∑
j=1

N∑

k=j+1

djk ajak −
N∑

j=1

ajuj − uN+1

in 0–1 variables aj [93, 82, 68]. For the minimum sum-of-squares problem, it reduces

to a hyperbolic 0–1 program, in view of Huyghens’ theorem, which states that the

sum of squared distances to the centroid is equal to the sum of squared distances

between entities divided by the cardinality of the cluster:

Min

N−1∑
j=1

N∑
k=j+1

d2
jk ajak

N∑
j=1

aj

−
N∑

j=r

ajuj − uN+1

in 0–1 variables. An iterative solution scheme [37] reduces this problem to a sequence

of quadratic programs in 0–1 variables. These last problems, as well as other quadratic

0–1 programs discussed above, can be solved by an algebräıc (or variable elimination)

method [24], linearisation [113], cutting planes [3] or branch-and-bound [63], possibly

exploiting the persistency properties of roof duality theory [56]. Combining column

generation with an interior point method [41] allows solution of minimum sum-of-

squares partitioning problem with N ≤ 150.

Once the entering column is found the algorithm proceeds to a simplex iteration

as in the revised simplex method. However, convergence may be slow, particularly if

there are few clusters in the partition and hence massive degeneracy of the optimal

solution. In fact, even when the optimal solution is found many more iterations may

be needed to prove its optimality. Columns in the primal correspond to cutting planes

in the dual; a good approximation of the dual polytope around the optimal value for

the dual is needed, but little information is available about this optimum. A recent
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bundle method in the L1-norm [40] stabilizes the algorithm while remaining within

the column generation framework. It gives good results for continuous sum-of-stars

clustering in the plane (the multisource Weber problem), instances with N = 1060,

M ≤ 50 being solved[62].

Once the linear relaxation of the master problem is solved, one must check for inte-

grality of the solution. For some problems, as minimum sum-of-cliques clustering, it

seems to be fairly often the case. Otherwise, branch-and-bound is needed. Extension

of standard dual and primal procedures of mixed-integer programming to column

generation [71, 66] is only efficient when there are few integers variables. Setting one

fractional variable yt at 1 modifies substantially the problem as all constraints corre-

sponding to elements of Ct are satisfied; but setting yt at 0 only excludes one column

among an enormous number. So other branching rules are needed, and have indeed

been found. A first proposal [100] was made in 1983 for capacitated sum-of-stars

partitioning (or the capacitated M -median problem with single-supply constraints):

branching is done by assigning an entity to a center, which implies this center is

selected in some cluster of the partition, or forbidding it to belong to a cluster with

that center. Another fairly close branching rule, first proposed [107] for the parti-

tioning problem (but not for column generation) is to specify that two entities Oj

and Ok must belong to the same cluster or not. So branching is done in the auxiliary

problem by adding the constraints aj = ak in one branch, and aj + ak ≤ 1 in the

other. Columns not satisfying these constraints are removed. This rule appears to

be more efficient than the previous one [67] and variants of it have been applied with

success in several papers on scheduling problems, e.g., [33]. Nevertheless, some recent

column generation methods for clustering,e.g., [93, 82] still stopped after solution of

the master’s problem relaxation or used some heuristic from that point. In a recent

survey [4], the name “branch-and-price” has been proposed for combination of column

generation and branch-and-bound.

4.6 Heuristics

For many criteria, exact solution of large clustering problems is out of reach. So there

is room for heuristics. Moreover, finding a good initial solution may be important in

column generation (if it is well exploited, i.e., if columns close to those of this solution

are used to complete the basis; otherwise beginning with the heuristic solution may

slow down the solution process).
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Traditional heuristics use exchange of entities between clusters or redefinition of

clusters from their centroids. The HMEANS algorithm, e.g. [109], for minimum-sum-

of-squares partitioning draws an initial partition at random, then proceeds to best

exchanges of entities from one cluster to another until a local minimum is attained.

The KMEANS algorithm for the same problem, also draws an initial partition at

random then computes the cluster centröıds, assigns entities each to the closest of

them and iterates until a local minimum is attained. Both procedures can be repeated

a given number of times. They give good results when there are few clusters but

deteriorate when there are many. Experiments show that the best clustering found

with KMEANS may be more than 50% worse then the best known one.

Much better results have been obtained with metaheuristics, i.e., simulated an-

nealing, Tabu search, genetic search, etc [103]. The recent Variable Neighborhood

Search [72] proceeds by local search to a local minimum, then explores increasingly

distant neighborhoods of that partition by drawing a perturbation at random and

doing again a local search. It moves to a new partition and iterates if and only if

a better one than the incumbent is found. Experiments show this procedure is very

efficient for approximate solutions of large clustering problems.

5 Other clustering paradigms

5.1 Sequential clustering

Most clustering algorithms give results regardless of whether the given set of entities

possesses some structure or not. Moreover, all entities must usually be assigned to

some cluster. This disregards the possibility of noise, i.e., entities (possibly all of

them) which can only be classified arbitrarily. It may therefore be preferable to

consider packing problems instead of partitioning problems. Moreover, one may wish

to study clusters one at a time, beginning by the most obvious one, removing its

entities and iterating. The so-defined sequential clustering [72] is close to methods of

image processing:

Current step

Find clusters Ck ⊂ O with |Ck| = k = 1, 2, . . . , |O| which optimize a criterion;

Evaluate the best value k∗ of k and the significance of cluster Ck∗ . If it is significant

(different from noise) set O = O \ {Ck∗} and iterate; otherwise stop.
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Thus, at each step, a single-cluster parametric clustering problem is solved, and

followed by a test based on the distribution of values of the criterion. Some cases

are easy: finding a maximum split cluster can be done in θ(N2) time in view of

Proposition 1, rediscovered in [18]. Finding a minimum radius cluster or a minimum

star cluster take O(N2 log N) time by ranking dissimilarities. Finding a minimum

diameter cluster is NP-hard, as well as finding a minimum clique cluster. The former

problem can be solved by reducing it to a sequence of maximum clique problems, and

the latter by expressing it as a quadratic knapsack problem. Other geometric criteria

are considered in [1] and [25].

5.2 Additive clustering

In addition to finding clusters one may use them to explain dissimilarities (or simi-

larities) between pairs of entities, as proposed in additive clustering [108, 95]. Given

a matrix S = (sk`) of similarities between pairs of entities of O one seeks M over-

lapping clusters C1, C2 . . . , CM and corresponding weights λ1, λ2, . . . , λM to minimize

the sum-of-squares of errors:

N−1∑

k=1

N∑

`=k+1

(
sk` −

∑

j|Ok,O`∈Cj

λj

)2

In a variant of that model, one cluster contains all entities. Many heuristics have been

proposed for its solution, using various techniques of mathematical programming. If

one cluster is considered at a time, in a qualitative factor analysis technique [95], the

problem is easier and can be reduced to quadratic or hyperbolic 0–1 programming

with a cardinality constraint [64].

5.3 Representing dissimilarities by trees

Consider again the dendrogram obtained by a hierarchical clustering algorithm (see

Figure 1). This dendrogram can be viewed as a tree, with vertices associated with the

N entities, as well as with the N − 1 clusters obtained (and represented by points in

the middle of the horizontal lines). Edges join vertices if and only if they are joined

by lines of the dendrogram crossing no other vertex. Associating with each edge the

length of the corresponding vertical segment in the dendrogram, one observes that

the length between the vertex corresponding to O and any vertex associated with a
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single entity is a constant. This property may be relaxed. Then the general problem

of representing dissimilarities by additive trees arises: the length corresponding to

dk` will be that of the path between the vertices vk and v` of the additive tree T . So

both the topology of T and the length of its edges must be determined. This topic is

studied in depth in [5].

In order to be representable by an additive tree, it is necessary and sufficient that

the dissimilarity D′ satisfy the four-point condition [14]:

d′ij + d′k` ≤ Max (d′ik + d′j`, d
′
i` + d′jk) ∀ i, j, k, `.

Finding a dissimilarity D′ satisfying this condition and at minimum distance of

a dissimilarity D for the minimum sum-of-squares criterion is NP-hard. Indeed, it

subsumes the NP-hard problem of finding an ultrametric at minimum distance of a

dissimilarity discussed in Section 3. Only very small instances of this problem can

be solved exactly, but many heuristics have been proposed. They include generaliza-

tions of the penalty approach discussed above [29, 31], iterative projection strategies

on closed convex sets defined by the constraints [77], and alternating methods in

which local modifications in the tree’s topology alternate with fittings of distances to

edges [45].

6 Conclusions

Mathematical programming has been applied with success to cluster analysis in the

last 25 years. This has led to (i) define precisely many cluster analysis problems,

(ii) determine their computational complexity, (iii) clarify the objective underlying

known algorithms, and exhibit some important properties, e.g., for the split criterion,

(iv) obtain improved and sometimes best possible algorithms for known easy prob-

lems; (v) obtain polynomial and sometimes best possible algorithms for new problems,

e.g., average split partitioning; (vi) obtain non polynomial but useful algorithm for

NP-hard problems, e.g., clique partitioning and minimum sum-of-squares partition-

ing; (vii) devise useful heuristics, yielding near-optimal solutions for large instances.;

(viii) establish ties between cluster analysis and other subfields of mathematical pro-

gramming and computational geometry, where similar problems are studied.
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While many results have been obtained, much remains to be done to completely

integrate cluster analysis within mathematical programming. Axiomatics are needed,

particularly for partitioning. New exact algorithms should be devised, mostly for

divisive hierarchical clustering, sequential clustering and additive clustering, where

few or none exist, but also for partitioning with little studied criteria. Heuristics for

large instances deserve further study. Empirical comparison of methods is also too

rare, with a few exceptions (e.g. [94]). Finally, gathering existing software, often hard

to access, and streamlining it into a package would be of help.
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plus proche d’une dissimilarité au sens des moindres carrés, RAIRO-Recherche

Opérationnelle 14 (1980) 157–170.

[18] M.S. Chang, C.Y. Tang and R.C.T. Lee, A Unified Approach for Solving Bottle-

neck k-Bipartition Problems, Proceedings of the 19th Annual Computer Science

Conference (San Antonio, Texas, March 5–7, ACM, 1991) 39–47.

[19] S. Chopra and M.R. Rao, On the Multiway Cut Polyhedron, Networks 21 (1991)

51–89.

[20] S. Chopra and J.H. Owen, Extended Formulations for the A-Cut Problem,

Mathematical Programming 73 (1996) 17–30.

25



[21] V. Chvatal, Linear Programming (New-York: Freeman, 1983).

[22] N. Christofides, Graph Theory. An Algorithmic Approach (London: Academic

Press, 1975).

[23] R.M. Cormack, A Review of Classification (with Discussion), Journal of the

Royal Statistical Society A 134 (1971) 321–367.

[24] Y. Crama, P. Hansen and B. Jaumard, The Basic algorithm for Pseudo-Boolean

Programming Revisited, Discrete Applied Mathematics 29 (1990) 171–185.

[25] A. Datta, H.-P. Lenhof, Ch. Schwarz and M. Smid, Static and Dynamic Al-

gorithms for k-point Clustering Problems, Journal of Algorithms 19 (1995)

474–503.

[26] W.H.E. Day and H. Edelsbrunner, Efficient Algorithms for Agglomerative Hi-

erarchical Clustering Methods, Journal of Classification 1 (1984) 7–24.

[27] M. Delattre and P. Hansen, Classification d’homogénéité maximum, in: Actes
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