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Abstract

Several years ago classical Euclidean geometry problems of densest packing of circles in the plane have been
formulated as nonconvex optimization problems, allowing to 4nd heuristic solutions by using any available
NLP solver. In this paper we try to improve this procedure. The faster NLP solvers use 4rst order information
only, so stop in a stationary point. A simple switch from Cartesian coordinates to polar or vice versa, may
destroy this stationarity and allow the solver to descend further. Such formulation switches may of course be
iterated. For densest packing of equal circles into a unit circle, this simple feature turns out to yield results
close to the best known, while beating second order methods by a time-factor well over 100.

This technique is formalized as a general reformulation descent (RD) heuristic, which iterates among several
formulations of the same problem until local searches obtain no further improvement. We also brie<y discuss
how RD might be used within other metaheuristic schemes.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

What is the smallest circle in which one can pack n unit circles? Chapter 10 of [1] about tangent
circles reproduces the solutions given by [2] for n= 2; : : : ; 10, claiming their optimality, as allegedly
proven by [3].

Their solution for n = 10 is shown at the left of Fig. 1, but the better solution obtained in [4]
depicted on the right shows that the previous claim was incorrect. Since then this latter packing has
been shown to be optimal, see [5].
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Fig. 1. Packing 10 unit circles into a circle. (a) Radius: 3.8284271; (b) Radius: 3.8130256.

In fact the solution on the left is not even a local optimum: moving all circles downwards along the
boundary, while pushing the two central circles upwards, one may see that the radius of the enclosing
circle may be continuously decreased, until the situation shown at the right is reached. However,
this descent path is curved with respect to the eight outer unit circles, and there exists no fully
linear path out of the situation at the left along which the outer radius may be decreased. Therefore,
this solution corresponds to a stationary point, i.e. where no linear descent direction exists. Since
(sub)gradients are de4ned using information along half-lines issued from the point of evaluation
only, any optimization code based solely on gradient-type information will be blocked there.

However, along this descent curve all small circle centers either move radially or circularly with
respect to the large circle’s center, whereas the large radius reduction is a radial decrease with
respect to this same center. All these movements are linear when expressed in polar coordinates
centered at the outer circle’s center. So in terms of polar coordinates there exists a linear path along
which the objective decreases. In other words, in polar coordinate terms the solution (a) at the left
is not stationary, and gradient-based optimization codes ought to be able to move on towards the
right-hand solution (b).

This observation led to the idea of using nonlinear reformulations of a problem, in order to try to
move on after a standard optimization code stops at a stationary point, but without the guarantee of
having reached a local minimum. This paper reports on the 4rst results obtained with this idea when
tested on the Problem of Packing Circles into the unit Circle (PPCC), similar to Fig. 1. In these
problems, each time a stationary point is reached, the problem is transformed non linearly from one
coordinate system to the other; that is, from Cartesian to Polar or from Polar to Cartesian.

The paper is organized as follows. In the next section, we describe our RD heuristic in the case of
nonlinear programming. In Section 3, the RD heuristic is applied to the circle packing problem and
computational results are reported. Section 4 gives some results obtained with RD for packing circles
into a square, and suggests two general ways how RD may be used in more general meta-heuristic
schemes. In a 4nal section, we give some concluding remarks and suggestions for future work.

2. RD for nonlinear non-convex optimization

2.1. Stationarity vs. local optimality

A nonlinear programming problem (NLP) may be formulated as
min
x

{f(x)|x∈D}; (1)
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where f is a function that maps Rn to R and D is a feasible set, usually de4ned by a set of
equality and/or inequality constraints. NLP is non-convex if f(x) is a non convex function and/or
D is not a convex set. NLP is unconstrained if D = Rn; when D⊂−= Rn, a constrained optimization

problem is de4ned. The usual way for solving constrained problems is to transform them 4rst to
an unconstrained form and to solve it using a technique that best takes advantage of the theoretical
properties of this unconstrained form.

Simple gradient methods use gradients for the search, and stop when no further descent direction
can be found using (approximate) gradients. Theoretically, the point is then stationary, i.e. with a
zero gradient.

Any local minimum is necessarily a stationary point, at least when the objective is diMerentiable
at that point. Indeed, any non-stationary point admits a nonzero gradient at this point, and in the
negative gradient direction the function will then strictly decrease along a (short enough) straight
line segment, showing that the point is not a local minimum.

The emphasized text above is the clue to the RD idea for global optimization: gradient techniques
and stationarity only take into account what happens when one leaves the stationary point along
straight line segments. This means that a stationary point which is not a local minimum, can always
be left along a (short enough) curve while decreasing the objective, but not along a straight one.

Now, using a reformulation of the problem applying a linear (or rather aNne) transformation
changes line segments into line segments, so any stationary point remains stationary, and the gradient
method will also remain stuck after transformation. But if we can 4nd some nonlinear transformation,
which recti4es (makes straight) some descent curve, then after this reformulation the point is not
stationary anymore, and the gradient method can proceed to 4nd better points.

2.2. Pseudo-code of RD

The following pseudo-code describes in more detail how we propose to exploit the availability of
several formulations of the problem.

RD
(1) Construct at least two not linearly related formulations of the problem.
(2) Choose a starting solution x.
(3) Repeat over all formulations.

• Using an oM-the-shelf nonlinear optimization code, 4nd a stationary point x′ starting from x.
• If x′ is better than x, set x := x′ and restart the full loop at 3, i.e. start again from the

4rst formulation.
• otherwise loop, i.e. change formulation (if such exists, otherwise move to (4)) and repeat.

(4) Store x as a possible local optimum, since x is a stationary point for all formulations.
MRD
(5) Restart at step 2, with another starting solution, or stop if some stopping criterium is met.

In order to obtain solutions of better quality, our RD method may be restarted several times, as
indicated in step 5 above. We will call this variant Multistart-RD (MRD).
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Stopping criteria for MRD will typically depend on factors such as calculation time, frequency
of improved solutions, or quality of found solution. This quality may be measured either in terms
of simply being satisfactory, or, in case quality bounds are available, in terms of being suNciently
close to optimal.

2.3. Parameters of RD

RD may be seen as a general heuristic for local optimization with several parameters, as shortly
discussed below, and therefore allows many variants in implementation.

2.3.1. Set of formulations
The choice of the formulations of the problem is of course important. When only one formulation

is available, RD simply reduces to a single local optimization step. When at least two formulations
are available, the main loop in RD becomes non-trivial. Any two linearly related formulations will
in principle have the same stationary points, so should not be considered both, since this would
never lead to new solutions and thus be totally ineMective.

Also the RD strategy will not be of any use if (approximate) stationarity and (approximate) local
optimality are equivalent. In convex problems this is well known to be the case. Therefore, as soon
as one of the formulations used is convex (i.e. minimization of a convex function under convex
constraints) RD becomes ineMective.

Therefore RD should be reserved for problems for which several non-linearly related non-convex
formulations are available, but no convex formulation exists (or is known). On the other hand, it
is well-known that unconstrained non-convex models, obtained by Lagrangian, interior or exterior
point reformulations from constrained problems often exhibit numerous stationary points. Thus, RD
should be successfully applied for constrained optimization problems.

It was observed higher that a reformulation may only be expected to be eMective if it recti4es
some descent curve at the stationary point. Therefore, the choice of formulations is quite crucial:
any formulation used should be chosen carefully to re<ect the problem’s geometry suNciently so
as to rectify some new but natural curved feasible paths (hopefully of descent). In other words,
one should 4rst have a good understanding of the objective’s behavior before choosing the set of
formulations.

2.3.2. Initial solution(s)
The choice of the starting solution is well known to be important in nonlinear optimization,

although it is quite diNcult, if not impossible, to say exactly how. Usually, one cannot say much
more than a vague “if the starting solution is feasible and ‘close’ to a local optimum, the method
will converge to it or an even closer local optimum”.

For the multi-start MRD, one should of course aim at diversity of the successive starting points.
Also, most codes allow starting at non-feasible solutions, which may be another way of diversi-
4cation. Two strategies may be considered: randomly chosen starting points (possibly guided for
diversi4cation) or grid-like chosen starting points.
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2.3.3. Nonlinear optimization code
Many quite diMerent nonlinear optimization methods exist, and it is notorious that their results

may be of quite diMerent quality. Observe that the NLP-code used does not need to contain elabo-
rate features to evade stationary, non-locally optimal points, since this is exactly what RD aims at
overcoming. In view of potentially numerous repetitions, the code should better be simple and fast.

Note also that codes that use second-order conditions, like Newton-type methods should not be
and cannot be used with RD for solving nonlinear non-convex optimization problems, since they do
not necessarily stop in a stationary point. RD methods try to reach a precision that second order
condition methods already have, but with much less computational eMorts, i.e. in much less CPU
time. Hence, an important question when testing RD is how it compares with Newton-type methods.
That is why in the computational results section of this paper we compare our RD with a truncated
Newton method, called Spenbar.

2.3.4. Sequence of chosen formulations
The order in which the formulations are tried out in step (3) might be thought to be irrelevant

since the 4nal solution obtained in step (4) is a stationary point for all formulations. But there might
be many such stationary points, and a diMerent order might result in another one. In practice, this
turns out to happen; even with two formulations the choice of which one to start with does to matter,
as shown by the results described in Section 3.4. In case there are more formulations one might
even try to optimize in advance the order of the formulations aiming at ‘maximizing’ the ‘degree
of nonlinearity’ of the transformation of one to the next.

Notice that the full loop over all formulations in step (3) is restarted after each better solution
found. This feature has turned out to be important, to make sure that each time a better solution is
found all (other) formulations are tried out again before stopping.

3. Packing equal circles in the unit circle

We have tested the RD and MRD strategies on circle packing problems.
In circle packing a given number of circular disks must be positioned without any overlap within

a given planar shape, the container. The packing is densest when no smaller copy of the container
can contain the same circles. The search for a densest packing may be expressed in two ways: either
the classical way, by 4xing the radii of the disks to 1 and minimizing the size of the container, as
was suggested in the introduction for packing 10 unit circles in a smallest containing circle, or by
4xing the container size and maximizing the common radius of the packed disks. In what follows
the last option has been taken, but both models are clearly equivalent (although the transformation
from one into the other is nonlinear, in fact).

Our approach may be applied to circle packing problems into several diMerent container shapes.
Here we consider 4rst in detail the problem of packing equal circles in the unit circle (PPCC),
and in the next section we brie<y discuss the square container case (PPCS). We 4rst give the two
formulations used, then discuss the descent NLP method we used for solving PPCC w.r.t. both
formulations and also which second order NLP method we selected for comparative testing, and
4nally discuss our computational setup and results.
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3.1. Formulations

As announced in the introduction we have considered the two following nonlinear programming
formulations of PPCC.

3.1.1. Cartesian coordinates
The circular container is the unit radius circle with center (0,0). The disks to be packed within it

are given by their centers (xi; yi) (i=1; : : : ; n), and their common radius r, which is to be maximized.
This may be formulated as

max r;

(xi − xj)2 + (yi − yj)2 − 4r2¿ 0; 16 j¡ i6 n;

x2i + y2
i 6 (1 − r)2; 16 i6 n;

r¿ 0; xi; yi ∈R; 16 i6 n:

(2)

The 4rst set of inequalities express that any two disks should be disjoint: the squared Euclidean
distance between their centers must be at least (2r)2. The second set state that the disks must fully
lie within the unit circle. We have preferred this smoother quadratic form, rather than the more
standard constraint√

x2i + y2
i + r6 1: (3)

3.1.2. Polar coordinates
The circular container is centered at the pole and has unit radius. The disks to be packed within

it are given by their centers at polar coordinates (i; �i) (i = 1; : : : ; n), and their common radius r,
which is to be maximized. This may be formulated as

max r;

2
i + 2

j − 4ij cos(�i − �j) − 4r2¿ 0; 16 j¡ i6 n;

i + r6 1; 16 i6 n;

i; r¿ 0; �i ∈ [0; 2�]; 16 i6 n:

(4)

Note that, unlike the Cartesian formulation, the second constraint set, expressing inclusion of the
disks inside the container, are now linear.

3.2. O@-the-shelf NLP solver

The local minimizer used in our RD method should stop when the Jacobian (or gradient vector)
is suNciently close to zero. The obtained solution will then be a stationary point. We used Minos
([6–8]), a quite popular method of this type, which we brie<y describe below.



N. Mladenovi3c et al. / Computers & Operations Research 32 (2005) 2419–2434 2425

Minos is a software package designed to solve large-scale optimization problems expressed in the
following form:

min f(x) + cTx + dTy; (5)

s:t: g(x) + A1y = b1; (6)

A2x + A3y = b2; (7)

b6

(
x

y

)
6 Tb; (8)

where the vectors c; d; b1; b2; b and Tb and the matrices A1; A2; A3 are constant, f(x) is a smooth
scalar function and g(x) is a vector of smooth functions gi(x). x and y are called the nonlinear and
the linear variables, respectively.

A sequence of linearly constrained NLP subproblems is obtained in the following way: the non-
linear functions gi(x) in (6) are replaced by their linear approximation at the current point xk :

g̃(x; xk) = g(xk) + J (xk)(x − xk) (9)

or shortly

g̃= gk + Jk(x − xk); (10)

where k is an iteration counter and J is the Jacobian or gradient of g. Moreover, an augmented
Lagrangian objective function is constructed instead of (5)

min
x;y
f(x) + cTx + dTy − �T

k (g− g̃) +
1
2
(g− g̃)T(g− g̃): (11)

The vector �k is an estimate of �, the Lagrange multipliers for the nonlinear constraints. The scalar
 is a penalty parameter. Therefore, using (10) we see that the linearized constraints (6) and (7)
take a form(

Jk A1

A2 A3

)(
x

y

)
+

(
I 0

0 I

)(
s1

s2

)
=

(
Jkxk − gk

0

)
; (12)

where s1 and s2 are new slack variables. For solving (11), (12) and (8), Minos uses the reduced
gradient algorithm (see e.g. [9]).

Table 1 shows our 4rst experiments for n= 35 circles when solving PPCC using RD with Minos
as oM-the-shelf code. Minos requires setting a limit to its number of internal iterations, and for use
in RD we always set it to 60, after some experimentation. Note that this means that some Minos
steps may be stopped before a stationary point or local minimum is reached.

For all 15 trials, always starting from a random solution with zero radius and the Cartesian
formulation, the 4rst solution obtained was improved when moving to polar coordinates. Then, in
all cases, the obtained solutions were improved again after moving back to Cartesian coordinates;
after which in all but 2 cases the local searches in polar coordinates were successful again, etc. This
example was encouraging in the sense that reformulation turned out to be useful in many cases.
Moreover, a solution equivalent to the best known was obtained at our 10th trial. This con4rmed the
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Table 1
Packing n= 35 equal circles in the unit circle by RD; best known r = 0:1493167765 [11]

Radius % dev. Aver. impr. Run. time

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7

1 0.13768 0.14379 0.14795 0.14897 0.14898 0.23 2.01 59.33
2 0.13470 0.14601 0.14707 0.14896 0.24 3.47 48.6
3 0.14090 0.14660 0.14767 0.14771 1.08 1.60 47.95
4 0.09958 0.13051 0.13889 0.14766 0.14883 0.14921 0.07 8.97 73.12
5 0.13808 0.14662 0.14880 0.14922 0.06 2.65 51.16
6 0.14017 0.14666 0.14860 0.48 2.98 37.63
7 0.13136 0.14551 0.14679 0.14725 1.38 3.99 50.65
8 0.13102 0.14204 0.14573 0.14648 0.14682 1.67 2.94 63.05
9 0.14273 0.14750 0.14759 1.16 1.70 37.03

10 0.11201 0.11430 0.11701 0.12079 0.12152 0.14882 0.14931 0.00 2.06 50.89
11 0.13536 0.14081 0.14484 0.14723 0.14822 0.14844 0.59 2.30 74.08
12 0.13390 0.14383 0.14578 0.14579 2.36 2.93 47.77
13 0.12898 0.13902 0.14344 0.14706 0.14772 0.14787 0.97 3.48 74.95
14 0.13413 0.14613 0.14722 0.14776 0.14814 0.14835 0.14840 0.61 2.58 83.47
15 0.14094 0.14720 0.14821 0.14849 0.55 1.77 48.89

Average 0.77 3.17 56.57

conclusion of [4] that use of an oM-the-shelf NLP code can lead to good results without resorting
to sophisticated special purpose search algorithms. However, the solution was obtained after the 7th
iteration only, showing that without the RD strategy we would probably not have found it. The
behavior of our RD for n= 35 during this 10th trial is illustrated in Fig. 2. Note the early stops of
Minos during the 4rst 4ve steps due to the 60 inner iteration limit.

We also observed that any time Minos stopped with the message

“Alternative optimum possible. The slack is nonbasic, but its reduced gradient is essentially
zero. This means that if the slack were allowed to start moving away from its bound, there
would be no change in the value of the objective function.”

the next reformulation step of RD turned out to be able to obtain a further improvement. This
message therefore seems to indicate a stationary point of (11) which is not a local optimum.

3.3. Choice of competing NLP solver

Some constrained NLP methods do not stop when a stationary point is reached. Such methods
use second-order conditions or the Hessian matrix H (or its approximation), and they stop in x only
when H (x) is positive de4nite. The best-known NLP method of that kind is the Newton method.

Thus a natural challenging question is how our RD heuristic compares with some Newton type
method. The Spenbar (Spare penalty-barrier) software [10] implements the penalty-barrier method.
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Fig. 2. Iterations of RD in solving PPCC for n = 35. (a) r1 = 0:112010 (Cartesian); (b) r2 = 0:114301 (Polar);
(c) r3 = 0:117013 (Cartesian); (d) r4 = 0:120787 (Polar); (e) r5 = 0:121525 (Cartesian); (f) r6 = 0:148819 (Polar);
(g) r7 = 0:149310 (Cartesian).
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In Section 3.4.3 we compare RD with Spenbar. For the sake of completeness, we brie<y describe
Spenbar in Appendix A. Note again that we do not use Spenbar in our RD, since it is a second
order condition method and hence, does not always stop when a stationary point is reached.

3.4. Computational results

In this subsection we 4rst examine the in<uence of two parameters of RD on the quality of the
4nal objective function value: the initial solutions and the order of formulations. Then we compare
the performance of our RD with some single formulation techniques, as well as with the Spenbar
method.

All tests in this paper were performed on a Pentium 4, 1800 MHz with 1024 Mb RAM. For each
problem instance (n-value), 50 diMerent initial solutions are generated, from which each method is
started. Traditionally circle packing is studied as packing unit disks and results are expressed in
terms of the radius of the smallest container, i.e. in terms of our 1=r. Therefore, we present our
results also in the same terms. The ‘% deviation of the best’ is calculated as

fmethod − fbestknown

fbestknown
× 100;

where fbestknown denotes the best known value of 1=r from the literature [11], and fmethod similarly
denotes the inverse of the best objective function value obtained during the 50 trials by the tested
method. The value ‘% deviation of the average’ is obtained similarly, but now fmethod denotes the
average inverse objective function value obtained during the 50 trials by the tested method.

3.4.1. E@ect of the initial solution
The in<uence of three diMerent initialization methods on the quality of the 4nal solutions obtained

by RD have been tested.
The simplest method (I1) worked as follows: the polar coordinates of the circle centers i and �i,
i=1; : : : ; n were chosen at random, uniformly from [0; 0:95] and, [0; 2�], respectively. This, however,
yields a high concentration of centers around the origin. In the second initialization method (I2) the
circle centers were uniformly distributed within a circle of radius (1 − 1=

√
n); this is achieved by

taking �i uniform in [0; 2�] and i = (1 − 1=
√
n)

√
rnd, where rnd is uniformly distributed on (0,1).

The third method (I3) consisted of the following steps: build n unit squares as much as possible
symmetrically around origin; generate Cartesian coordinates (xi; yi) uniformly from [ − 0:25; 0:25]
around the center of each square; reduce all coordinates proportionally, assuming that the big circle
has a unit radius.

In all three initialization methods the initial radius r was obtained as half of the smallest pairwise
distance between circle centers.

Some results are given in Table 2. It appears that the initialization does not in<uence the best
4nal solution much among 50 random initial solutions, with a slight advantage to I1, although I3

seems to give more stable results and uses much less time.

3.4.2. E@ect of the formulation order
We also investigated how the order of the two formulations in<uences the 4nal solutions obtained

by RD, i.e. start with Cartesian coordinates followed by polar (C-P for short) or the other way
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Table 2
EMect of the initialization method on RD solution

n % dev. of best % dev. of av. Running time (s)

I1 I2 I3 I1 I2 I3 I1 I2 I3

40 0.00 0.00 0.00 3.47 1.35 0.97 1.51 0.76 1.06
45 0.16 0.04 0.10 3.01 0.84 0.69 3.00 1.87 1.40
50 0.00 0.01 0.06 0.93 2.87 0.79 5.15 3.51 2.71
55 0.00 0.17 0.00 2.24 2.36 2.09 9.17 5.69 3.54
60 0.00 0.00 0.03 3.49 1.03 1.40 12.96 7.80 5.09
65 0.00 0.00 0.00 1.01 1.07 1.33 18.91 11.00 16.09
70 0.10 0.22 0.22 1.49 1.03 0.99 27.21 18.10 19.78
75 0.02 0.12 0.10 0.85 0.89 0.77 44.60 30.71 27.20

Avg. 0.03 0.07 0.06 2.06 1.43 1.13 15.31 9.93 9.61

Table 3
EMect of diMerent formulation order on RD solution

n % deviation of the best % dev. of aver. (50) Running time (s)

C-P P-C C-P P-C C-P P-C

10 0.00 0.57 1.03 0.91 0.00 0.00
15 0.13 0.13 0.49 0.76 0.01 0.01
20 0.00 0.00 1.15 0.99 0.04 0.02
25 0.00 0.00 0.62 0.70 0.08 0.07
30 0.00 0.00 0.97 1.17 0.16 0.14
35 0.00 0.01 0.73 0.60 0.90 0.41
40 0.00 0.00 0.97 1.36 1.11 0.87
45 0.10 0.25 0.69 0.78 1.47 1.32
50 0.06 0.00 0.79 0.85 3.19 1.72
55 0.00 1.15 2.09 2.08 3.37 2.10
60 0.03 0.44 1.40 1.52 4.71 3.29
65 0.00 0.01 1.33 1.33 16.24 6.82
70 0.22 0.26 0.99 0.84 19.56 9.73
75 0.10 0.26 0.77 0.72 26.46 11.93
80 0.10 0.10 0.93 0.93 39.15 18.74
85 0.72 0.96 1.75 1.89 38.79 20.01
90 0.02 0.02 1.27 1.06 96.82 49.29
95 0.18 0.18 0.93 0.96 147.35 71.15
100 0.30 0.38 1.01 1.00 180.32 83.14

Av. 0.10 0.25 1.05 1.08 30.51 14.78

around (P-C for short). Our results are given in Table 3. It appears that slightly better results are
obtained in terms of solution quality when implementing the C-P order, but in twice the time needed
for the P-C order.
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Table 4
Comparison of 1=r values for: RD—reformulation descent; MC—Minos with Cartesian formulation; MP—Minos with polar
formulation, SP—Spenbar

n Best known % dev. of best % dev. of average Average running time (s)

RD MC MP SP RD MC MP SP RD MC MP SP

10 3.813026 0.00 0.00 0.00 0.00 1.03 2.01 0.88 0.08 0.00 0.02 0.01 0.29
15 4.521357 0.00 0.13 0.13 0.00 0.49 0.65 0.77 0.89 0.01 0.03 0.02 1.87
20 5.122307 0.00 0.00 0.00 0.00 1.15 2.80 2.49 0.33 0.04 0.11 0.08 5.21
25 5.752824 0.00 0.00 0.00 0.00 0.62 5.07 3.21 0.44 0.08 0.37 0.19 17.14
30 6.197741 0.00 0.00 0.00 0.00 0.97 2.49 1.40 0.71 0.16 0.52 0.29 41.69
35 6.697171 0.00 0.01 0.02 0.03 0.73 12.27 2.17 0.45 0.90 1.84 1.73 81.98
40 7.123847 0.00 0.00 0.00 0.00 0.97 9.36 4.21 0.58 1.11 2.92 1.91 179.69
45 7.572912 0.10 0.11 0.04 0.07 0.69 3.75 2.31 0.32 1.47 3.08 2.19 300.41
50 7.947515 0.06 0.03 0.00 0.02 0.79 6.90 4.26 0.39 3.19 5.16 4.41 503.78
55 8.211102 0.00 1.13 1.57 1.56 2.09 4.80 2.40 1.93 3.37 6.73 5.15 902.59
60 8.646220 0.03 0.10 0.57 0.00 1.40 1.58 1.78 0.45 4.71 7.54 6.00 1526.40
65 9.017397 0.00 0.47 0.44 0.31 1.33 5.86 2.79 0.39 16.24 12.94 10.43 2118.60
70 9.346660 0.10 0.55 0.32 0.27 0.99 7.83 2.15 0.67 19.56 17.61 14.54 3484.63

Av. 0.02 0.19 0.24 0.17 1.02 5.03 2.37 0.59 3.91 4.53 3.61 704.94

75 9.678344 0.10 0.22 0.44 0.77 4.56 1.69 26.46 22.67 17.16
80 9.970588 0.10 0.41 0.29 0.93 3.38 1.69 39.15 30.99 23.62
85 10.163112 0.72 1.43 1.10 1.75 3.31 1.90 38.79 29.85 24.04
90 10.546069 0.02 0.02 0.45 1.27 10.59 4.32 96.82 47.19 47.70
95 10.840205 0.18 0.26 0.48 0.93 11.55 6.87 147.35 59.51 41.84

100 11.082528 0.30 0.52 0.38 1.01 8.39 3.39 180.32 64.96 45.02

Average 0.08 0.28 0.32 1.05 5.61 2.65 29.18 15.93 12.50

3.4.3. Comparison with single formulation methods
Now we compare the performance of RD+Minos with three standard codes applied to a single

formulation: Minos with the Cartesian formulation (MC); Minos with the polar formulation (MP)
and Spenbar (SP) with the Cartesian formulation. The purpose of comparing RD with MC and MP

is to study the advantage of using two instead of only one formulation, always using the same
NLP-solver, Minos. Spenbar is included in order to see how RD compares with more sophisticated
methods that use second order information.

Initial solutions were generated by the method I3 described before. As before in RD the limit on
the number of inner iterations in Minos was set to 60, while for MC and MP that number was set
to 100, in order to give them more chance to approximate a stationary point. Higher iteration limits
(we went up to 1000) turned out not to have much eMect on the objective values, but unnecessarily
increased the calculation times, thus leading to a rather unfair time-comparison.

To save space we compare the four methods in Table 4 only for n=10; 15; : : : ; 100. More complete
results may be found in [12].
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It appears that: (i) solutions obtained by our RD are of better quality than those obtained by the
single formulation methods MC and MP; (ii) solutions obtained by RD and Spenbar are of similar
quality, but RD is about 150 times faster; (iii) problems larger than n = 70 cannot be solved by
Spenbar in reasonable time (within 1 h);

In our more detailed experiments [12] with numbers of circles n= 10; 11; : : : ; 100, RD found the
best-known results from the literature in 40% of the cases, while in all other cases the error never
exceeded 1%.

4. Possible extensions

We brie<y discuss here the use of RD for a slightly diMerent problem, and indicate some possible
extensions of RD.

4.1. Packing circles into a square

Replacing the second sets of constraints in (2) and (4), respectively, by r6 xi6 1 − r, r6yi
6 1−r and r6 i cos�i6 1−r, r6 i sin�i6 1−r we obtain two formulations for packing equal
circles into the unit square (PPCS). We also compared RD, MC and MP for these problems. Our
results are given in Table 5. As before, average values are obtained after 50 runs with each method.

As was to be expected, RD did not show a clear advantage over single formulation methods.
Contrary to PPCC the polar coordinate formulation is much less eNcient in PPCS. Indeed, circu-
lar movements are not very useful anymore at the container boundary, so a full polar coordinate
formulation is not so suited. However, in average, RD still outperforms both single formulation
methods on average: compare the 3.04% deviation of RD with the 6.33% and 13.73% of MC and
MP, respectively.

4.2. RD within metaheuristics

By using 50 trials we in fact applied a Multi-start RD for solving PPCC and PPCS. However, it
is well-known that random multi-start local search methods suMer from the so-called center-limit-
catastrophe [13], and we found out that MRD is no exception: solutions obtained by simple multiple
random starts remain mostly of average quality (see e.g., [14–16]).

Several meta-heuristic methods such as tabu search, memetic search, or variable neighborhood
search, suggest other more eNcient ways to use local search procedures repeatedly (see the recent
survey of meta-heuristic methods in [17]). RD might thus also be used within VNS [18] or some
other meta-heuristic as a local search routine. This avenue was not pursued here.

4.3. Formulation space and reformulation search

Another natural extension of RD, is to use reformulations at the upper level within a meta-heuristic
scheme as follows.
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Table 5
Problem of packing circles in unit square

n Best known % dev. of best % dev. of average Av. run. time (s)

RD MC MP RD MC MP RD MC MP

10 6.74757140 0.00 0.00 0.00 1.88 2.96 3.75 0.01 0.01 0.02
15 7.86370315 0.54 0.54 0.00 1.69 3.12 5.38 0.03 0.04 0.05
20 8.97808315 0.00 1.56 0.00 3.89 5.84 9.11 0.05 0.11 0.10
25 10.00000000 0.00 0.00 0.00 3.30 3.75 14.09 0.10 0.24 0.28
30 10.90856809 0.63 0.63 0.58 3.22 4.37 11.79 0.26 0.61 0.57
35 11.86370360 0.32 0.32 0.59 2.11 2.43 8.98 0.38 1.04 1.11
40 12.62837533 0.09 0.09 0.19 1.75 5.79 12.32 1.10 1.94 1.97
45 13.38198309 0.16 0.16 0.11 1.49 3.20 11.58 1.24 2.26 2.54
50 14.01009567 0.28 1.04 0.28 1.82 2.90 12.58 1.87 4.00 3.64
55 14.69391977 0.61 0.61 0.37 1.81 5.49 11.56 3.27 6.15 5.22
60 15.37742112 0.38 0.38 0.53 3.02 7.38 15.52 5.17 8.11 7.13
65 15.82179344 0.93 0.93 1.09 3.94 5.88 20.69 7.50 12.26 10.04
70 16.50255154 0.36 0.92 0.80 3.81 9.02 18.91 13.43 13.12 11.92
75 17.09561268 0.67 0.73 0.55 1.51 7.96 18.72 17.01 18.04 15.37
80 17.43050631 1.45 1.50 0.77 6.74 14.03 20.13 24.95 23.65 23.37
85 17.96028299 1.39 1.23 1.05 5.03 8.83 18.27 33.11 30.44 26.05
90 18.60466847 0.77 1.25 1.13 1.91 11.12 18.68 43.62 35.85 27.81
95 19.07658639 0.80 0.94 0.49 5.79 12.99 13.73 51.02 43.49 35.48

100 20.00000000 0.00 0.00 0.00 3.08 3.26 15.04 80.80 61.15 47.68

Average 0.49 0.68 0.45 3.04 6.33 13.73 15.00 13.82 11.60

Global and combinatorial optimization methods perform a search through the solution space S
for a 4xed formulation. Local search methods are based on neighborhoods N(s) ⊆ S of a solution
s∈S.

RD suggests the introduction of a formulation space F as well: it is a set of diMerent formulations
of the same problem. In order to perform a search through the formulation space F, one 4rst
equips F with some distance function, which de4nes neighborhoods {N‘(�) | ‘= 1; : : : ; ‘max} of a
formulation �∈F. Also a formulation �1 is considered as better at x than a formulation �2 if the
solution obtained starting from x by using �1 is better than that obtained by using �2. All known
successful ideas for search through S may then also be applied in Reformulation Search methods,
by searching in F for a better formulation at the current solution, and using it to carry on the search
through S.

For PPCC, for example, one might consider the set F of all mixed formulations, in which some
circle centers are given in Cartesian coordinates while the others are given in polar coordinates.
Distance between two formulations is then the number of centers whose coordinates are expressed in
diMerent systems in each formulation. The neighborhoods N‘(�) (‘=1; : : : ; ‘max6 n) of formulation
� are then de4ned as those formulations diMering from � at no more than ‘ circle centers.
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5. Conclusions

In this paper we have introduced a simple near-optimal solution method for solving a nonlinear
global optimization problem. It explores the fact that a point which is stationary w.r.t. one formulation
is not necessarily so with another. Therefore, our method, called Reformulation Descent (RD),
alternates between several formulations using a fast NLP code that stops in a stationary point.

The proposed RD heuristic has been tested by solving two circle packing problems, where two
formulations, in Cartesian and polar coordinates, respectively, are used. Minos was used for 4nding
a stationary point. Computer results for RD compare favorably with single formulation methods.
When compared to a Truncated Newton method results were similar in terms of solution quality,
but RD was about 150 times faster on average.

It remains for future work to try out using RD to solve other packing problems, as well as NLP
non-convex test problems from the literature. Furthermore, the idea of Reformulation Descent, may
be applied in any other situation, as soon as a same problem may be formulated in several quite
diMerent ways. Opportunities are now sought in combinatorial optimization. It also remains for future
work to investigate the use of RD within some metaheuristic schemes, as suggested in Section 4.
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Appendix A.

Using Spenbar. Let us consider the constrained NLP problem

min f(x) (A.1)

s:t: gi(x)¿ 0; i = 1; : : : ; m; (A.2)

bj6 xj6 Tbj; j = 1; : : : ; n; (A.3)

where x∈Rn, and the functions f and gi (i = 1; : : : ; n) are continuous on Rn. In the general form
nonlinear equality constraints are also considered in the model, but we omit these since they are
not present in PPCC and PPCS. Note also that, unlike in Minos, no distinction is made between
linear and nonlinear variables or constraints. Spenbar (see the latest version in [10]) implements the
penalty-barrier method, whose main idea is to construct a sequence of unconstrained minimization
subproblems as follows [19]:

min F(x; �; �) = f(x) − �
m∑
i=1

�i log
(

1 +
gi(x)
�

)
(A.4)

s:t: bj6 xj6 bj; j = 1; : : : ; n; (A.5)
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where the �i (i= 1; : : : ; m) are nonnegative estimates of the Lagrange multipliers associated with the
inequality constraints, and �¿ 0 is the barrier parameter. The solution (xk ; �k ; �k) of the subproblem
in iteration k is considered to be an initial point of the next iteration. Each subproblem is solved
by means of a truncated Newton method with simple bounds, as implemented in subroutine TN by
S. Nash.
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