# Formulating the Alternating Current Optimal Power Flow problem 

Leo Liberti, CNRS LIX Ecole Polytechnique

liberti@lix.polytechnique.fr

191026



## Outline

## Introduction

Complex Formulations
Natural formulation
Edge formulation
Arc formulation

Real formulations
Arc formulation
Parallel lines
Software
MatPower
AMPL

## The quantities

- charge (basic measure)
- current $I=$ charge per surface unit per second
- electric field $=$ force vector at point acting on unit charge
- voltage $V=$ potential energy of unit charge in electric field
- power $S=$ voltage $\times$ current (in units of measure)
[Bienstock 2016, p. 2]


## Optimal Power Flow

- Decide power flows on electrical cables to minimize costs
- Alternating Current:
generated by magnetic field induced by a 50-60 Hz mechanical rotation
- Current traverses grid 50 to 60 times per second consider average over time
- ACOPF: static approximation of a dynamic problem approximation yields modelling/numerical difficulties
Example I: lines directed for flow injection but undirected for admittance
Example 2: voltage $V$, current $I$, power $S$ are complex quantities
- Different approximations by different stakeholders $\Rightarrow$ ambiguities, lack of accepted formal definitions


## Notation

- Complex number: $x=x^{r}+i x^{c} \in \mathbb{C}$ most ACOPF literature uses $j$ instead of $i$, reserved for current
- Complex conjugate: conj $(x)=x^{r}-i x^{\text {c }}$ $x \operatorname{conj}(x)=\left(x^{r}\right)^{2}+\left(x^{\mathrm{c}}\right)^{2}=|x|^{2}$
- Polar representation: $\alpha e^{i \vartheta}=\alpha \cos \vartheta+i \alpha \sin \vartheta$

$$
\begin{array}{ll}
x^{r}=\alpha \cos \vartheta & \alpha=\sqrt{\left(x^{r}\right)^{2}+\left(x^{c}\right)^{2}} \\
x^{c}=\alpha \sin \vartheta & \vartheta=\arccos \left(x^{r} / \alpha\right)=\arcsin \left(x^{c} / \alpha\right),
\end{array}
$$

$\alpha$ called "magnitude", $\vartheta$ "angle"/"phase"

## On the word "flow"

- Power does not "flow" as does liquid or gas in a pipe electrons do not move much in cables: think more in terms of wave propagation
- For a line $\{b, a\}$, think of voltage difference between $b$ and $a$ as "influencing" the injection of power at $b$ or $a$


## The $\pi$-model of a line $\{b, a\}$



$$
\mathbf{Y}_{b a}=\left(\begin{array}{cc}
Y_{b b} & Y_{b a} \\
Y_{a b} & Y_{a a}
\end{array}\right)=\left(\begin{array}{cc}
\left(\frac{1}{r_{b a}+i x_{b a}}+i \frac{\mathfrak{b}_{b a}}{2}\right) / \tau_{b a}^{2} & -\frac{1}{\left(r_{b a}+i x_{b a}\right) \tau e^{-i \theta_{b a}}} \\
-\frac{1}{\left(r_{b a}+i x_{b a}\right) \tau_{b a} e^{i \theta_{b a}}} & \frac{1}{r_{b a}+i x_{b a}}+i \frac{\mathfrak{b}_{b a}}{2}
\end{array}\right)
$$

- $V_{b}, V_{a}$ : voltage differences with ground
- $\vec{S}_{b a}$ : power injected on $\{b, a\}$ at $b$ (vice versa for $\overleftarrow{S}_{b a}$ )
- $\mathbf{Y}$ used in Ohm's law: current $=\mathbf{Y}\left(V_{b}, V_{a}\right)^{\top}$
- $r_{b a}+i x_{b a}$ : series impedance of the line $\{b, a\}$
- $\mathfrak{b}_{b a}$ : charging susceptange of the line $\{b, a\}$
- $N_{b a}=\tau_{b a} e^{i \theta_{b a}}:$ tap ratio of transformer at $b$ on line $\{b, a\}$


## Outline

## Introduction

Complex Formulations
Natural formulation
Edge formulation
Arc formulation

## Real formulations

Arc formulation Parallel lines
Software
MatPower
AMPL

## Subsection I

Natural formulation

## Sets

- $B$ : set of buses (nodes) of the power grid
- $L$ : set of lines (links) in the power grid edge $\{b, a\}$ will index entity $E$ as $E_{b a}$
- G: set of generators set $\mathscr{G}_{b}$ of generators at bus $b, \bigcup_{b} \mathscr{G}_{b}=G$


## Decision variables

- Voltage $V_{b} \in \mathbb{C}$ at bus $b \in B$
- Current $\mathbf{I}_{b a}=\left(\vec{I}_{b a}, \overleftarrow{I}_{b a}\right) \in \mathbb{C}^{2}$ on line $\{b, a\} \in L$
- Power $\mathbf{S}_{b a}=\left(\vec{S}_{b a}, \stackrel{\leftarrow}{S}_{b a}\right) \in \mathbb{C}^{2}$ on line $\{b, a\} \in L$
- Power $\mathscr{S}_{b g} \in \mathbb{C}$ for a generator $g \in \mathscr{G}_{b}$ at bus $b \in B$


## Parameters

- Voltage magnitude in $\left[\underline{V}_{b}, \bar{V}_{b}\right] \in \mathbb{R}$ at each bus $b \in B$
- Phase difference in $\left[\underline{\omega}_{b a}, \bar{\omega}_{b a}\right] \subseteq[-\pi, \pi]$ at each line $\{b, a\} \in L$
- A reference bus $r \in B$ s.t. $V_{b}^{c}=0$ and $V_{b}^{r} \geq 0$
- Power demand $\tilde{S}_{b} \in \mathbb{C}$ at bus $b \in B$ there can be buses with negative demand
- Magnitude of power injected on a line $\{b, a\} \in L$ bounded above by $\bar{S}_{b a}=\bar{S}_{a b} \in \mathbb{R}$
- Power generated by $g \in \mathscr{G}_{b}$ installed at bus $b \in B$ in $\left[\underline{\mathscr{S}_{b g}}, \underline{\mathscr{S}_{b g}}\right] \in \mathbb{I C}$
- Admittance matrix $\mathbf{Y}_{b a} \in \mathbb{C}^{2 \times 2}$ for a line $\{b, a\} \in L$
- Shunt admittance $A_{b} \in \mathbb{C}$ at bus $b \in B$


## Bounds

- Bounds on power

$$
\forall\{b, a\} \in L \quad\left|\mathbf{S}_{b a}\right| \leq \bar{S}_{b a} \mathbf{1}
$$

where $\left|\mathbf{S}_{b a}\right|=\left(\left|\vec{S}_{b a}\right|,\left|\bar{S}_{b a}\right|\right)^{\top}$

- Bounds on generated power (enforced on real/imaginary parts)

$$
\forall b \in B, g \in \mathscr{G}_{b} \quad \underline{\mathscr{L}}_{b g} \leq \mathscr{S}_{b g} \leq \overline{\mathscr{S}}_{b g}
$$

- Bounds on voltage magnitude

$$
\forall b \in B \quad \underline{V}_{b} \leq\left|V_{b}\right| \leq \bar{V}_{b}
$$

- Reference bus

$$
V_{r}^{c}=0 \quad \wedge \quad V_{r}^{r} \geq 0
$$

## Phase difference bounds

- Constraints:
$\forall\{b, a\} \in L \quad \underline{\omega}_{b a} \leq \theta_{b}-\theta_{a} \leq \bar{\omega}_{b a} \quad(\star)$
- Issue: we don't use phase variables $\theta$ and cartesian $\rightarrow$ polar mapping is nonlinear
- Prop.
$(\star) \equiv\left[\tan \left(\underline{\omega}_{b a}\right) \leq \frac{\left(V_{b} \operatorname{conj}\left(V_{a}\right)\right)^{c}}{\left(V_{b} \operatorname{conj}\left(V_{a}\right)\right)^{r}} \leq \tan \left(\bar{\omega}_{b a}\right) \wedge\left(V_{b} \operatorname{conj}\left(V_{a}\right)\right)^{r} \geq 0\right]$
Pf. $\tan \left(\theta_{b}-\theta_{a}\right)=\frac{\sin \left(\theta_{b}-\theta_{a}\right)}{\cos \left(\theta_{b}-\theta_{a}\right)}=\frac{\left|V_{b}\right|\left|V_{a}\right| \sin \left(\theta_{b}-\theta_{a}\right)}{\left|V_{b}\right|\left|V_{a}\right| \cos \left(\theta_{b}-\theta_{a}\right)}$
$=\frac{\left|V_{b}\right| \sin \theta_{b}\left|V_{a}\right| \cos \theta_{a}-\left|V_{b}\right| \cos \theta_{b}\left|V_{a}\right| \sin \theta_{a}}{\left|V_{b}\right| \cos \theta_{b}\left|V_{a}\right| \cos \theta_{a}+\left|V_{b}\right| \sin \theta_{b}\left|V_{a}\right| \sin \theta_{a}}$
$=\frac{V_{b}^{c} V_{a}^{\mathrm{r}}-V_{b}^{r} V_{a}^{c}}{V_{b}^{r} V_{a}^{r}+V_{b}^{c} V_{a}^{\mathrm{c}}}=\frac{\left(V_{b} \operatorname{conj}\left(V_{a}\right)\right)^{\mathrm{c}}}{\left(V_{b} \operatorname{conj}\left(V_{a}\right)\right)^{r}}$
and tan is monotonically increasing


## Constraints

- Power flow equations

$$
\forall b \in B \quad \sum_{\{b, a\} \in L} \vec{S}_{b a}+\tilde{S}_{b}=-\operatorname{conj}\left(A_{b}\right)\left|V_{b}\right|^{2}+\sum_{g \in \mathscr{G}_{b}} \mathscr{S}_{g}
$$

- Power in terms of voltage and current

$$
\begin{gathered}
\forall\{b, a\} \in L \quad \mathbf{S}_{b a}=\mathbf{V}_{b a} \odot \operatorname{conj}\left(\mathbf{I}_{b a}\right) \\
\text { where } \odot \equiv \text { entrywise prod. and } \operatorname{conj}(\mathbf{I})_{b a}=\left(\operatorname{conj}\left(\vec{I}_{b a}\right), \operatorname{conj}\left(\overleftarrow{I}_{b a}\right)\right)^{\top}
\end{gathered}
$$

- Ohm's law

$$
\forall\{b, a\} \in L \quad \mathbf{I}_{b a}=\mathbf{Y}_{b a} \mathbf{V}_{b a}
$$

where $\mathbf{V}_{b a}=\left(V_{b}, V_{a}\right)^{\top}$ for $\{b, a\} \in L$

## Constraints

- Power flow equations

$$
\forall b \in B \quad \sum_{\{b, a\} \in L} \vec{S}_{b a}+\tilde{S}_{b}=-\operatorname{conj}\left(A_{b}\right)\left|V_{b}\right|^{2}+\sum_{g \in \mathscr{G}_{b}} \mathscr{S}_{g}
$$

- Power in terms of voltage and current

$$
\begin{array}{ll}
\forall\{b, a\} \in L & \vec{S}_{b a}=V_{b} \operatorname{conj}\left(\vec{I}_{b a}\right) \\
\forall\{b, a\} \in L & \stackrel{-}{S}_{b a}=V_{a} \operatorname{conj}\left(\overleftarrow{I}_{b a}\right)
\end{array}
$$

- Ohm's law

$$
\begin{array}{ll}
\forall\{b, a\} \in L & \vec{I}_{b a}=Y_{b b} V_{b}+Y_{b a} V_{a} \\
\forall\{b, a\} \in L & \overleftarrow{I}_{b a}=Y_{a b} V_{b}+Y_{a a} V_{a}
\end{array}
$$

## Objective function

- Depends on application setting
- Often: cost of generated power

$$
\min \mathscr{S}^{\mathrm{H}} Q \mathscr{S}+\left(c^{\mathrm{H}} \mathscr{S}\right)^{\mathrm{r}}+c_{0}{ }^{\mathrm{r}}
$$

- $Q$ hermitian $\Rightarrow \mathscr{S}^{\mathrm{H}} Q \mathscr{S} \in \mathbb{R}$


## Subsection 2

## Edge formulation

## Differences

- A line is an edge $\ell=\{b, a\}$
- Entities with a direction are indexed with $b$ or $a$

$$
\begin{aligned}
\vec{E}_{b a} & \equiv E_{\ell}^{b} \\
\overleftarrow{E}_{b a} & \equiv E_{\ell}^{a}
\end{aligned}
$$

- This formulation is used by MatPower


## Sets, parameters, variables

- $\forall b \in B$ let $\delta(b)=\{\ell \in L \mid \ell=\{b, a\}\}$ set of lines adjacent to $b$
- Upper bound $\bar{S}_{\ell}$ to power magnitude
- Bounds $\left[\underline{\omega}_{\ell}, \bar{\omega}_{\ell}\right]$ to phase difference
- Current $\mathbf{I}_{\ell}=\left(I_{\ell}^{b}, I_{\ell}^{a}\right) \in \mathbb{C}^{2}$ on line $\ell=\{b, a\} \in L$
- Power $\mathbf{S}_{\ell}=\left(S_{\ell}^{b}, S_{\ell}^{a}\right) \in \mathbb{C}^{2}$ on line $\ell=\{b, a\} \in L$


## Constraints

- Power flow equations

$$
\forall b \in B \quad \sum_{\ell \in \delta(b)} S_{\ell}^{b}+\tilde{S}_{b}=-\operatorname{conj}\left(A_{b}\right)\left|V_{b}\right|^{2}+\sum_{g \in \mathscr{G}_{b}} \mathscr{S}_{g}
$$

- Power in terms of voltage and current

$$
\begin{array}{ll}
\forall \ell \in L & S_{\ell}^{b}=V_{b} \operatorname{conj}\left(I_{\ell}^{b}\right) \\
\forall \ell \in L & S_{\ell}^{a}=V_{a} \operatorname{conj}\left(I_{\ell}^{a}\right)
\end{array}
$$

- Ohm's law

$$
\begin{array}{ll}
\forall \ell \in L & I_{\ell}^{b}=Y_{b b} V_{b}+Y_{b a} V_{a} \\
\forall \ell \in L & I_{\ell}^{a}=Y_{a b} V_{b}+Y_{a a} V_{a}
\end{array}
$$

## Subsection 3

## Arc formulation

## Differences

- A line is a pair of anti-parallel $\operatorname{arcs}\{(b, a),(a, b)\}$
- Entities with a direction are indexed by $(b, a)$ or $(a, b)$

$$
\begin{aligned}
& \vec{E}_{b a} \equiv E_{\{b, a\}}^{b} \\
& \equiv E_{b a} \\
& \stackrel{\leftarrow}{E}_{b a} \equiv E_{\{b, a\}}^{a} \equiv E_{a b}
\end{aligned}
$$

- This formulation is easier to code in AMPL


## Sets, parameters, variables

- set $L^{\prime}=\{(b, a),(a, b) \mid\{b, a\} \in L\}$ of all arcs
- set $L_{0} \subset L^{\prime}$ of arcs given in data

$$
\text { s.t. } \forall\{b, a\} \in L \quad(b, a) \in L_{0} \operatorname{xor}(a, b) \in L_{0}
$$

- Upper bounds $\bar{S}_{b a}=\bar{S}_{a b}$ to power magnitude
- Bounds $\left[\underline{\omega}_{b a}=\underline{\omega}_{a b}, \bar{\omega}_{b a}=\bar{\omega}_{a b}\right]$ to phase difference
- If $(b, a) \in L_{0}$ has a transformer, it is on the side of $b \in B$
- Current $I_{b a} \in \mathbb{C}$ for each $(b, a) \in L^{\prime}$ injected at $b \in B$
- Power $S_{b a} \in \mathbb{C}$ on each $(b, a) \in L^{\prime}$ injected at $b \in B$


## Constraints

- Power flow equations

$$
\forall b \in B \quad \sum_{(b, a) \in L^{\prime}} S_{b a}+\tilde{S}_{b}=-\operatorname{conj}\left(A_{b}\right)\left|V_{b}\right|^{2}+\sum_{g \in \mathscr{G}_{b}} \mathscr{S}_{g}
$$

- Power in terms of current

$$
\forall(b, a) \in L^{\prime} \quad S_{b a}=V_{b} \operatorname{conj}\left(I_{b a}\right)
$$

- Ohm's law

$$
\begin{array}{ll}
\forall(b, a) \in L_{0} & I_{b a}=Y_{b b} V_{b}+Y_{b a} V_{a} \\
\forall(b, a) \in L_{0} & I_{a b}=Y_{a b} V_{b}+Y_{a a} V_{a}
\end{array}
$$

- Upper bounds on power magnitude

$$
\forall(b, a) \in L^{\prime} \quad\left|S_{b a}\right| \leq \bar{S}_{b a}
$$

## Outline

Real formulations
Arc formulation
Parallel lines

## Software

MatPower
AMPL

## Ohm's law matrix

Diagonal components of $\mathbf{Y}_{b a} \in \mathbb{C}^{2 \times 2}$

$$
\begin{aligned}
Y_{b b} & =\left(\frac{1}{r+i x}+i \frac{\mathfrak{b}}{2}\right) / \tau^{2}=\frac{2(r-i x)+i \mathfrak{b}\left(r^{2}+x^{2}\right)}{2(r+i x)(r-i x) \tau^{2}} \\
& =\frac{r}{\left(r^{2}+x^{2}\right) \tau^{2}}+i \frac{\mathfrak{b}\left(r^{2}+x^{2}\right)-2 x}{2\left(r^{2}+x^{2}\right) \tau^{2}} \\
Y_{a a} & =\frac{1}{r+i x}+i \frac{\mathfrak{b}}{2}=\frac{2(r-i x)+i \mathfrak{b}\left(r^{2}+x^{2}\right)}{2(r+i x)(r-i x)} \\
& =\frac{r}{r^{2}+x^{2}}+i \frac{\mathfrak{b}\left(r^{2}+x^{2}\right)-2 x}{2\left(r^{2}+x^{2}\right)}
\end{aligned}
$$

## Ohm's law matrix

Off-diagonal components of $\mathbf{Y}_{b a} \in \mathbb{C}^{2 \times 2}$

$$
\begin{aligned}
Y_{b a} & =-\frac{1}{(r+i x) \tau e^{-i \theta}}=-\frac{1 / \tau}{(r \cos \theta+x \sin \theta)+i(x \cos \theta-r \sin \theta)} \\
& =-\frac{1}{\tau} \frac{r \cos \theta+x \sin \theta-i(x \cos \theta-r \sin \theta)}{(r \cos \theta+x \sin \theta)^{2}+(x \cos \theta-r \sin \theta)^{2}} \\
& =-\frac{r \cos \theta+x \sin \theta}{\tau\left(r^{2}+x^{2}\right)}-i \frac{r \sin \theta-x \cos \theta}{\tau\left(r^{2}+x^{2}\right)} \\
Y_{a b} & =-\frac{1}{(r+i x) \tau e^{i \theta}}=-\frac{1 / \tau}{(r \cos \theta-x \sin \theta)+i(x \cos \theta+r \sin \theta)} \\
& =-\frac{1}{\tau} \frac{r \cos \theta-x \sin \theta-i(x \cos \theta+r \sin \theta)}{(r \cos \theta+x \sin \theta)^{2}+(x \cos \theta-r \sin \theta)^{2}} \\
& =\frac{x \sin \theta-r \cos \theta}{\tau\left(r^{2}+x^{2}\right)}+i \frac{r \sin \theta+x \cos \theta}{\tau\left(r^{2}+x^{2}\right)}
\end{aligned}
$$

## Subsection I

Arc formulation

## Constraints

- Linear constraint: separate real and imaginary parts
- Power in terms of voltage and current

$$
\begin{aligned}
& \forall(b, a) \in L^{\prime} \quad S_{b a}^{r}=V_{b}^{r} I_{b a}^{r}+V_{b}^{c} I_{b a}^{c} \\
& \forall(b, a) \in L^{\prime} \quad S_{b a}^{c}=-V_{b}^{r} I_{b a}^{c}+V_{b}^{c} I_{b a}^{r}
\end{aligned}
$$

- Ohm's law

$$
\begin{array}{ll}
\forall(b, a) \in L_{0} & I_{b a}^{r}=Y_{b b}^{\mathrm{r}} V_{b}^{\mathrm{r}}-Y_{b b}^{\mathrm{c}} V_{b}^{\mathrm{c}}+Y_{b a}^{\mathrm{r}} V_{a}^{\mathrm{r}}-Y_{b a}^{\mathrm{c}} V_{a}^{\mathrm{c}} \\
\forall(b, a) \in L_{0} & I_{b a}^{\mathrm{c}}=Y_{b b}^{\mathrm{r}} V_{b}^{\mathrm{c}}+Y_{b b}^{\mathrm{c}} V_{b}^{\mathrm{r}}+Y_{b a}^{\mathrm{r}} V_{a}^{\mathrm{c}}+Y_{b a}^{\mathrm{c}} V_{a}^{\mathrm{r}} \\
\forall(b, a) \in L_{0} & I_{a b}^{\mathrm{r}}=Y_{a b}^{\mathrm{r}} V_{b}^{\mathrm{r}}-Y_{a b}^{\mathrm{c}} V_{b}^{\mathrm{c}}+Y_{a a}^{\mathrm{r}} V_{a}^{\mathrm{r}}-Y_{a a}^{\mathrm{c}} V_{a}^{\mathrm{c}} \\
\forall(b, a) \in L_{0} & I_{a b}^{\mathrm{c}}=Y_{a b}^{\mathrm{r}} V_{b}^{\mathrm{c}}+Y_{a b}^{\mathrm{c}} V_{b}^{\mathrm{r}}+Y_{a a}^{\mathrm{r}} V_{a}^{\mathrm{c}}+Y_{a a}^{\mathrm{c}} V_{a}^{\mathrm{r}}
\end{array}
$$

## Subsection 2

Parallel lines

## The situation



Can't easily merge properties of separate cables on a single line

## Modelling

- Natural formulation: $\bar{L} \subset L \times \mathbb{N}$ quantification: $\forall(\{b, a\}, i) \in \bar{L}$
- Edge formulation: $\bar{L} \subset L \times \mathbb{N}$ quantification: $\forall(\ell, i) \in \bar{L}$
- Arc formulation: $\bar{L}^{\prime} \subset L^{\prime} \times \mathbb{N}$ quantification: $\forall(b, a, i) \in \bar{L}^{\prime}$


## Indexing entities

- Natural formulation: $\mathbf{S}_{b a i}, \mathbf{I}_{b a i}, \underline{\omega}_{b a i}, \bar{\omega}_{b a i}, \bar{S}_{b a i}, \mathbf{Y}_{b a i}, \ldots$
- Edge formulation: $\mathbf{S}_{\ell i}, \mathbf{I}_{\ell i}, \underline{\omega}_{\ell i}, \bar{\omega}_{\ell i}, \bar{S}_{\ell i}, \mathbf{Y}_{\ell i}, \ldots$
- $\underline{\text { Arc formulation: }} S_{b a i}, I_{b a i}, \underline{\omega}_{b a i}, \bar{\omega}_{b a i}, \bar{S}_{b a i}, \mathbf{Y}_{b a i}, \ldots$


## Outline

## Introduction

## Complex Formulations

Natural formulation
Edge formulation
Arc formulation

## Real formulations

Arc formulation
Parallel lines
Software
MatPower
AMPL

# Subsection I 

## MatPower

## Generalities

- Matlab package
- Designed by electrical engineers not optimizers/computer scientists
- Very popular/mature code, works well
- Provides an instance library
- Data coded in a counterintuitive way

Table B-1: Bus Data (mpc.bus)

| name | column | description |
| :--- | :---: | :--- |
| BUS_I | 1 | bus number (positive integer) |
| BUS_TYPE | 2 | bus type $(1=\mathrm{PQ}, 2=\mathrm{PV}, 3=$ ref, $4=$ isolated) |
| PD | 3 | real power demand (MW) |
| QD | 4 | reactive power demand (MVAr) |
| GS | 5 | shunt conductance (MW demanded at $V=1.0$ p.u.) |
| BS | 6 | shunt susceptance (MVAr injected at $V=1.0$ p.u.) |
| BUS_AREA | 7 | area number (positive integer) |
| VM | 8 | voltage magnitude (p.u.) |
| VA | 9 | voltage angle (degrees) |
| BASE_KV | 10 | base voltage (kV) |
| ZONE | 11 | loss zone (positive integer) |
| VMAX | 12 | maximum voltage magnitude (p.u.) |
| VMIN | 13 | minimum voltage magnitude (p.u.) |
| LAM_P ${ }^{\dagger}$ | 14 | Lagrange multiplier on real power mismatch $(u / \mathrm{MW})$ |
| LAM_Q $^{\dagger}$ | 15 | Lagrange multiplier on reactive power mismatch $(u / \mathrm{MVAr})$ |
| MU_VMAX $^{\dagger}$ | 16 | Kuhn-Tucker multiplier on upper voltage limit $(u / \mathrm{p} . \mathrm{u})$. |
| MU_VMIN $^{\dagger}$ | 17 | Kuhn-Tucker multiplier on lower voltage limit $(u / \mathrm{p} . \mathrm{u})$. |

$\dagger$ Included in OPF output, typically not included (or ignored) in input matrix. Here we assume the objective function has units $u$.

Table B-3: Branch Data (mpc.branch)

| name | column | description |
| :---: | :---: | :---: |
| F_BUS | 1 | "from" bus number |
| T_BUS | 2 | "to" bus number |
| BR_R | 3 | resistance (p.u.) |
| BR_X | 4 | reactance (p.u.) |
| BR_B | 5 | total line charging susceptance (p.u.) |
| RATEA | 6 | MVA rating A (long term rating), set to 0 for unlimited |
| RATE B | 7 | MVA rating B (short term rating), set to 0 for unlimited |
| RATE_C | 8 | MVA rating C (emergency rating), set to 0 for unlimited |
| TAP | 9 | transformer off nominal turns ratio, if non-zero (taps at "from" bus, impedance at "to" bus, i.e. if $r=x=b=0, \operatorname{tap}=\frac{\left\|V_{f}\right\|}{\left\|V_{t}\right\|}$; tap $=0$ used to indicate transmission line rather than transformer, i.e. mathematically equivalent to transformer with tap $=1$ ) |
| SHIFT | 10 | transformer phase shift angle (degrees), positive $\Rightarrow$ delay |
| BR_STATUS | 11 | initial branch status, $1=$ in-service, $0=$ out-of-service |
| ANGMIN* | 12 | minimum angle difference, $\theta_{f}-\theta_{t}$ (degrees) |
| ANGMAX* | 13 | maximum angle difference, $\theta_{f}-\theta_{t}$ (degrees) |
| PF ${ }^{\dagger}$ | 14 | real power injected at "from" bus end (MW) |
| QF ${ }^{\dagger}$ | 15 | reactive power injected at "from" bus end (MVAr) |
| $\mathrm{PT}^{\dagger}$ | 16 | real power injected at "to" bus end (MW) |
| QT ${ }^{\dagger}$ | 17 | reactive power injected at "to" bus end (MVAr) |
| MU_SF ${ }^{\ddagger}$ | 18 | Kuhn-Tucker multiplier on MVA limit at "from" bus (u/MVA) |
| MU_ST ${ }^{\ddagger}$ | 19 | Kuhn-Tucker multiplier on MVA limit at "to" bus (u/MVA) |
| MU_ANGMIN ${ }^{\ddagger}$ | 20 | Kuhn-Tucker multiplier lower angle difference limit ( $u$ /degree) |
| MU_ANGMAX ${ }^{\ddagger}$ | 21 | Kuhn-Tucker multiplier upper angle difference limit ( $u$ /degree) |

* Not included in version 1 case format. The voltage angle difference is taken to be unbounded below if ANGMIN $\leq-360$ and unbounded above if ANGMAX $\geq 360$. If both parameters are zero, the voltage angle difference is unconstrained.
${ }^{\dagger}$ Included in power flow and OPF output, ignored on input.
$\ddagger$ Included in OPF output, typically not included (or ignored) in input matrix. Here we assume the objective function has units $u$.

Table B-2: Generator Data (mpc.gen)

| name | column | description |
| :--- | :---: | :--- |
| GEN_BUS | 1 | bus number |
| PG | 2 | real power output (MW) |
| QG | 3 | reactive power output (MVAr) |
| QMAX | 4 | maximum reactive power output (MVAr) |
| QMIN | 5 | minimum reactive power output (MVAr) |
| VG $^{\ddagger}$ | 6 | voltage magnitude setpoint (p.u.) |
| MBASE | 7 | total MVA base of machine, defaults to baseMVA |
| GEN_STATUS | 8 | machine status, $>0=$ machine in-service |
| PMAX | 9 | maximum real power output (MW) |
| PMIN | 10 | minimum real power output (MW) |
| PC1 | 11 | lower real power output of PQ capability curve (MW) |
| PC2 | 12 | upper real power output of PQ capability curve (MW) |
| QC1MIN |  | 13 | | minimum reactive power output at PC1 (MVAr) |
| :--- |
| QC1MAX |

[^0]
## Table B-4: Generator Cost Data ${ }^{\dagger}$ (mpc.gencost)

| name | column | description |
| :---: | :---: | :---: |
| MODEL | 1 | cost model, $1=$ piecewise linear, $2=$ polynomial |
| STARTUP | 2 | startup cost in US dollars* |
| SHUTDOWN | 3 | shutdown cost in US dollars* |
| NCOST | 4 | number of cost coefficients for polynomial cost function, or number of data points for piecewise linear |
| COST | 5 | parameters defining total cost function $f(p)$ begin in this column, units of $f$ and $p$ are $\$ / \mathrm{hr}$ and MW (or MVAr), respectively $(\operatorname{MODEL}=1) \Rightarrow \quad p_{0}, f_{0}, p_{1}, f_{1}, \ldots, p_{n}, f_{n}$ <br> where $p_{0}<p_{1}<\cdots<p_{n}$ and the cost $f(p)$ is defined by the coordinates $\left(p_{0}, f_{0}\right),\left(p_{1}, f_{1}\right), \ldots,\left(p_{n}, f_{n}\right)$ <br> of the end/break-points of the piecewise linear cost <br> $($ MODEL $=2) \Rightarrow \quad c_{n}, \ldots, c_{1}, c_{0}$ <br> $n+1$ coefficients of $n$-th order polynomial cost, starting with highest order, where cost is $f(p)=c_{n} p^{n}+\cdots+c_{1} p+c_{0}$ |

[^1]
## Rosetta stone: buses

$\forall b \in B:$

- $\tilde{S}_{b}=(\mathrm{PD}+i \mathrm{QD}) /$ baseMVA $\in \mathbb{C}$
- $-\operatorname{conj}\left(A_{b}\right)=(-\mathrm{GS}+i \mathrm{BS}) /$ baseMVA $\in \mathbb{C}$
- $\left[\underline{V}_{b}, \bar{V}_{b}\right]=[$ vMIN, VMAX$] \in \mathbb{R}$

I've never seen baseMVA being anything other than 100

## Rosetta stone: branches

$$
\begin{aligned}
\forall\{b, a\} \in L: \\
\text { - } \bar{S}_{b a}=\text { RATE_A } / \text { baseMVA } \in \mathbb{R} \\
\text { - } r_{b a}=\mathrm{BR} \_\mathrm{R} \in \mathbb{R} \\
\text { - } x_{b a}=\mathrm{BR} \mathrm{\_X} \in \mathbb{R} \\
\text { - } \mathfrak{b}_{b a}=\mathrm{BR} \_\mathrm{B} \in \mathbb{R} \\
\text { - } \tau_{b a}=\mathrm{TAP} \in \mathbb{R} \\
\text { - } \theta_{b a}=\frac{\pi}{180} \operatorname{SHIFT} \in \mathbb{R} \\
\text { - } \underline{\omega}_{b a}=\frac{\pi}{180} \text { ANGMIN } \in \mathbb{R} \\
\text { - } \bar{\omega}_{b a}=\frac{\pi}{180} \text { ANGMAX } \in \mathbb{R}
\end{aligned}
$$

## Rosetta stone: generators

$\forall b \in B, g \in \mathscr{G}_{b}:$

- $\left[\mathscr{S}_{b g}, \overline{\mathscr{S}}_{b g}\right]=$ GEN_STATUS $([\operatorname{PMIN}, \operatorname{PMAX}]+i[$ QMIN, QMAX $])$


## Subsection 2

## AMPL

## The ACOPF in AMPL

- Natural, edge, arc: which formulation?
- Translating data from MatPower .m to AMPL . dat files many defaults are wrong: e.g. RATE_A $=0$ means $\bar{S}_{b a}=+\infty$, TAP $=0$ means $\tau=1$, ANGMIN $<-90$ means ANGMIN $=90$, ANGMAX $>90$ means $\operatorname{ANGMAX}=90$
- Comparing results: polar vs. cartesian formulation


## Implementation pitfalls

- Implementing the $\mathbf{Y}$ matrix is error-prone
- Power is $S=V \operatorname{conj}(I)$ : don't forget the conjugate
- Many papers enforce upper bounds on power magnitude, some have current
- The shunt admittance $A_{b}$ is never used per se; instead, we use $-\operatorname{conj}\left(A_{b}\right)=-A_{b}^{r}+i A_{b}^{c}$, i.e. we flip the sign of the real part
- The bus indexing is not a progressive counter
- Some text file lines are commented in some instances


[^0]:    * Not included in version 1 case format.
    ${ }^{\dagger}$ Included in OPF output, typically not included (or ignored) in input matrix. Here we assume the objective function has units $u$.
    $\ddagger$ Used to determine voltage setpoint for optimal power flow only if opf .use_vg option is non-zero ( 0 by default). Otherwise generator voltage range is determined by limits set for corresponding bus in bus matrix.

[^1]:    $\dagger$ If gen has $n_{g}$ rows, then the first $n_{g}$ rows of gencost contain the costs for active power produced by the corresponding generators. If gencost has $2 n_{g}$ rows, then rows $n_{g}+1$ through $2 n_{g}$ contain the reactive power costs in the same format.

    * Not currently used by any Matpower functions.

