
TD #6: Random projections
Large-scale Mathematical Programming

Leo Liberti, CNRS LIX Ecole Polytechnique
liberti@lix.polytechnique.fr

INF580

L. Liberti, CNRS LIX TD #6: Random projections INF580 1 / 42

liberti@lix.polytechnique.fr

Do you believe in the JLL?

Outline

Do you believe in the JLL?

Using the JLL

Random projections applied to LP

L. Liberti, CNRS LIX TD #6: Random projections INF580 2 / 42

Do you believe in the JLL?

Verifying the JLL

▶ The JLL depends on two parameters:

1. multiplicative approximation accuracy ε
2. multiplicative factor C in k = O(ε−2 ln n)

where n = number of pts in Rm to project to Rk

▶ Consider m × n point matrix X
sampled from U(0, 1) and N(0, 1)

▶ Sample random projector (RP) T in N(0, 1/
√
k)

▶ Verify projection err for cols of TX w.r.t. cols of X

L. Liberti, CNRS LIX TD #6: Random projections INF580 3 / 42

Do you believe in the JLL?

Projection errors

Given Euclidean Distance Matrices (EDM) D of X , D ′ of TX ,
compute the following error measures:

1. J = {max(0, |D
′
ij

Dij
− 1| − ε) | i , j ≤ n}

2. Jcard =
∑
e∈J
e>0

1

3. Javg =
1
n2

∑
e∈J

e

4. Jmax = max(J)

5. mde = 1
n2

∑
i ,j≤n

|Dij − D ′
ij |

6. lde = max
i ,j≤n

|Dij − D ′
ij |

L. Liberti, CNRS LIX TD #6: Random projections INF580 4 / 42

Do you believe in the JLL?

Necessary tasks

▶ sample random matrices from U(0, 1) and N(0, 1)
you can also try changing distribution parameters

▶ fast computation of large distance matrices

▶ fast dot product of large matrices

L. Liberti, CNRS LIX TD #6: Random projections INF580 5 / 42

Do you believe in the JLL?

Sampling random matrices

Python: import numpy as np

▶ m × n matrix sampled componentwise from U(0, 1)
np.random.rand(m,n)

▶ m × n matrix sampled componentwise from N(0, 1)
np.random.normal([0],[[1]],(m,n))

L. Liberti, CNRS LIX TD #6: Random projections INF580 6 / 42

Do you believe in the JLL?

Fast computation of distance matrices

Python: from scipy.spatial.distance import pdist

▶ X is a numpy array with n cols in Rm

▶ D = pdist(X.T)

pdist considers row vectors, so we need X⊤

pdist returns upper triangular part of D
encoded as (n(n − 1)/2)-vector

L. Liberti, CNRS LIX TD #6: Random projections INF580 7 / 42

Do you believe in the JLL?

Fast matrix product

Given matrices T (k ×m) and X (m × n):

▶ dense matrices:
import numpy as np

TX = np.dot(T,X)

▶ sparse matrices in CSR format:
import scipy.sparse

TX = scipy.sparse.csr matrix.dot(T,A)

L. Liberti, CNRS LIX TD #6: Random projections INF580 8 / 42

Do you believe in the JLL?

Generating the points

import sys

import math

import numpy as np

import scipy.sparse

uniform dense

X = np.random.rand(m,n)

normal dense

X = np.random.normal([0],[[1]],(m,n))

normal sparse (density s, CSR format)

X = scipy.sparse.random(m,n,density=s,format=’csr’,

data_rvs=np.random.randn)

L. Liberti, CNRS LIX TD #6: Random projections INF580 9 / 42

Do you believe in the JLL?

Main loop

D = pdist(X.T)

nD = len(D)

for eps in [0.05, 0.1, 0.15, 0.2]:

print(" --------------------------")

for C in [0.5, 1.0, 1.5, 2.0]:

k = int(round(C*(1/eps**2)*math.log(n)))

T = (1/sqrt(k))*normalmatrix(k,m)

TX = np.dot(T,X)

TD = pdist(TX.T)

L. Liberti, CNRS LIX TD #6: Random projections INF580 10 / 42

Do you believe in the JLL?

Computing the errors

jllerr = [max(0, abs(TD[i]/D[i]-1)-eps) for i in range(nD)]

jllerr = [jle for jle in jllerr if jle > myZero]

jllerr = len(jllerr)

avgjllerr = sum(abs(TD[i]/D[i]-1) for i in range(nD)) / nD

maxjllerr = max(abs(TD[i]/D[i]-1) for i in range(nD))

mde = sum(abs(D[i] - TD[i]) for i in range(nD)) / nD

lde = max(abs(D[i] - TD[i]) for i in range(nD))

L. Liberti, CNRS LIX TD #6: Random projections INF580 11 / 42

Do you believe in the JLL?

Results on 2000× 1000 matrix from U(0, 1)
ε C k jllerr avgjll maxjll mde lde

0.05 0.5 1382 3919 0.015 0.09 0.273 1.684
0.05 1.0 2763 118 0.011 0.063 0.197 1.151
0.05 1.5 4145 4 0.009 0.053 0.16 0.976
0.05 2.0 5526 0 0.008 0.044 0.14 0.817
0.1 0.5 345 3504 0.029 0.194 0.536 3.615
0.1 1.0 691 101 0.021 0.13 0.391 2.372
0.1 1.5 1036 2 0.017 0.107 0.318 1.926
0.1 2.0 1382 0 0.015 0.085 0.273 1.541
0.15 0.5 154 3942 0.045 0.272 0.823 4.983
0.15 1.0 307 108 0.032 0.193 0.59 3.454
0.15 1.5 461 2 0.026 0.163 0.481 2.957
0.15 2.0 614 0 0.023 0.134 0.412 2.457
0.2 0.5 86 4675 0.062 0.373 1.13 6.88
0.2 1.0 173 58 0.043 0.271 0.776 4.969
0.2 1.5 259 11 0.037 0.252 0.668 4.656
0.2 2.0 345 0 0.03 0.18 0.549 3.281

L. Liberti, CNRS LIX TD #6: Random projections INF580 12 / 42

Do you believe in the JLL?

Results on 2000× 1000 matrix from N(0, 1)
ε C k jllerr avgjll maxjll mde lde

0.05 0.5 1382 4170 0.015 0.094 0.952 5.961
0.05 1.0 2763 98 0.011 0.064 0.686 4.149
0.05 1.5 4145 0 0.009 0.05 0.554 3.127
0.05 2.0 5526 0 0.008 0.045 0.485 2.883
0.1 0.5 345 3560 0.03 0.209 1.877 13.173
0.1 1.0 691 145 0.022 0.139 1.389 8.717
0.1 1.5 1036 2 0.018 0.11 1.127 6.824
0.1 2.0 1382 0 0.015 0.094 0.975 5.971
0.15 0.5 154 4589 0.046 0.282 2.891 17.811
0.15 1.0 307 120 0.032 0.212 2.053 13.294
0.15 1.5 461 10 0.027 0.169 1.68 10.824
0.15 2.0 614 0 0.022 0.13 1.42 8.41
0.2 0.5 86 4498 0.061 0.402 3.878 25.188
0.2 1.0 173 74 0.042 0.244 2.681 15.296
0.2 1.5 259 1 0.035 0.202 2.205 13.089
0.2 2.0 345 0 0.03 0.174 1.911 10.999

L. Liberti, CNRS LIX TD #6: Random projections INF580 13 / 42

Do you believe in the JLL?

Comparative results

L. Liberti, CNRS LIX TD #6: Random projections INF580 14 / 42

Do you believe in the JLL?

The Achlioptas sparse projector

▶ Let T be sampled componentwise from the distribution:

Tij ∼


−1 with prob. p/2
0 with prob. 1− p
1 with prob. p/2

▶ For p = 1/3 we get [Achlioptas 2003]’s RP

▶ For p = 1/
√
m we get [Li, Hastie, Church 2006]’s RP

▶ Get sparse RPs with density p

▶ Scaling factor: pre-multiply by 1/
√
pk

▶ Hint: use unscaled T ∈ {−1, 0, 1}km to compute TX , then scale
reduces time for floating point computations

L. Liberti, CNRS LIX TD #6: Random projections INF580 15 / 42

Do you believe in the JLL?

Tasks

▶ Verify the JLL with Achlioptas’ projectors

▶ Consider the k ×m sparse RP S with density p

S ∼ 1√
pk

(N(0, 1) with prob. p)

▶ Verify the JLL with S

L. Liberti, CNRS LIX TD #6: Random projections INF580 16 / 42

Using the JLL

Outline

Do you believe in the JLL?

Using the JLL

Random projections applied to LP

L. Liberti, CNRS LIX TD #6: Random projections INF580 17 / 42

Using the JLL

Images

▶ Read all image files in a given directory

▶ Scale them to identical size and color depth

▶ Transform them into set X of vectors in Rm

▶ Cluster X using K -means (with given K)

▶ Randomly project X to Y ⊂ Rk where k = O(ln |X |)
▶ Cluster Y using K -means

▶ Compare clusterings and timings for different image folders

▶ Task: simply put together the code from the various parts and use it

L. Liberti, CNRS LIX TD #6: Random projections INF580 18 / 42

Using the JLL

Structure of the python code

1. Read all files in a given dir: glob.glob

2. Read, scale, convert images: PIL.Image

3. K -means: sklearn.cluster.KMeans

4. CPU time: time.time

5. Compare clusterings:
sklearn.metrics.cluster.adjusted mutual info score

L. Liberti, CNRS LIX TD #6: Random projections INF580 19 / 42

Using the JLL

Imports

import sys

import os

import time

import math

from math import sqrt

import numpy as np

from PIL import Image

import glob

from sklearn.cluster import KMeans

from sklearn.metrics.cluster import adjusted_mutual_info_score

L. Liberti, CNRS LIX TD #6: Random projections INF580 20 / 42

Using the JLL

Global parameters

myZero = 1e-10

image_exts = [".jpg",".gif",".png"]

thumbnailsize = (100,100)

thumbnaildepth = 3

jlleps = 0.15

jllC = 2.0

L. Liberti, CNRS LIX TD #6: Random projections INF580 21 / 42

Using the JLL

Functions

round and output a number as part of a string

def outstr(x,d):

return str(round(x,d))

generate a componentwise Normal(0,1) matrix

def normalmatrix(m, n):

return np.random.normal([0],[[1]],(m,n))

generate a componentwise Uniform(0,1) matrix

def uniformmatrix(m, n):

return np.random.rand(m,n)

L. Liberti, CNRS LIX TD #6: Random projections INF580 22 / 42

Using the JLL

Functions

def outclustering(clust, filenames):

nclust = len(set(list(clust.labels_)))

for c in range(nclust):

print(" " + str(c+1) + ":", end=’ ’)

for j in range(n):

if clust.labels_[j] == c:

print(filenames[j], end=’ ’)

print()

def nonemptyclust(clust):

nclust = len(set(list(clust.labels_)))

clustering = {}

for c in range(nclust):

cluster = [j for j in range(n) if clust.labels_[j] == c]

if len(cluster) > 0:

clustering[c] = cluster

return clustering

L. Liberti, CNRS LIX TD #6: Random projections INF580 23 / 42

Using the JLL

Read command line

if len(sys.argv) < 3:

print("syntax is" + sys.argv[0] + "dir nclust")

print(" dir contains image files")

print(" nclust is number of clusters")

sys.exit(1)

dir = sys.argv[1]

nclust = int(sys.argv[2])

if nclust < 2:

sys.exit(’nclust must be at least 2’)

if len(sys.argv) >= 4:

m = int(sys.argv[2])

n = int(sys.argv[3])

thumbnailsize = (m,n)

m = thumbnailsize[0]*thumbnailsize[1]*thumbnaildepth

L. Liberti, CNRS LIX TD #6: Random projections INF580 24 / 42

Using the JLL

Read files into vectors
filenames = []

X = []

n = 0

print("reading " + dir + " ...", end=’ ’)

sys.stdout.flush()

t0 = time.time()

for ext in image_exts:

for filename in glob.glob(dir + ’/*’ + ext):

im = Image.open(filename)

im = im.resize(thumbnailsize)

im = im.convert("RGB")

filenames.append(os.path.basename(filename))

imvect = np.reshape(np.array(im), (m))

X.append(imvect)

n += 1

X = np.array(X)

t1 = time.time()

print("took " + outstr(t1-t0,2) + "s")

L. Liberti, CNRS LIX TD #6: Random projections INF580 25 / 42

Using the JLL

K -means

cluster the data matrix

print(str(nclust) + "-means clustering ...", end=’ ’)

sys.stdout.flush()

t2 = time.time()

clust = KMeans(n_clusters=nclust).fit(X)

t3 = time.time()

#outclustering(clust, filenames)

print("took " + outstr(t3-t2,2) + "s")

L. Liberti, CNRS LIX TD #6: Random projections INF580 26 / 42

Using the JLL

Random projection

projecting the data matrix

print("projecting data matrix ...", end=’ ’)

sys.stdout.flush()

t4 = time.time()

k = int(round(jllC*(1/(jlleps**2))*math.log(n)))

T = (1/sqrt(k))*normalmatrix(m,k)

XT = np.dot(X,T)

t5 = time.time()

print("took " + outstr(t5-t4,2) + "s")

print("projected from " + str(m) + " to " + str(k) + " dims")

L. Liberti, CNRS LIX TD #6: Random projections INF580 27 / 42

Using the JLL

K -means on projected data

projected k-means clustering

print(str(nclust) + "-means proj. clustering ...", end=’ ’)

sys.stdout.flush()

projclust = KMeans(n_clusters=nclust).fit(XT)

t6 = time.time()

#outclustering(projclust, filenames)

print("took " + outstr(t6-t5,2) + "s")

print("clust took "+outstr(t3-t2,2)+"s;", end=’ ’)

print("proj+clust took "+outstr(t6-t4,2)+"s")

L. Liberti, CNRS LIX TD #6: Random projections INF580 28 / 42

Using the JLL

Clustering similarity

evaluate clustering similarity

print("used " + multmethod + " for matrix dot product")

q = adjusted_mutual_info_score(clust.labels_, projclust.labels_)

print("adj mutual info = " + outstr(q,3) + " (0=differ, 1=equal)")

clustering = nonemptyclust(clust)

print(str(n) + " images clustered into", end=’ ’)

print(str(len(clustering.keys())) + " non-empty clusters")

L. Liberti, CNRS LIX TD #6: Random projections INF580 29 / 42

Using the JLL

Output: 13 images and K = 3

reading ~/gif/art/ ... took 2.07s

3-means clustering ... took 0.12s

projecting data matrix ... took 0.31s

projected from 30000 to 228 dims

3-means proj. clustering ... took 0.01s

clust took 0.12s; proj+clust took 0.32s

used numpy.dot for matrix dot product

adj mutual info = 1.0 (0=different, 1=equal)

13 images clustered into 3 non-empty clusters

L. Liberti, CNRS LIX TD #6: Random projections INF580 30 / 42

Using the JLL

Output: 12 images and K = 4

reading ~/gif/places/ ... took 1.34s

4-means clustering ... took 0.11s

projecting data matrix ... took 0.29s

projected from 30000 to 213 dims

4-means proj. clustering ... took 0.01s

clust took 0.11s; proj+clust took 0.31s

used numpy.dot for matrix dot product

adj mutual info = 1.0 (0=different, 1=equal)

12 images clustered into 4 non-empty clusters

L. Liberti, CNRS LIX TD #6: Random projections INF580 31 / 42

Using the JLL

Output: 88 images and K = 4

reading ~/gif/things/ ... took 5.61s

4-means clustering ... took 0.88s

projecting data matrix ... took 0.57s

projected from 30000 to 396 dims

4-means proj. clustering ... took 0.02s

clust took 0.88s; proj+clust took 0.59s

used numpy.dot for matrix dot product

adj mutual info = 0.847 (0=different, 1=equal)

88 images clustered into 4 non-empty clusters

L. Liberti, CNRS LIX TD #6: Random projections INF580 32 / 42

Using the JLL

Output: 244 images and K = 3

reading ~/gif/foods/ ... took 29.47s

5-means clustering ... took 3.33s

projecting data matrix ... took 0.94s

projected from 30000 to 487 dims

5-means proj. clustering ... took 0.1s

clust took 3.33s; proj+clust took 1.04s

used numpy.dot for matrix dot product

adj mutual info = 0.719 (0=different, 1=equal)

240 images clustered into 3 non-empty clusters

L. Liberti, CNRS LIX TD #6: Random projections INF580 33 / 42

Using the JLL

Output: 395 images and K = 10

reading ~/gif/people/ ... took 25.29s

10-means clustering ... took 10.47s

projecting data matrix ... took 1.07s

projected from 30000 to 531 dims

10-means proj. clustering ... took 0.27s

clust took 10.47s; proj+clust took 1.34s

used numpy.dot for matrix dot product

adj mutual info = 0.519 (0=different, 1=equal)

395 images clustered into 10 non-empty clusters

L. Liberti, CNRS LIX TD #6: Random projections INF580 34 / 42

Using the JLL

Output: 395 images and K = 3

reading ~/gif/people/ ... took 25.58s

3-means clustering ... took 5.98s

projecting data matrix ... took 1.07s

projected from 30000 to 531 dims

3-means proj. clustering ... took 0.13s

clust took 5.98s; proj+clust took 1.21s

used numpy.dot for matrix dot product

adj mutual info = 0.729 (0=different, 1=equal)

395 images clustered into 3 non-empty clusters

L. Liberti, CNRS LIX TD #6: Random projections INF580 35 / 42

Random projections applied to LP

Outline

Do you believe in the JLL?

Using the JLL

Random projections applied to LP

L. Liberti, CNRS LIX TD #6: Random projections INF580 36 / 42

Random projections applied to LP

The diet problem

Given:

▶ a set F of n possible foods in the diet, with unit costs
cj ∼ max(0.1, 1 + 0.1N(0, 1))
let c be the food cost vector

▶ a set N of m nutrients the diet must provide, in quantity at least bi
let b be the required nutrient quantity vector

▶ values aij ∼ U(0.05, 2.5) such that food j contains aij units of nutrient i
let A be the nutrient-food occurrence matrix
make sure A has density 0.1

▶ find the diet of least cost

L. Liberti, CNRS LIX TD #6: Random projections INF580 37 / 42

Random projections applied to LP

Tasks

▶ Formulate the diet problem

▶ Write an AMPL or Python script in order to generate random
feasible instances A, b, c of given sizes m, n of the diet problem
[Hint: generate b last]

▶ Write a Python script to read these instances

▶ Write Python code to apply a RP to the diet problem LP

▶ Solve both original and projected problem using amplpy

▶ Compare results (approximation quality, feasibility, CPU time)
for instances of various sizes

L. Liberti, CNRS LIX TD #6: Random projections INF580 38 / 42

Random projections applied to LP

Solution retrieval is tricky
▶ With AMPL: sstatus suffix if x[j].sstatus == "bas" . . .

▶ With amplpy: xstat[j] = diet.getVariable("x")[j+1].sstatus()

▶ Basis elements come from simplex tableau
they may refer to slack or Phase I variables
⇒ must look for them in constraint structures too
cstat[i] = diet.getConstraint("nutrients")[i+1].sstatus()

▶ ⇒ Since problem constraints are Ax ≥ b you must project Ā = (A|Im)
as RPs are applied to LPs in standard form (with linear equations)
var (resp. constr) basic elts indexed in {1, . . . , n} (resp. {1, . . . ,m})
but i-th basic constr. index refers to (n + i)-th col in Ā

▶ When you retrieve x ′ = (A⊤
HAH)

−1A⊤
Hb (see lectures), x ′j may correspond to

a basic element from variables or constraints
⇒ zero padding will need to fill in “missing indices”
retrieved x will be in Rn+m

[Hint: encode x ′ in a dictionary: xd[j] = value of x ′j]

L. Liberti, CNRS LIX TD #6: Random projections INF580 39 / 42

Random projections applied to LP

CPLEX on original 4000× 5000 instance

CPLEX 12.8.0.0: display=1

Parallel mode: deterministic, using up to 4 threads for concurrent optimization.

Linear dependency checker was stopped due to maximum work limit.

No LP presolve or aggregator reductions.

Elapsed time = 63.74 sec. (61801.03 ticks, 1 iterations)

Dual simplex solved model.

CPLEX 12.8.0.0: optimal solution; objective 793.258801

2690 dual simplex iterations (0 in phase I)

cost = 793.259

real 2m56.951s, user 4m8.926s, sys 0m5.516s

L. Liberti, CNRS LIX TD #6: Random projections INF580 40 / 42

Random projections applied to LP

With random projection code (ε = 0.08, C = 1)

reading data data read in 6.90s

projecting from 4000 to 1423 constraints projection took 1.75s

writing projected problem to projdiet.dat wrote instance in 21.38s

passing data to AMPL using file passed data to AMPL in 3.82s

solving projected problem solved projected problem in 90.17s

CPLEX 12.8.0.0: baropt

bardisplay=1

Linear dependency checker was stopped due to maximum work limit.

No LP presolve or aggregator reductions.

Parallel mode: using up to 4 threads for barrier.

CPLEX 12.8.0.0: optimal solution; objective 793.2632

10 barrier iterations

9 push, 792 exchange dual crossover iterations

solution retrieval retrieval took 0.77s

optimal objective function value = 793.2632

||(A|I_m)xretr - b||_2 / m = 1.5309781918953325e-14

||min(xretr,0)||_1 / (n+m) = 2.4976317310650604e-15

CPU times: read=6.90,proj=1.75,out=21.38,solve=90.17,retr=0.77,tot=120.98

real 2m7.021s, user 4m13.557s, sys 0m4.257s

L. Liberti, CNRS LIX TD #6: Random projections INF580 41 / 42

Random projections applied to LP

A last warning

If you obtained error-free results (like me in last slide), you probably
biased the random instance in the generation phase!

Find what the bias is, repair the random generation code, and repeat
the tests: what results do you obtain?

L. Liberti, CNRS LIX TD #6: Random projections INF580 42 / 42

	Do you believe in the JLL?
	Using the JLL
	Random projections applied to LP

