TD #3

Leo Liberti, CNRS LIX Ecole Polytechnique
liberti@lix.polytechnique.fr

INF580

L. Liberti, CNRS LIX TD #3

INF580

1/1

liberti@lix.polytechnique.fr

Simple AMPL codes

Write AMPL code for the following problems:
» SUBSET-SUM
» KNAPSACK
» MAX CLIQUE
» HAMILTONIAN CYCLE

and test them with the feasible and infeasible (whenever applicable)
instances given in the course slides

L. Liberti, CNRS LIX TD #3 INF580 2/1

Random instance generators

» Coding up instances by hand is boring
» Let's use AMPL to generate random instances!
» Each problem needs its own generator

» In general, for a problem called prob:

1. copy the index sets / parameters from prob.mod to
prob-instgen.run

2. set sizes by hand (e.g. “let n := 5;")

3. use AMPL imperative sublanguage to randomly fill set/param
values

4. print to file

L. Liberti, CNRS LIX TD #3 INF580 3/1

Random instance generators
Example: uniformly distributed knapsack instances

option randseed O; # pseudornd gen starts from rnd seed
param n integer, > O;

set N := 1..n;

param c{N} integer;

param w{N} integer;

param K integer, >= 0;

randomly generate missing index sets/params

let n := 20; # initialize number of objects
param cL := 1; param cU := 10; # bounds for object volume
param wL := 1; param wU := 10; # bounds for object value

let {i in N} c[i] := round(Uniform(cL,cU));
let {i in N} w[i] := round(Uniform(wL,wU));
let K := round((sum{i in N} c[i])/2); # generate capacity
print out a .dat file (MIND YOU DON’T OVERWRITE OLD .dat FILES!)
print "# file generated by knapsack-instgen.run" > rndknap.dat;
printf "param n := %d;\n", n >> rndknap.dat;
printf "param K := %d;\n", K >> rndknap.dat;
printf "param : ¢ w :=\n" >> rndknap.dat;
for {i in N} {

printf " %i %d %d\n", i, c[il, w[i] >> rndknap.dat;
}
printf ";\n" >> rndknap.dat;

L. Liberti, CNRS LIX TD #3 INF580

4/1

Random instance generators

Example: normally distributed knapsack instances
Change

param cL := 1; param cU := 10; # bounds for object volume
param wL := 1; param wU := 10; # bounds for object value
let {i in N} c[i] := round(Uniform(cL,cU));
let {i in N} wl[il] round (Uniform(wL,wU));

to

param cavg := 4.5; param cstdev := 1.9; # object volume
param wavg := 5.8; param wstdev := 3.1; # object value
let {i in N} c[i] := round(Normal(cavg,cstdev));

let {i in N} w[i] := round(Normal (wavg,wstdev));

L. Liberti, CNRS LIX TD #3 INF580

5/1

Random instance generators
Example: generating random graphs, Erdés-Renyi model

option randseed O; # pseudornd gen starts from rnd seed
start from sizes/index sets/params of original problem
param n integer, > 0;
set V := 1..n;
set E within {V,V};
randomly generate missing index sets/params
let n := 50; # initialize number of vertices
param p := 0.5; # probability of creating edge
let E := {}; # initialize the edge set to empty
for {i in V, j in V : i < j} { # no loops or antiparallel arcs

if Uniform(0,1) < p then {

let E := E union {(i,j)}; # create the edge

}
}
print out a .dat file (MIND YOU DON’T OVERWRITE OLD .dat FILES!)
print "# file generated by clique-instgen.run" > rndcliq.dat;
printf "param n := %d;\n", n >> rndcliq.dat;
printf "set E :=" >> rndcliq.dat;
for {(i,j) in E} {

printf " (%4,%d)", i,j >> rndcliq.dat;
}
printf ";\n" >> rndcliq.dat;

L. Liberti, CNRS LIX TD #3 INF580

6/1

Playing with instances

» How many vertices/edges does the largest Max CLIQUE instance have,
that CPLEX can solve in 30s on your laptop?

» Generate 9 random graphs, each with 160 vertices, and with edge
generation probability p € P = {0.1,0.2,...,0.9}

» Find max cliques on all these graphs

» use CPLEX as a solver

P> use “option cplex_options "mipdisplay=2";" after
‘option solver cplex;’ (shows CPLEX progress)

» record size w(Gp) of max clique of each graph G, and CPU
time v, for p € P

with bash: name random instances rndcliq-0.1.dat, ..., then type (1 line):
for i in 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ; do
cp rndclig-$i.dat rndcliq.dat ; ampl clique.run ;
done > clique.log 2>&1 &
» plot w(Gp) versus p and 7y, versus p

with bash: grep OUT: clique.log | cut -d ’:> -f 2

L. Liberti, CNRS LIX TD #3 INF580

7/1

The Motzkin-Straus formulation

Write AMPL code to implement the Motzkin-Straus formulation for
solving MAX CLIQUE
» make sure this formulation can read the same .dat files as those
you already worked on
» test this formulation on the instance given in the course slides

» use a global optimization solver (e.g. baron) and also a local
optimization one (e.g. snopt): what results do you obtain?

v

can this formulation be solved using cplex?

» what is the maximum instance size you can solve to global
optimality with this formulation? What about local optimality?

L. Liberti, CNRS LIX TD #3 INF580 8/1

Structured formulation for SAT

» Propose a numerical encoding for SAT instances
» Based on this, write a structured MP formulation for SAT

» Implement it in AMPL and test it using an appropriate solver

L. Liberti, CNRS LIX TD #3 INF580 9/1

