INF580 - Large-scale Mathematical Programming

TD2 (hard version) - Computability and MP

Leo Liberti
CNRS LIX, Ecole Polytechnique, France

Marvin Minsky's register machine (MRM)

- MRM is a qudruplet (R, N, S, c)
- $R=\left(R_{1}, R_{2}, \ldots\right)$: infinite sequence of registers
- $\forall i \in \mathbb{N}$, each R_{i} contains an integer
- $N=\{0, \ldots, n\}$ is a set of states $N^{+}=N \backslash\{0\}$
- $S: N^{+} \rightarrow \mathbb{N} \times\{0,1\} \times N \times N$ is a program
- c holds the current instruction index

MRM instructions

- Each instruction $S(i)$ (for $i \in N^{+}$) of a MRM program S is a quadruplet (j, b, k, ℓ)
- If $S(i)=(j, b, k, \ell)$ then $S(i)$ is an instruction of type $b \in\{0,1\}$
- if $b=0$ then $R_{j} \leftarrow R_{j}+1$ and $c \leftarrow k$
- if $b=1$ and $R_{j}>0$ then $R_{j} \leftarrow R_{j}-1$ and $c \leftarrow k$
- if $b=1$ and $R_{j}=0$ then $c \leftarrow \ell$
- If $c=0$ then MRM terminates
- If $b=0$ then ℓ is unused

MRM example [Johnstone 87]

Algorithm: $R_{1} \leftarrow R_{1}+2 R_{2}$
$\begin{aligned} & S_{1}=(3,1,1,2) \\ & S_{2}=(2,1,3,6) \\ & S_{3}=(3,0,4,0) \\ & S_{4}=(1,0,5,0) \\ & S_{5}=(1,0,2,0) \\ & S_{6}=(3,1,7,0) \\ & S_{7}=(2,0,6,0) . \end{aligned}$
```while ( \(R_{3}>0\) ) \(R_{3}--;\) while \(\left(R_{2}>0\right)\) \{ \(R_{2}--; R_{3}++\); \(R_{1}++; R_{1}++\); \} while \(\left(R_{3}>0\right)\) \{ \(R_{3}--\); \(R_{2}++;\) \}```



## Minsky's theorem

## The MRM is a UTM

Proof: simulate a UTM using the MRM

## Exercises

1. Execute "by hand" Johnstone's MRM example for inputs $\left(R_{1}, R_{2}\right)$ in the set $\{(1,1),(2,1)\}$; make sure you obtain the correct output in $R_{1}$
2. Write a MRM program isfactorof $(a, b)$ which tests if $a \mid b$
3. Devise a MP formulation $P$ which, for any given MRM input $\iota$, gives as a global optimum the output of the MRM on $\iota$ Make sure $P$ has a unique global optimum
4. Does this prove that MP is a Turing-complete language?
5. Is $P$ linear? If not, can you reformulate $P$ exactly so it becomes linear?
6. Test your formulation $P$ on the MRM isfactorof using AMPL and CPLEX (if $P$ is linear) or BARON (otherwise)
7. Change $P$ so it finds the input $(a, b)$ yielding the fastest execution. What about the slowest execution?

## Finding an odd perfect number

- A number is perfect if it is the sum of all its proper divisors (i.e. all aside from $n$ itself)

```
e.g. 6=1 < 2 < 3=1 +2 + 3; the next is 28
```

- Every perfect number found so far is even
- Conjecture $\alpha$ : there are no odd perfect numbers
- Let $A$ be the set of all odd perfect numbers
- is $A$ recursively enumerable?
- do you think $A$ is decidable or undecidable?
- do you think $\alpha$ has a proof in PA1?
- Exhibit a MP formulation which, if infeasible, proves that $\alpha$ is false. If your formulation has infinitely many variables or constraints, now provide a finite one

