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Abstract Mathematical programming is Turing complete, and can be used as a
general-purpose declarative language. We present a new constructive proof of this
fact, and showcase its usefulness by discussing an application to finding the hardest
input of any given program running on a Minsky Register Machine. We also dis-
cuss an application of mathematical programming to software verification obtained
by relaxing one of the properties of Turing complete languages.

Keywords Static analysis · Abstract interpretation · Code verification

1 Introduction

Since the introduction of Linear Programming (LP), the Operations Research com-
munity has been using LP and its various generalizations—e.g. Mixed-Integer Lin-
ear Programming (MILP), Nonlinear Programming (NLP), Mixed-Integer Nonlinear
Programming (MINLP) and others—as a language to define (and solve) all kinds of
optimization problems. Some definitions of mathematical programming (MP) as a for-
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mal language can be found in the literature, e.g. the AMPL grammar (Fourer and Gay
2002, Appendix A), the GNU MathProg language (Makhorin 2003) (whose grammar
is written in open-source pure C), and the GAMS language (Brook et al. 1988), to
name but a few. As with any programming language, it is natural to inquire about the
limits of its expressive power: can any algorithm be cast in the MP language?

It is well known that the answer is yes (see Sect. 2 for details). We give a new, con-
structive proof of this fact by means of a reduction from a certain universal computer
(i.e. a computer which can simulate any other computer) to a MINLP. The interesting
feature of our proof is that it provides a practical tool for answering an interesting
question about programs, e.g., what is the input of given size yielding the longest run-
ning time of a given code? Moreover, we look at another application of MP to software
verification (already briefly discussed in Goubault et al. 2010; Mahjoub 2010), which
relaxes one of the “pillars” of universal languages, i.e. the juxtaposition of commands
(Böhm and Jacopini 1966), to compute program invariants.

The rest of this paper is organized as follows. Preliminary notions are defined
and discussed in Sect. 2. We prove in Sect. 3 that MP is Turing complete, show the
application to finding the hardest input for a given program in Sect. 4, and finally, in
Sect. 5, we discuss another application of MP to the problem of proving the absence
of certain types of bugs from computer programs.

2 Preliminary notions

A Universal Turing Machine (UTM) is a Turing Machine (TM) which can simulate any
other TM on arbitrary input (Shannon 1956; Turing 1937). Marvin Minsky described
a UTM, close to today’s computers, now called Minsky’s register machine (Johnstone
1987, Ch. 4). This consists of a countably infinite number of registers, each of which
can contain a natural number, a finite set of states, and two types of instructions: (1)
add 1 to a given register and change to a given state; (2) test whether a given register is
0, if so change to a given state, else subtract one and change to a given state. Minsky’s
Register Machine (MRM) is a model of an extremely simple CPU that can carry out
two parametrizable instructions in Random Access Memory (RAM).

2.1 Minsky’s register machine

The MRM is a UTM with infinitely many registers, each of which can hold an arbitrary
natural number, and two types of parametrizable instructions:

1. add 1 to a register then switch to a new state;
2. test whether a register holds a positive number: if so subtract 1 then switch to a

new state; else switch to a new (different) state.

States are used to index instructions of the MRM, so that “change to a given state”
effectively means, in today’s terminology, “jump to a given instruction”.

Definition 1 A MRM is a quadruplet (R, N , S, c) where:

1. R = (R1, R2, . . .) is an infinite sequence of registers each of which can hold an
arbitrary natural number;
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Fig. 1 The MRM example from Johnstone (1987): the meaning (top left), in MRM “language” (middle
left), in C-like pseudocode (bottom left), and as a finite state automaton (right)

2. N = {0, . . . , n}, where n ∈ N, and N+ = N � {0} is the set of states;
3. S : N+ → N×{0, 1}×N ×N , is a program, and Si = ( j, b, k, �) is an instruction

of type b ∈ {0, 1} for all i ∈ N+, whose meaning is explained below;
4. c ∈ N holds the current instruction index.

The program S works as follows. For an instruction i ∈ N+, let Si = ( j, b, k, �):

1. if b = 0 then R j ← R j + 1 and c← k;
2. if b = 1 and R j = 0 then c← �;
3. if b = 1 and R j > 0 then R j ← R j − 1 and c← k.

If c = 0 the execution stops. We remark that if b = 0 then � is unused.

Example 2 The example of MRM program in Fig. 1 (found in Johnstone 1987) uses
3 registers and 8 states (including the stop state called S0). Its purpose is to add to R1
twice the content found initially in R2, using R3 as temporary storage space.

2.2 Programming languages and interpreters

Let L be a programming language for the UTM U ; as is well known, L need not
be aware of the physical characteristics of U . A special software I (which is aware
of those characteristics), called interpreter for L on U , is employed to translate any
program P (taking c as input, producing x as output, and written in L), into a sequence
of instructions that can be performed by U . In other words, I takes as input P and
c and tells U how to perform the computation whose output is x . The interpreters
for imperative programming languages, such as Fortran, C/C++, Java and so on, are
usually simple and efficient: each high-level instruction in L is translated into the
machine language employed by the CPU being used to perform the computation.
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Declarative programming languages, such as MP, Prolog (Shapiro 1997) or Con-
straint Programming (CP) (Apt 2003), do not prescribe sequences of instructions, but
rather define computable functions via a set of conditions, or constraints: for example,
a simple linear program P(c1, c2) might ask for a vector (x1, x2) maximizing the linear
form c1x1+ c2x2 subject to the constraints x1+2x2 ≤ 1, x1 ≥ 0, x2 ≥ 0. Interpreters
for declarative programming languages are usually rather complicated, and may be
very inefficient. Typical conditions expressed in MP, CP or Prolog programs would
generally look like “find x ∈ X such that f (x) = 0”, where X is a decidable set and f
is a computable function. Since the interpreter must be able to interpret any program
in the language, it might have to apply brute force to test all x in X for the property
f (x) = 0. Interpreters for declarative languages are often based on tree-like search
methods, such as Branch-and-Bound (BB).

2.3 Turing completeness

If a programming language can be used to program a UTM via an interpreter, then it
is Turing complete. The fact that MP is Turing complete is a simple corollary to the
existence of Universal Diophantine Equations (UDE) (Jones 1982), insofar as a Dio-
phantine equation is an Integer Polynomial Programming (IPP) feasibility problem,
and IPP is a proper subclass of MP. UDEs are polynomial equations px

i (y1 . . . , yn),
parametrized by x, i , such that

∀i ∈ N, x ∈ Xi ⇔ ∃y ∈ Z
n (px

i (y) = 0),

where X1, X2, . . . is an enumeration of all recursively enumerable sets (it is known that
such an enumeration is possible). Efforts to find UDEs of ever smaller sizes (in terms of
the number n of variables and the degree d) led to values of n, d as low as n = 9 or d =
4, but not both: some small known (n, d) pairs are (58, 4), (38, 8), (32, 12), (29, 16)

(Davis 2009). This also shows that MP is Turing complete even when it is limited
to programs having a fixed number of variables. It is known that setting d = 2
is not possible, since quadratic Diophantine equations are decidable (Jones 1982);
we remark, however, that Integer Quadratic Programming is not decidable (Jeroslow
1973), because of the presence of an objective function.

In Sect. 3 we present a MP that simulates the MRM, which we then use in Sect. 4 to
automatically find the most difficult input (of given size) for a given MRM program.
Specifically, we construct a pure feasibility IPP of degree 3 which takes as input a
program P for the MRM and its input c, and describes a feasible set containing the
intermediate and final computation steps carried out by the MRM running P on c.
Although the size of our MP grows with the size of P and c, and must actually have
infinite size to accommodate programs for which no upper bound on the computation
time to termination can be estimated, it can still be useful for practical purposes, as
shown in Sect. 4. Specifically, for programs involving values within a given upper
bound, our MP can be reformulated (exactly) to an Integer Linear Program (ILP), for
which reasonably good off-the-shelf solvers exist.
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We also remark that Cook’s famous theorem proving that the Satisfiability (SAT)
problem is NP-hard (Davis et al. 1994) may also be used to construct a reduction
from a UTM to MP (via SAT). Such a reduction, however, presents the following
shortcomings (of both practical and theoretical nature).

– Programming a UTM is more difficult than programming the MRM.
– Solving the SAT obtained by Cook’s reduction by means of a SAT solver would

make it hard or inefficient to add an objective function, which is crucial to our
application in Sect. 4.

– A further reduction of the SAT to MP would yield IPPs of any degree (∧ within
literals being represented by products between boolean variables), making them
difficult to solve in practice.

– Cook’s theorem actually reduces a nondeterministic polynomial time bounded UTM
to SAT, whereas in this setting we are interested in deterministic TMs without regard
to time constraints. Hence the reduction might require some possibly nontrivial
adaptation.

2.4 Software verification

It was shown in Böhm and Jacopini (1966) that imperative programming languages that
are able to express juxtaposition of commands, tests and loops are Turing complete.
In the universal MP of Sect. 3, “juxtaposition of commands” refers to the fact that the
MP explicitly models every instruction of the program. In consequence of this, every
program variable is assigned a unique value at each step; or, in other words, every
variable symbol is assigned a sequence of values which is as long as the number of
timesteps taken by the program execution. In our application to software verification
we relax the command juxtaposition requirement: instead of a sequence, every variable
symbol is assigned a set containing at least all of the values in the sequence (and perhaps
some more). The order of the timestep (and hence the command juxtaposition) is lost.
We gain insights about the domain of of the variable, which can be useful to detect
bugs.

Static analysis by abstract interpretation (Cousot and Cousot 1977, 1979) aims to
find program invariants as over-approximations (also called abstract semantics) of
the sets of values (also called concrete semantics) that the program variables can take
at each control point of the program during the whole execution. Abstract semantics
are usually restricted to belong to a pre-specified class of sets, e.g. intervals, boxes,
spheres, polyhedra and so on. Given one such class L and the inclusion lattice (L ,⊆),
the action of the program can be interpreted in the abstract semantics as a function
F : L → L .

The interpretation of a program as a function on a lattice is best explained using the
simple example in Fig. 2. Essentially, the j th variable symbol occurring in statement
i is replaced by the set Xi j ∈ L , which is equated to an expression involving other
Xk�’s on the right hand side of the equation; if we let X be the vector of all Xi j ’s and
F be the lattice function representing the expression on the right hand side, then the
set of equations has the form:

X = F(X), (1)
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Fig. 2 A simple example: program graph (top), semantic equations (bottom left), replacing variable symbols
with interval (abstract) semantics (bottom right)

which are fixed point equations, also called semantic equations in this context. An
over-approximation X ∈ L is invariant with respect to F if it does not change when
F is applied to it, i.e. it satisfies the fixed point equations. In particular, a Least Fixed
Point (LFP) X∗ of F in L , i.e. a lattice set which is smallest with respect to inclusion,
is a smallest invariant of the computer program encoded by F .

If L is the concrete semantics, then X∗ is the set of all values taken by all vari-
ables during the program execution. Since finding such a set in general is easily seen
to be equivalent to solving the halting problem, X∗ is not a decidable set. It turns
out, however, that X∗ is decidable for certain abstract semantics that still give useful
information about the program.

Take for example an array x with size 10, indexed by a counter variable i. An
abstract semantic with an invariant X , whose projection on the i coordinate is con-
tained in the interval [0, 9], yields a rigorous proof that no memory error will result
from writing or reading out of array bounds. Since these types of runtime errors are
typically very difficult to catch, and may yield disastrous as well as unpredictable out-
comes, a strategy for proving their absence is valuable. This also explains why large
invariants are less interesting: the interval [−∞,∞] might be an invariant, but it can
only prove the trivial property i ∈ [−∞,∞].

Two existing solution methods for finding X such that Eq. (1) holds are Kleene’s
Iteration (KI) (Cousot and Cousot 1977) and Policy Iteration (PI) (Costan et al. 2005;
Gaubert et al. 2007; Gawlitza and Seidl 2007). KI is an iterative, possibly nontermi-
nating procedure based on applying F to the largest possible domain in the L until
convergence to a fixed point is attained. PI is a kind of “Newton’s method on lat-
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tices”, which only converges to a guaranteed LFP under some additional conditions
on F , namely non-expansiveness, playing the same role as convexity in in a classical
setting.

The alternative approach proposed here consists in describing the feasible set
defined by (1) using a MP which can be solved in exponential time whenever (1)
only involve integer affine arithmetic. Such a MP is of the same type of the UMP of
Sect. 3: its solution set is essentially the trace (in the abstract semantics) of an algo-
rithm given in imperative language. A preliminary version of these ideas was given in
Liberti et al. (2010).

3 A universal MP

We now propose a Universal MP (UMP) whose solution set is precisely the output of the
MRM together with the set of all values generated during all steps of the computation.
The UMP introduces integer decision variables for each register at each time step (or
iteration) t ∈ N as well as two sets of binary decision variables: one verifies whether a
given register contains 0 at a given time step; the other verifies whether c is assigned a
given state at a given time step. Intuitively, the proposed UMP works by reformulating
the following conditional constraints

b = 0⇒ (R j = R j + 1) ∧ (c = k) (2)

(b = 1) ∧ R j = 0⇒ c = � (3)

(b = 1) ∧ R j > 0⇒ (R j = R j − 1) ∧ (c = k). (4)

to integer polynomial equations.
Here follows the definition of the UMP.

– Sets:
1. N: the set of natural numbers (which includes 0);
2. N+: the set of positive natural numbers;
3. N = {0, . . . , n}: set of all states;
4. N+ = N � {0}: set of all non-stop states.

– Parameters:
– n ∈ N: the number of states;
– h : N → N: register index j targeted by instruction;
– b : N → {0, 1}: instruction type;
– k : N → N : next state for type 0 instructions, conditional next state otherwise;
– � : N → N : conditional next state for type 1 instructions;
– r0 : N→ N: the initial values held in the registers, i.e. the input;
– S0 ∈ N: the initial state.

– Decision variables:
1. value held by register j at iteration t , added by 1 (this is to avoid r jt taking 0 as a

value, which would invalidate some of the constraints below—the value contained
in R j at iteration t is r jt − 1):

∀ j ∈ N, t ∈ N r jt ∈ N+;
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2. test whether register j has value 0 at iteration t :

∀ j ∈ N, t ∈ N ρ j t =
{

1 if r jt ≥ 2
0 if r jt = 1

3. test whether the current instruction at iteration t is i :

∀i ∈ N , t ∈ N xit =
{

1 if c = i at iteration t
0 otherwise.

– Objective functions: none, this is a pure feasibility problem. Objective functions can
be used in possible applications of the UMP, see Sect. 4.

– Constraints:
– initial register values:

∀ j ∈ N r j0 = r0
j ; (5)

– initial state:
x10 = 1; (6)

– if c = i and b = 0, set Rhi ← Rhi + 1:

∀t ∈ N+, i ∈ N+ xi,t−1 (1− bi ) rhi t = xi,t−1 (1− bi ) (rhi ,t−1 + 1); (7)

– if c = i and b = 0, set c← ki :

∀t ∈ N+, i ∈ N+ xki t xi,t−1 (1− bi ) = xi,t−1 (1− bi ); (8)

– if c = i, b = 1 and Rhi > 0, set Rhi ← Rhi − 1:

∀t ∈ N+, i ∈ N+ xi,t−1 bi ρhi ,t−1 rhi t = xi,t−1 bi ρhi ,t−1 (rhi ,t−1 − 1); (9)

– if c = i, b = 1 and Rhi > 0, set c← ki :

∀t ∈ N+, i ∈ N+ xi,t−1 bi ρhi ,t−1 xki t = xi,t−1 bi ρhi ,t−1; (10)

– if c = i, b = 1 and Rhi = 0, fix Rhi :

∀t ∈ N+, i ∈ N+ xi,t−1 bi (1− ρhi ,t−1) rhi t = xi,t−1 bi (1− ρhi ,t−1) rhi ,t−1;
(11)

– if c = i, b = 1 and Rhi = 0, set c← �i :

∀t ∈ N+, i ∈ N+ xi,t−1 bi (1− ρhi ,t−1) x�i t = xi,t−1 bi (1− ρhi ,t−1); (12)

– if c = i and j �= hi , fix R j :

∀t ∈ N+, i ∈ N+, j ∈ N � {hi } r jt xi,t−1 = r j,t−1 xi,t−1; (13)
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– if c = 0 then stop:
∀t ∈ N+ x0t x0,t−1 = x0,t−1; (14)

– if c = 0 then fix R j :

∀t ∈ N+, j ∈ N r jt x0,t−1 = r j,t−1x0,t−1; (15)

– c can only take one value at any given iteration:

∀t ∈ N

∑
i∈N

xit = 1; (16)

– definition of ρ variables in terms of r variables:

∀ j ∈ N, t ∈ N r jt − 1 ≥ ρ j t (17)

∀ j ∈ N, t ∈ N (r jt − 1) (1− ρ j t ) = 0. (18)

The fact that the formulation has an infinite number of variables and constraints, albeit
countable, prevents it from being solved in practice with standard software. This,
however, does not matter when proving Turing completeness: after all even UTMs
require an infinite storage tape whereas all existing computers have a finite amount
of memory. The crucial fact is that if the MRM terminates on a given input, then the
above set of constraints is satisfied by a unique feasible solution (r∗, x∗, ρ∗), which
corresponds to the output of the program running on the MRM, as shown in Cor. 4.
If we give an upper bound on the program running time (we let the index t run over a
finite set T ⊆ N) and on the number of registers (we let the index j run over a finite
set M ⊆ N), then the above program is a MINLP which can be solved exactly, using
for example a spatial Branch-and-Bound (sBB) solver (Belotti et al. 2009), coded so
that it uses precise rational arithmetic and configured with an ε tolerance equal to
zero.

Theorem 3 Every sequence (r, x, ρ) feasible in (5)–(18) has the property that, when-
ever t∗ = min{t ∈ T | x0t = 1}−1 is defined, R∗ = (r1t∗ −1, r2t∗ −1, . . .) is exactly
the output R of a MRM with input r0 which terminates after t∗ timesteps.

Proof We prove this by induction on t . Let (r, x, ρ) be feasible in (5)–(18). When
t = 0, R j = r j0 − 1 for all j ∈ N by (5) and the definition of the decision variables
r on page 88. Consider a timestep t and suppose R j = r j,t−1 − 1 for all j at timestep
t − 1. Let Si = ( j, bi , k, �) be the MRM instruction applied at timestep t − 1. At time
t , by (13), for all j ′ �= j we have r j ′t = r j ′,t−1, so that, by the induction hypothesis,
R j ′ = r j ′t − 1. If j ′ = j and bi = 0, then by (7) we have r jt = r j,t−1 + 1, and by
the induction hypothesis R j = r jt − 1. If bi = 1 and R j > 0 at timestep t − 1, by (9)
r jt = r j,t−1−1 and by the induction hypothesis R j = r jt−1 at timestep t ; otherwise,
if R j = 0 at t − 1, then its value is fixed by (11) at time t . Mutual exclusivity of these
three choices is enforced by multiplying (7)–(12) by, respectively bi and ρ j,t−1, which
by (17)–(18) is 1 if and only if R j > 0. The next instruction to be executed is always
correctly chosen by (8), (10), (12). Notice (7)–(15) are all multiplied by xi,t−1 for
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i �= 0; by (16), whenever x0t ′ = 1 (i.e., c = 0), xit ′ = 0 for all i �= 0 and all t ′: this
implies (7)–(15) are trivially satisfied as 0 = 0, the only nontrivial constraints being
(14)–(18). In particular, by (15) r jt = r j,t−1 for all j whenever c = 0, which means,
by (6), that t∗ is by definition the first timestep index when c = 0, i.e. R∗ contains the
output of the MRM. ��

Corollary 4 If the MRM terminates on a given input, the UMP has a unique solution.

Proof This follows because the MRM is deterministic. ��

Example 5 Continuing with Example 2, the behaviour of the MRM in Fig. 1 with
input R1 = R2 = R3 = 1 is given in the table below (t is the iteration counter, c is
the current state, R1, R2, R3 are the contents of the three registers).

t c R1 R2 R3 Comment h b k �

0 1 1 1 1 initial state 3 1 1 2

1 1 1 1 0 zero R3 3 1 1 2

2 2 1 1 0 switch to state 2 2 1 3 6

3 3 1 0 0 get the value of R2 3 0 4 0

4 4 1 0 1 and copy it in R3 1 0 5 0

5 5 2 0 1 add it to R1 1 0 2 0

6 2 3 0 1 twice 2 1 3 6

7 6 3 0 1 switch to state 6 3 1 7 0

8 7 3 0 0 get the value of R3 2 0 6 0

9 6 3 1 0 and restore it to R2 3 1 7 0

10 0 3 1 0 stop – – – –

Updated registers are marked in boldface. These values have been found by solving
an AMPL (Fourer and Gay 2002) implementation of the bounded version of the UMP
(5)–(18).

3.1 Reformulation to MILP in the bounded case

If the program running on the MRM is bounded, i.e. there is an upper bound M such
that for all j ∈ N we have R j ≤ M , then (5)–(18) can be reformulated exactly to an
Mixed Integer Linear Program (MILP), by applying the Int2Bin exact reformulation
(Liberti et al. 2009) to replace the r variables by sets of added binary variables, and then
the ProdBin exact reformulation (Liberti et al. 2009) to replace all bilinear products
αβ of binary variables α, β with continuous added variables γ ∈ [0, 1] and the Fortet
constraints (Fortet 1960) γ ≤ α, γ ≤ β, γ ≥ α + β − 1.

This means that we can solve the (bounded) UMP using a practically efficient MILP
solver, such as CPLEX (IBM 2010).
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4 Finding the hardest input

Besides simulating the MRM, our UMP has some interesting possible uses insofar
as it can be easily adapted to solve some associated inverse problems, by simply
declaring some parameters to be decision variables and fixing some decision variables
to appropriate values. For example, in order to bench-test a new algorithm targeting
the solution of a given problem, it is useful to find inputs for which the algorithm takes
longest. This can be done as follows:

– declare r0 (the input) to be decision variables;
– adjoin the objective function:

min
∑
t∈N

x0t . (19)

By setting as few of the x0t to 1 as possible, Eq. 19 essentially tells the UMP to
terminate execution as late as possible, whilst being computationally consistent with
the r0 being chosen. In other words, find an input which causes the MRM to continue
its computation for as long as possible.

4.1 Exact integer division

We provide a proof of concept example which is simple enough so that the approach
works with an off-the-shelf tool (CPLEX IBM 2010), and the corresponding bounded
UMP is solved within acceptable computation times. We consider the following algo-
rithm for establishing whether n mod k = 0, for given n ≥ k:

1. n← n − k ;
2. if n = 0 return YES, else if n < 0 return NO, else goto 1,

and ask for what input k the algorithm runs longest, given a fixed n.
The above pseudocode can be implemented in a MRM with 4 registers and 8 states.

We limit the analysis of the code to 100 time steps. Register 1 encodes n; registers
2,3 encode k, k′ (k′ is a complementary storage for k: whenever k changes, k′ stores
the original value of k); register 4 is the output bit a: 0 if NO, 1 if YES. The actual
semantics of the MRM program is slightly different from the algorithm above, in that
it decreases k incrementally, and n at the same time. The MRM program is as follows,
and starts execution with state 1 and k′, a initialized to 0.

We then feed the set of instructions of this MRM to our universal MINLP, modified
as above with an objective function, to determine the most computationally expensive
input k with n fixed, and find, for n ∈ {5, . . . , 10}, that k = 1.

5 Debugging code using MP

In this section we discuss the application of MP to software verification. This MP is
obtained by relaxing the Turing completeness requirement about commands juxtapo-
sition (Böhm and Jacopini 1966), as explained in Sect. 2.4.

123



J Comb Optim (2014) 28:82–104 93

State Instruction Meaning Comment

0 – – – – stop

1 2 1 2 4 if k > 0 decrease k and goto 2, else 4 start here

2 3 0 3 0 increase k′ and goto 3 invariant: k + k′
3 1 1 1 0 if n > 0 decrease n and goto 1, else 0 n = 0 before k ⇒ k � |n
4 1 1 5 8 if n > 0 decrease n and goto 5, else 8 n, k = 0:⇒ k|n
5 1 0 6 0 increase n and goto 6 restore 1 to n

6 3 1 7 1 if k′ > 0 decrease k′ and goto 7, else 1 restore k using k′
7 2 0 6 0 increase k and goto 6

8 4 0 0 0 increase a and goto 0 set a = 1

5.1 Reducing code to a graph

Flowcharts (i.e., directed graph representations of computer programs) are known to
be Turing complete (Harel et al. 1979). It is not hard to show that Turing completeness
is not lost if we require that no flowchart node has more than two incoming arcs. Given
such a flowchart (also called a program graph) G = (V, A), representing a computer
program with n variables x = (x1, . . . ,xn), where V is the set of control points of
the program and A = {a1, . . . , am} is the set of arcs in the program graph, linking
a control point to the next, we assign a sequence of intervals Xi = (Xi1, . . . , Xin)

to each arc ai , for all i ≤ m. For all i ≤ m, j ≤ n, Xi j is an over-approximation
of the set of values taken by variable x j on the arc i over the whole program
execution.

Control points in the program are assigned one of the following labels: Entry, eXit,
Assignment, Join (i.e. the start of the loop), Test. A sequence of operators (Fv j ) j≤n

is assigned to each control point v ∈ V according to its label. For every flow arc
ai = (v, u) and j ≤ n, we state the rules that change Xi j according to the program
as Xi j = Fv j (X), where X = (X1, . . . , Xm). Since each arc has exactly one head
vertex, we can index the operators by arc i instead of control point v, so that we obtain
the fixed point equations (1) in the form:

∀i ≤ m, j ≤ n Xi j = Fi j (X). (20)

Notationwise, we let F = (F1 . . . , Fm) where Fi = (Fi1, . . . , Fin) for all i ≤ m. An
example is given in Fig. 2.

The operator for labels E, X is the identity Id, the operators for label A are the
interval arithmetic operators +, c×,↑ d,×, 1÷ (where +,× are binary operators,
c× is the constant multiplication, ↑ d is the power to constant, c is a real and d is
a positive constant) (Hansen 1992), the operator for label J is the interval union ∪
(i.e. the union of two disjoint intervals is the smallest interval containing them) and
the operator for label T is the intersection ∩.
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5.2 An interval MP for computing least fixed points

As over-approximations of the sets of values taken by program variables during exe-
cution, we consider the inclusion-wise lattice (I ,⊆) of all closed real intervals. For
all i ≤ m, j ≤ n we represent the interval Xi j by a triplet (x L

i j , xU
i j , x̄i j ) ∈ R

2×{0, 1}
(subject to x L

i j ≤ xU
i j ) such that Xi j = [x L

i j , xU
i j ] if and only if x̄i j = 1 and Xi j = ∅

otherwise. We also define the following width function:

|Xi j | = x̄i j (xU
i j − x L

i j )+ log x̄i j , (21)

and extend it to |X | = ∑
i, j |Xi j |. This width function is unbounded below if and

only if Xi j is the empty interval, and is equal to the standard interval width otherwise.
Applied to a box X , this width function is unbounded below if and only if X is empty
(i.e. at least one of the intervals in the definition of X is empty). Thus, the bottom
element ⊥ of any inclusion sublattice of I is smallest with respect to the width
function | · | restricted to the sublattice.

It is not difficult to establish that all the considered operators are ⊆-monotonic in
I . By Tarski’s lattice fixed point theorem (Tarski 1955), the LFP of (20) is

argmin{|X | : X ⊇ F(X)}. (22)

Equation (22) can be used to construct a mathematical program as follows. For every
operator Fi j appearing in the computer program, we define the set {X | Xi j ⊇ Fi j (X)}
in terms of inequality constraints gi j (x L , xU , x̄, y) ≤ 0 involving the decision vari-
ables x L , xU , x̄ and possibly some added binary decision variables y.

The intended semantics of the MP below, which models (22), is as follows:

– it provides the LFP of Eq. (20) as a globally optimal solution if and only if it is a
nonempty bounded box;

– it is infeasible or unbounded if only if the LFP of Eq. (20) contains some unbounded
intervals and/or is the empty set.

We prove this in Sect. 5.3.15 below.

5.3 Interval operators

As mentioned above, we need to model the operators for labels E, X, A, J, T, i.e. the
identity operator, some interval arithmetic operator, interval union and interval inter-
section. In this section we model the semantics of each operator using MP constraints.
We remark that there are many different formulations that model such constraints. In
this setting we aim to achieve clarity of exposition, so we give a natural formulation
rather than one which is computationally convenient. Computationally more conve-
nient formulations were used to obtain the computational results in Goubault et al.
(2010).
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5.3.1 Conditional constraints

To model certain interval operators using MP, we shall need some constraints to hold
conditionally to some binary variables taking value zero or one. Suppose g(x) ≤ g0 is
one such constraint (where x is the vector of all decision variables, g is a function, and
g0 is a constant), and y ∈ {0, 1} is a binary variable. To mean that g(x) ≤ g0 holds
conditionally to y = 1, we simply write yg(x) ≤ yg0: if y = 0, then the constraint
obviously reduces to 0 ≤ 0, which does not change the feasible region of the MP
in any way. In the sequel, we use the shorthand notation y → g(x) ≤ g0 to mean
yg(x) ≤ yg0.

We remark that, if y → g(x) ≤ g0 and (1 − y) → g(x) ≥ g0, then g(x) ≤ g0
implies y = 1 and g(x) ≥ g0 implies y = 0 for practical purposes in MP. Thus, we
write y ↔ g(x) ≤ g0 to mean:

yg(x) ≤ yg0 ∧ (1− y)g(x) ≥ (1− y)g0.

5.3.2 Interval consistency

For all i ≤ m, j ≤ n, Xi j is the interval [x L
i j , xU

i j ], so the following MP constraints
hold:

x L
i j ≤ xU

i j .

5.3.3 Constant

The constant fixed point equation is Xi j = [βL , βU ] for some i ≤ m and j ≤ n, where
βL , βU ∈ R; the semantics of this operator must also explicitly account for Xi j = ∅

if and only if [βL , βU ] is a non-empty interval. The corresponding MP constraints
are:

x̄i j =
{

1 if βL ≤ βU

0 otherwise.

x̄i j → x L
i j ≤ βL

x̄i j → xU
i j ≥ βU .

5.3.4 Identity

The identity fixed point equation is Xi j = Xhj for some i �= k ≤ m and j ≤ n; the
semantics of this operator must also explicitly account for Xi j = ∅ if and only if
Xkj = ∅. The corresponding MP constraints are:

x̄i j = x̄k j

x̄i j → x L
i j ≤ x L

k j

x̄i j → xU
i j ≥ xU

k j .
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5.3.5 Positive constant scaling

The fixed point equation for positive constant scaling is Xi j = αXkh for some i �=
k ≤ m, j, h ≤ n and α > 0; the semantics of this operator must also explicitly account
for Xi j = ∅ if and only if Xkh = ∅. The corresponding MP constraints are:

x̄i j = x̄kh

x̄i j → x L
i j ≤ αx L

kh

x̄i j → xU
i j ≥ αxU

kh .

5.3.6 Negative constant scaling

The fixed point equation for negative constant scaling is Xi j = αXkh for some i �=
k ≤ m, j, h ≤ n and α < 0; the semantics of this operator must also explicitly account
for Xi j = ∅ if and only if Xkh = ∅. The corresponding MP constraints are:

x̄i j = x̄kh

x̄i j → x L
i j ≤ αxU

kh

x̄i j → xU
i j ≥ αx L

kh .

5.3.7 Positive odd power

The fixed point equation for positive odd power is Xi j = Xd
kh , for some i �= k ≤

m, j, h ≤ n and d (mod 2) = 1; the semantics of this operator must also explicitly
account for Xi j = ∅ if and only if Xkh = ∅. The corresponding MP constraints are:

x̄i j = x̄kh

x̄i j → x L
i j ≤ (x L

kh)d

x̄i j → xU
i j ≥ (xU

kh)d .

5.3.8 Positive even power

The fixed point equation for positive even power is Xi j = Xd
kh , for some i, k ≤

m, j, h ≤ n and d (mod 2) = 0; the semantics of this operator must also explicitly
account for Xi j = ∅ if and only if Xkh = ∅. As usual, this is imposed by

x̄i j = x̄kh .

Since the even power function is not monotonic, we distinguish two cases:

1. 0 ≤ x L
kh ≤ xU

kh or x L
kh ≤ xU

kh ≤ 0, in which case x L
i j ≤ min{(x L

kh)d , (xU
kh)d} and

xU
i j ≥ max{(x L

kh)d , (xU
kh)d};

2. x L
kh ≤ 0 ≤ xU

kh , in which case x L
i j ≤ 0 and xU

i j ≥ max{(x L
kh)d , (xU

kh)d}.
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Since xU
i j ≥ max{(x L

kh)d , (xU
kh)d} holds in both cases, we use the constraints:

x̄i j → xU
i j ≥ (xU

kh)d

x̄i j → xU
i j ≥ (x L

kh)d .

The first case is equivalent to x L
kh xU

kh ≥ 0; the second is equivalent to x L
kh xU

kh ≤ 0.
We introduce a binary variable ykh ∈ {0, 1} which takes value 0 if x L

kh xU
kh ≤ 0, and

enforce this condition by means of the constraint:

x L
kh xU

kh ykh ≥ 0. (23)

Next, we use ykh in the constraints on x L
i j :

x̄i j → x L
i j ≤ (xU

kh)d ykh

x̄i j → x L
i j ≤ (x L

kh)d ykh .

5.3.9 Inverse

The fixed point equation for inverse is Xi j = 1
Xkh

, for some i, k ≤ m and j, h ≤ n;
the semantics of this operator must also explicitly account for Xi j = ∅ if and only if
Xkh = ∅, and Xi j = � (the largest element of the interval lattice) if 0 ∈ Xkh . As in
Sect. 5.3.8, this is equivalent to x L

kh xU
kh ≤ 0, which we model using an added binary

variable ykh ∈ {0, 1} subject to (23). We obtain:

x̄i j = x̄kh

x L
kh xU

kh ykh ≥ 0

x̄i j ykh → x L
i j ≤

1

xU

x̄i j ykh → xU
i j ≥

1

x L
.

In a MP, however, there is no computationally viable way to constrain an interval to
be �. Formally, we can write:

x̄i j (1− ykh)→ x L
i j ≤ −∞

x̄i j (1− ykh)→ xU
i j ≥ ∞,

where we take ∞ to be a formal symbol with the meaning of “unbounded”; but in
practice we must replace∞ by a finite (large) number M , as mentioned in Sect. 5.4
below. In the following, we simply assume that there is no inverse operator in the
computer code being analyzed; a weaker assumption would be that 0 �∈ Xkh , but this
is harder to verify aprioristically.
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5.3.10 Sum

The fixed point equation for the interval sum operator is Xi j = Xkh + X� f for some
distinct i, k, � ≤ m and j, h, f ≤ n. If there are empty intervals, the semantics are:
Xi j = ∅ if and only if Xkh = ∅ ∨ X� f = ∅. The corresponding MP constraints are:

x̄i j = x̄kh x̄� f

x̄i j → x L
i j ≤ x L

kh + x L
� f

x̄i j → xU
i j ≥ xU

kh + xU
� f .

5.3.11 Product

The fixed point equation for the interval sum operator is Xi j = Xkh X� f for some dis-
tinct i, k, � ≤ m and j, h, f ≤ n. If there are empty intervals, the semantics are: Xi j =
∅ if and only if Xkj = ∅ ∨ X�j = ∅. The corresponding MP constraints are derived
from the interval product [a, b][c, d] = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}]:

x̄i j = x̄kh x̄� f

x̄i j → x L
i j ≤ x L

kh x L
� f

x̄i j → x L
i j ≤ x L

kh xU
� f

x̄i j → x L
i j ≤ xU

kh x L
� f

x̄i j → x L
i j ≤ xU

kh xU
� f

x̄i j → xU
i j ≥ x L

kh x L
� f

x̄i j → xU
i j ≥ x L

kh xU
� f

x̄i j → xU
i j ≥ xU

kh x L
� f

x̄i j → xU
i j ≥ xU

kh xU
� f .

5.3.12 Union

The fixed point equation for interval union is Xi j = Xkh ∪ X� f for some distinct
i, k, � ≤ m and j, h, f ≤ n. If there are empty intervals, the semantics are: Xi j = ∅

if and only if Xkj = ∅ ∧ X�j = ∅.
Notice that the union of two intervals is the smallest interval containing both;

since the objective function aims to reduce the sum of all interval widths, we need
our constraints to only enforce containment, i.e. x L

i j ≤ min(x L
kh, x L

� f ) and xU
i j ≥

max(xU
kh, xU

� f ), which are easily seen to be equivalent to:

(1− x̄i j ) = (1− x̄kh)(1− x̄� f )

x̄i j → x L
i j ≤ x L

kh

x̄i j → x L
i j ≤ x L

� f
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Fig. 3 There are six possible interval pair configurations

x̄i j → xU
i j ≥ xU

kh

x̄i j → xU
i j ≥ xU

� f .

5.3.13 Intersection

The fixed point equations for a program node labeled by T with a test condition xh ≤ x f

is Xi j = Xkh ∩ X� f for some distinct i, k, � ≤ m and j, h, f ≤ n. This test condition
is well known to be enough to make the language Turing complete.

If there are empty intervals, the semantics are: Xi j = ∅ if and only if Xkj =
∅∨ X�j = ∅. Moreover, and differently from above, Xi j could be empty even though
Xkh and X� f are non-empty but disjoint: specifically, this happens if xU

kh < x L
� f or

x L
kh > xU

� f .
Notice that MP constraints can never be strict inequalities; one way around the issue

is to write the inequality a < b as a = b− e−t , where t is a continuous unconstrained
decision variable. We remark that this solves the issue from a theoretical point of view,
but is not a computationally convenient expedient, due to its non-convexity. In practice,
we would just pick a small enough number ε > 0 and write a < b as a ≤ b − ε.

Two intervals Xkh = [x L
kh, xU

kh] and X� f = [x L
� f , xU

� f ] could be in exactly one of
six configurations (shown in Fig. 3):

1. non-overlapping left: x L
kh ≤ xU

kh < x L
� f ≤ xU

� f , in which case Xi j = ∅;

2. non-overlapping right: x L
� f ≤ xU

� f < x L
kh ≤ xU

kh , in which case X j = ∅;

3. overlapping left: x L
kh ≤ x L

� f ≤ xU
� f ≤ xU

kh , in which case Xi j = X� f ;

4. overlapping right:x L
� f ≤ x L

kh ≤ xU
kh ≤ xU

� f , in which case Xi j = Xkh ;

5. covering top: x L
kh ≤ x L

� f ≤ xU
kh ≤ xU

� f , in which case Xi j = [x L
� f , xU

kh];
6. covering bottom: x L

� f ≤ x L
kh ≤ xU

� f ≤ xU
kh , in which case Xi j = [x L

kh, xU
� f ].

The two configurations leading to Xi j = ∅ correspond to strict inequalities xU
kh <

x L
� f or xU

� f < x L
kh . We introduce two binary variables z1

i j , z2
i j ∈ {0, 1}with the meaning:

z1
i j =

{
1 if xU

kh < x L
� f

0 otherwise

z2
i j =

{
1 if xU

� f < x L
kh

0 otherwise.
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The four configurations leading to Xi j �= ∅ are described by:

x L
i j ≤ max(x L

kh, x L
� f ) (24)

xU
i j ≥ min(xU

kh, xU
� f ). (25)

Unlike the case of the union operator (Sect. 5.3.12), we cannot simply stack constraints
to model Eq. (24)–(25): we need to introduce two binary variables y1

i j , y2
i j ∈ {0, 1}

with the following meaning:

y1
i j =

{
1 if max(x L

kh, x L
� f ) = x L

kh
0 otherwise

y2
i j =

{
1 if min(xU

kh, xU
� f ) = xU

kh
0 otherwise.

Finally, we need to state that only one of the six configurations can happen at any
one time (Eq. (33)). Specifically: Case 1 ⇔ z1

i j = 1, Case 2 ⇔ z2
i j = 1, Case 3

⇔ (1− y1
i j )y2

i j = 1, Case 4⇔ y1
i j (1− y2

i j ) = 1, Case 5⇔ (1− y1
i j )(1− y2

i j ) = 1,

Case 6⇔ y1
i j y2

i j = 1.
Thus, the intersection operator is thus modelled by the following constraints and

additional continuous unconstrained variables t1
i j , t2

i j :

x̄i j = x̄kh x̄� f (1− z1
i j )(1− z2

i j ) (26)

z1
i j ↔ xU

kh = x L
� f − e−t1

i j (27)

z2
i j ↔ xU

� f = x L
kh − e−t2

i j (28)

y1
i j ↔ x L

kh ≥ x L
� f (29)

y2
i j ↔ xU

kh ≤ xU
� f (30)

x̄i j → x L
i j ≤ y1

i j x L
kh + (1− y1

i j )x L
� f (31)

x̄i j → xU
i j ≥ y2

i j xU
kh + (1− y2

i j )xU
� f (32)

1 = z1
i j + z2

i j + y1
i j y2

i j + (1− y1
i j )y2

i j + y1
i j (1− y2

i j )+ (1− y1
i j )(1− y2

i j ). (33)

As stated previously, for practical purposes we remove the negative exponentials in
t1
i j , t2

i j by replacing Eq. (27)–(28) with:

z1
i j ↔ xU

kh ≤ x L
� f − ε (34)

z2
i j ↔ xU

� f ≤ x L
kh − ε. (35)

We remark that the intersection constraints are simpler (several decision variables
are replaced by fixed constants) if one of xh, x f is a constant interval. This happens
e.g. if the test has the form xh ≤ α, where α is a constant.
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5.3.14 Objective function

The objective function minimizes the total width, i.e.:

min
∑
i≤m
j≤n

(x̄i j (xU
i j − x L

i j )+ log x̄i j ). (36)

Optimizing the objective subject to the constraints generated for each of the fixed point
equations yields the (unique) LFP of Eq. (1).

5.3.15 Semantics

Let P be the MP defined in Sects. 5.3.2–5.3.14, and let X∗ = (X∗i j | i ≤ m ∧ j ≤ n)

be the LFP of (20). We say that P is feasible if it has at least one solution satisfying
all the constraints, and infeasible if it has none; a feasible P is bounded if it has at
least one optimal solution, and unbounded if it has none. Moreover, X∗ is empty if
at least one X∗i j is the empty interval, and non-empty otherwise; X∗ is unbounded if
at least one X∗i j has at least one infinite interval bound, and bounded otherwise. P
can only be one of: feasible and bounded, feasible and unbounded, or infeasible. X∗
can be only one of: non-empty and bounded, non-empty and unbounded, empty and
bounded, empty and unbounded. In particular, a box is empty and unbounded if one
of the constituting intervals is empty and another is unbounded.

The following proofs are valid for codes not involving the inverse operator
(Sect. 5.3.9); more specifically, they hold as long as P is not unbounded because of
an operation 1/x j occurring at line i where the interval Xi j assigned to x j contains 0.

Lemma 6 If X∗ is unbounded, then P is infeasible.

Proof Let i ≤ m and j ≤ n such that X∗i j = [x L
i j , xU

i j ], where either or both bounds

are±∞; and suppose for simplicity that xU
i j = ∞ (the other cases are similar). By the

constraints of P , this can only happen if both the following conditions hold: (a) there
is a cycle C in the program graph with a subsequence of A nodes whose combined
action on x j is a strictly increasing function; and (b) there is no upper bounding T
node on x j in C . Suppose then that a subset of the semantic equations (20) indexed
by nodes in C projects on Xi j so that Xi j = F(Xhj ) for some appropriate h < i
and interval operator F which strictly increases xU

i j ; and suppose further that any
intersection operator on Xi j only involves intersecting with intervals having the form
[a,∞]. Let k be the J node at the beginning of the cycle C , and (p, k), (q, k) be the
two incoming arcs on k, with p < k being the node prior to entering C and q > k
being the last node in C . Then, by Sect. 5.3.12, xU

k j ≥ max(xU
pj , xU

q j ). By Sect. 5.3.4

and condition (b) above, xU
hj ≥ xU

k j . By condition (a), xU
i j > xU

hj . Again by Sect. 5.3.4

and condition (b), xU
q j ≥ xU

i j . So we obtain xU
k j ≥ xU

q j ≥ xU
i j > xU

hj ≥ xU
k j , which

implies that P is infeasible. ��
Lemma 7 If X∗ is bounded, then P is feasible.
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Proof Since X∗ is bounded, then X∗ is contained in the box [−M, M] for some
large enough real constant M . For each i ≤ m, j ≤ n, set x̄i j = 0, x L

i j = −M

and xU
i j = M if X∗i j = ∅. Otherwise, set x̄i j = 1 and [x L

i j , xU
i j ] = X∗i j . We claim

(x̄, x) is a feasible solution of P . Suppose not: then there must be i ≤ m and j ≤ n
such that the corresponding constraints of P are not satisfied by (x, x̄). Whatever
label i takes in {A, T, J}, the corresponding constraints in P only depend on decision
variables indexed by (i, j), (k, h), and possibly (�, f ) where k, � ≤ m and h, f ≤ n,
depending on the interval operator on the right hand side of the assignment, test, or join
semantic equation (20). Now a long but simple case analysis through the constraints in
Sects. 5.3.3–5.3.13 shows that supposing some constraint block indexed by (i, j) is not
satisfied by (x, x̄) would imply that X∗ is not a fixed point, against the assumption.
This leaves the interval consistency constraints of Sect. 5.3.2, but again supposing
these constraints are not satisfied by x would imply that X∗ is not a box, again against
the assumption. ��
Corollary 8 If P is infeasible, then X∗ is unbounded.

Lemma 9 X∗ is empty and bounded if and only if P is unbounded.

Proof (⇒) If X∗ = ∅ then there must be X∗i j = ∅, so, by the constraints enforced
by P on x̄ , we have x̄i j = 0, which causes the objective function to be unbounded.
Since all of the other intervals defining the box X∗ are bounded, then, by Lemma 7,
P is feasible, so P must be unbounded.
(⇐) Assume P is unbounded; because of the optimization direction (Eq. (36)), this
can only happen if there are i ≤ m and j ≤ n such that x̄i j = 0, i.e. X∗i j = ∅, which
implies X∗ = ∅. ��
Proposition 10 X∗ is non-empty and bounded if and only if P is feasible and bounded.
Moreover, X∗ is the global optimum of P.

Proof Assume X∗ is non-empty and bounded. By the correctness of the formulation
of Sects. 5.3.2–5.3.14, it follows by an easy induction on the size of the program
graph that X∗ must be the unique global optimum of P , which is therefore feasible
and bounded. Conversely, let Y be the global optimum of P: again by the correctness
of the constraints of P, Y is a fixed point of Eq. (20). Because the width function | · |
is monotonic with the inclusion direction of the interval lattice, Y = X∗. ��

Putting all of the previous results together, we have:

Theorem 11 P is feasible and bounded if and only if X∗ is non-empty and bounded;
P is feasible and unbounded if and only if X∗ is empty and bounded; P is infeasible
if and only if X∗ is unbounded.

5.4 Solution methods

The above MP is a MINLP which cannot in general be solved exactly. Solutions with
an approximation guarantee on the objective value can be obtained using the sBB
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algorithm (Belotti et al. 2009)—such solutions are practically useful as every feasible
solution is an invariant overapproximation of the LFP.

As long as the computer program only uses integer affine arithmetic (i.e. it does
not involve powers, inverses and products, and ε can be taken to be 1 in Sect. 5.3.13),
we obtain a MINLP only involving products of binary variables x̄ by unbounded
continuous variables x . This MINLP has then an important property: once the binary
variables are fixed, the resulting subproblem is an LP. It can thus be solved exactly in
exponential time as follows. For all binary vectors α of size |x̄ |, fix x̄ = α and solve the
resulting LP; if the LP is feasible and its solution has better objective function value
than the incumbent, update the incumbent. Since LPs can be solved in polynomial
time and there are exponentially many binary vectors of a given length, the whole
algorithm runs in exponential time in |x̄ |. This provides a theoretical improvement
to the running time of Kleene’s iteration on unbounded interval lattices (which, in
the worst case, may fail to converge in finite time Monniaux 2009). In fact, there is a
strongly polynomial algorithm for solving this problem (Gawlitza and Seidl 2007); the
trade-off is generality: the polynomial time algorithm relies on all program variables
being integer and all arithmetic being affine; whereas the approach we propose can be
easily generalized in many different directions.

In practice, however, it is usually possible to find a constant M > 0 such that all
program variables only attain values in [−M, M]. If this is the case, all continuous
decision variables x in the MINLP are bounded in [−M, M]; assuming affine (possibly
floating point) arithmetic, the MINLP can then be approximated to a MILP by using
the ProdBinCont reformulation (Liberti et al. 2009), and neglecting the unbounded
case. This MILP can be solved exactly using an off-the-shelf Branch-and-Bound solver
such as CPLEX (IBM 2010). Computational experiments in this sense (Goubault et
al. 2010) gave correct solutions in acceptable CPU times on small and medium-sized
instances.

6 Conclusion

In this work we provided a new proof that mathematical programming is Turing com-
plete. We then showcased the use of mathematical programming techniques to solve
two problems arising in software verification. As a declarative paradigm, MP benefits
of several advantages with respect to empirical analysis or iterative procedures, i.e.,
flexibility, proof of optimality, suitability for parallel computation. A few issues such
as scalability and comparison with other techniques, e.g., SAT-based model checking,
are worthy of investigation in a future work.

Acknowledgments We are extremely grateful to an anonymous referee for helping to make this a better
paper. We are also grateful to S. Bosio, E. Goubault, J. Leconte, A. Lodi, D. Monniaux, F. Roda, F. Raimondi,
S. Le Roux for useful discussions, during the course of several years. This work was financially supported
by the following Grants: ANR “ARS”, ANR “ASOPT”, Digiteo “PASO” and Digiteo “RMNCCO”.

References

Apt K (2003) Principles of constraint programming. Cambridge University Press, Cambridge

123



104 J Comb Optim (2014) 28:82–104

Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tightening techniques for
non-convex MINLP. Optim Methods Softw 24(4):597–634

Böhm C, Jacopini G (1966) Flow diagrams, turing machines and languages with only two formation rules.
Commun ACM 9(5):366–371

Brook A, Kendrick D, Meeraus A (1988) GAMS, a user’s guide. ACM SIGNUM Newsl 23(3–4):10–11
Costan A, Gaubert S, Goubault E, Martel M, Putot S (2005) A policy iteration algorithm for computing fixed

points in static analysis of programs. In: Etessami K, Rajamani SK (eds) Computer aided verification,
volume 3576 of LNCS. Springer, Berlin, pp 462–475

Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs
by construction of approximations of fixed points. Princ Program Lang 4:238–252

Cousot P, Cousot R (1979) Systematic design of program analysis frameworks. In: Conference record of
the sixth annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, San
Antonio, TX. ACM Press, New York, NY, pp 269–282

Davis M (2009) Diophantine equations & computation: a tutorial. In: International conference on uncon-
ventional computation, Ponta Delgada. University of Azores

Davis M, Sigal R, Weyuker E (1994) Computability, complexity and languages. Academic Press, San Diego
Fortet R (1960) Applications de l’algèbre de Boole en recherche opérationelle. Revue Française de

Recherche Opérationelle 4:17–26
Fourer R, Gay D (2002) The AMPL book. Duxbury Press, Pacific Grove
Gaubert S, Goubault E, Taly A, Zennou S (2007) Static analysis by policy iteration on relational domains.

In: De Nicola R (ed) European symposium on programming, volume 4421 of LNCS. Springer, Berlin,
pp 237–252

Gawlitza T, Seidl H (2007) Precise fixpoint computation through strategy iteration. In: De Nicola R (ed)
European symposium on programming, volume 4421 of LNCS. Springer, Berlin, pp 300–315

Goubault E, Le Roux S, Leconte J, Liberti L, Marinelli F (2010) Static analysis by abstract interpretation: a
mathematical programming approach. In: Miné A, Rodriguez-Carbonell E (eds) Proceeding of the second
international workshop on numerical and symbolic abstract domains, volume 267(1) of electronic notes
in theoretical computer science. Elsevier, Amsterdam, pp 73–87

Hansen E (1992) Global optimization using interval analysis. Marcel Dekker, New York
Harel D, Norvig P, Rood J, To T (1979) A universal flowcharter. In: 2nd Computers in aerospace conference,

volume A79-54378/24-59. AAIA, New York, pp 218–224
IBM (2010) ILOG CPLEX 12.2 user’s manual. IBM
Jeroslow R (1973) There cannot be any algorithm for integer programming with quadratic constraints. Oper

Res 21(1):221–224
Johnstone P (1987) Notes on logic and set theory. Cambridge University Press, Cambridge
Jones J (1982) Universal diophantine equation. J Symb Logic 47(3):549–571
Liberti L, Cafieri S, Tarissan F (2009) Reformulations in mathematical programming: a computational

approach. In: Abraham A, Hassanien A-E, Siarry P, Engelbrecht A (eds) Foundations of computational
intelligence, vol 3., number 203 in Studies in Computational Intelligence. Springer, Berlin, pp 153–234

Liberti L, Le Roux S, Leconte J, Marinelli F (2010) Mathematical programming based debugging. In:
Mahjoub [23], pp 1311–1318

Mahjoub R (ed) (2010) Proceedings of the international symposium on combinatorial optimization, volume
36 of electronic notes in discrete mathematics. Elsevier, Amsterdam

Makhorin A (2003) GNU Linear programming kit. Free Software Foundation. http://www.gnu.org/
software/glpk/

Monniaux D (2009) A minimalistic look at widening operators. Higher-Order Symb Comput 22:145–154
Shannon C (1956) A universal Turing machine with two internal states. In: Shannon C, McCarthy J (eds)

Automata studies, volume 34 of annals of mathematics studies. Princeton University Press, Princeton,
pp 157–165

Shapiro E (1997) The art of prolog. MIT Press, Boston, MA
Tarski A (1955) A lattice-theoretical fixpoint theorem and its applications. Pac J Math 5(2):285–309
Turing A (1937) On computable numbers, with an application to the Entscheidungsproblem. Proc Lond

Math Soc 42(1):230–265

123

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

	Mathematical programming: Turing completeness and applications to software analysis
	Abstract
	1 Introduction
	2 Preliminary notions
	2.1 Minsky's register machine
	2.2 Programming languages and interpreters
	2.3 Turing completeness
	2.4 Software verification

	3 A universal MP
	3.1 Reformulation to MILP in the bounded case

	4 Finding the hardest input
	4.1 Exact integer division

	5 Debugging code using MP
	5.1 Reducing code to a graph
	5.2 An interval MP for computing least fixed points
	5.3 Interval operators
	5.3.1 Conditional constraints
	5.3.2 Interval consistency
	5.3.3 Constant
	5.3.4 Identity
	5.3.5 Positive constant scaling
	5.3.6 Negative constant scaling
	5.3.7 Positive odd power
	5.3.8 Positive even power
	5.3.9 Inverse
	5.3.10 Sum
	5.3.11 Product
	5.3.12 Union
	5.3.13 Intersection
	5.3.14 Objective function
	5.3.15 Semantics

	5.4 Solution methods

	6 Conclusion
	Acknowledgments
	References


