Exam projects for INF580

Leo LiBerTI, LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128
Palaiseau, France

liberti@lix.polytechnique.fr

Notes

e None of the projects below are well-defined. Come talk to me (or write me an email) and
we’ll define it together.

e All of the projects below contain some theoretical and some implementation work.

e Be aware that local NLP solvers launched on nonconvex formulations do not guarantee
that they will find the global optimum. A way to increase chances to find global optima
of a nonconvex MP formulation

P =min{f(x) | Vi <mgi(x) <0AzeR"}

where f,g; : R” — R are functions at least one of which is nonconvex, is to run a simple
multi-start algorithm:
¥ =0€R™ #this is the solution
f*=o00 H#this is its optimal value
iteration =0
while iteration < limit do
2% = random_vector(n)
(2', f") = solver(P, z°)
if f/ < f* then
¥+ 2
fref
end if
iteration < iteration + 1
end while
return (z*, f*)

where 1imit is a given iteration limit. This algorithm is very easy to implement in either
AMPL or Pyhon.

Projects

1. Create a graph-of-words from a sentence, enrich it with semantic distances, then use MP
formulations for DG to embed the graph in a low-dimensional space. You will obtain
a word embedding for the sentence. Test your word embedding on a natural language
processing task.



2. Try solving the DGP system of quadratic equations using Newton’s method. Chances are,
it won’t work very well. Improve the situation by devising methods for selecting a good
starting point. Consider solving the system using Grébner’s bases.

3. (Theoretically challenging) Consider the objective function F e X for the SDP formulation
of the DGP given in the course. Consider choosing F' as advised in [1]. Explain why
Barvinok’s choice decreases the rank. Verify experimentally whether this choice really
achieves what it promises.

4. (Even more challenging) Look for a theoretical estimation of the difference between the
optimal objective function the SemiDefinite Programming (SDP) “push-and-pull” formu-
lation and that of the corresponding primal and dual Diagonally Dominant Programming
(DDP) formulation.

5. Form and realize the graph of secondary structures of a protein: detect them using means
and variances of bond angles on the backbone, then connect them with edges if some of
their atoms are connected by edges in the protein graph (the weight of the secondary
structure edges could be the sum of the weights of the corresponding protein graph edges).
More precise instructions:

e download some proteins from the PDB database, each should tell you the backbone
and the 3D positions for each atom (you have to read the documentation in order to
know which fields are relevant, you can probably also find Python interfaces to the
PDB)

e using the 3D coordinates of the atoms of the backbone, find out all of the bond angles

e use statistics on the means and variances of bond angle sines/cosines computed of
subsequences of fixed size k (loop for k € {5,...,50}), find what subsequences refer to
beta-strand, alpha-helices, loops, according to the rule: alpha-helix: nonzero mean,
low variance; beta-strand: zero mean, low variance; loop: high variance

e form a protein backbone graph where the vertices are the backbone atoms, and each
edge {u,v} means that the distance between atom u and atom v is < 54, encode this
in a .dat file format like tiny_gph.dat

e form a secondary structure graph where the vertices are beta-strands, alpha-helices,
loops. Connect two of them with an edge {A, B} if some atoms in A are connected
to some atoms in B in the protein backbone graph. Assign a distance to edges which
is equal to the sum of the corresponding distances in the protein backbone graph

e realize the protein backbone graph and the corresponding secondary structure graph.
Try and “superimpose” them (to be discussed).

6. Verify whether random projections work well on LPs of a few interesting classes: the diet
problem, max-flow problems, multicommodity flow problems (LP); max stable set, facility
location (MILP), etc. In general, compare a bisection code for original formulations to a
bisection code for projected formulations; measure and compare objective function values
and CPU times. More precise instructions:

e you can use a single code for bisection. This code should read an LP or MILP in
.mps or .1p format, it should transform the objective function min ¢z to a constraint



REFERENCES 3

c¢'x < ¢p, add it to the constraints Az = b A x > 0, and then perform bisection on
the feasibility problem ¢'z < ¢y A Az = bAx > 0; this code can be written in AMPL
or in Python, as you wish

e you need to write another code, in Python this time, which reads an LP or MILP
in .mps or .1p format, reduces to standar form min{c'z | Az = b Az > 0},
and then produces, in output, an .mps or .lp format of the projected problem
min{c'z | TAz = Tb Ax > 0}. This code should also output the CPU time taken to
do the projection

e you need to write different codes, all in AMPL, which model some LP classes and out-
put instances in .mps or . 1p format (use the AMPL command write minstancename;
to output to instancename.mps).

e finally, you need to write random instance generators for each of the AMPL codes
that model LP classes.

References

[1] A. Barvinok. Problems of distance geometry and convex properties of quadratic maps.
Discrete and Computational Geometry, 13:189-202, 1995.



